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We consider hydrodynamic fluctuations near the mechanical-equilibrium stability boundary of a 
liquid heated from below. We show that when the boundary is approached either from the equili­
brium side or from the side of the stationary convective motion, the velocity and temperature 
fluctuations increase. The correlation time and radius depend on the difference between the 
Rayleigh number R and its threshold value Ro like Tc ~ I Ro- R 1-l and rc ~ I Ro- R r112 • 

THE mechanical equilibrium of a liquid heated from 
below is stable if the temperature gradient in the 
liquid does not exceed a certain limiting value[ll. When 
the critical gradient is exceeded, flow is produced in 
the liquid and leads to a redistribution of the tempera­
ture. It is natural to expect the velocity and tempera­
ture fluctuations to reach appreciable values near the 
convection threshold, and the correlation time of the 
fluctuations to increase strongly. In fact, the change of 
stability means that so long as the Rayleigh number R 
(the dimensionless temperature gradient) does not ex­
ceed a critical value R 0 , all the small equilibrium per­
turbations attenuate in time, and when R > R 0 there 
exists at least one growing perturbation that disrupts 
the stability. Since all types of perturbations are ex­
cited in the liquid as a result of the fluctuations, the 
growth of the fluctuations in the vicinity of Ro is en­
sured precisely by this critical perturbation. In this 
sense one can say that fluctuation perturbations lead 
to a change in the character of the motion. 

Velocity and temperature fluctuations are brought 
about by different random actions (thermal fluctuations, 
random jolts, unevenness in the heating, etc.). The 
conclusion drawn in this article, namely that the fluc­
tuations increase on approaching the conduction 
threshold, does not depend, however, on the nature of 
the fluctuations and remains valid for practically all 
random forces. 

The start of convection is the simplest example of 
hydrodynamic instability, so that there is every reason 
for assuming that the instability of stationary flows is 
connected with the increase in the intensity of the hy­
drodynamic fluctuations when the critical Reynolds 
numbers are approached. In general, hydrodynamic 
instability, just as the instability of any stationary 
state that is not in thermodynamic equilibrium, is 
analogous to the loss of stability of equilibrium in 
second-order phase transitions or at the critical point. 

1. STABILITY OF EQUILIBRIUM AND OF STATIONARY 
MOTION IN THE VICINITY OF Ro 

Let us consider the stability of the equilibrium of a 
liquid heated from below. The temperature gradient at 
equilibrium is •u = -A y, where y is the unit vector 
directed upward. If the liquid fills a cavity whose 
height is not too large, then the liquid can be regarded 
as incompressible. In this case nonstationary small 
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perturbations of the velocity and of the temperature 
are described by the equations 

fJv p 
iii=- V p-+vAv+g~Tv, 

OT 
iii= xt<.T + Avv, divv=O (1) 

(the notation is the same as used in the book of Landau 
and Lifshitz[ll ). For the coordinate parts (amplitudes) 
of perturbations that vary in time like e-At, we obtain 
from this 

-'Av = -Vp +~v + DyT, 

-'APT= lJ.T + Dyv, div v = 0. (2) 

All the quantities here are dimensionless; the units of 
length, time, velocity, and temperature are respectively 
the characteristic height of the cavity l, Z2/v, v/l, and 
vr1( Av/gf3X )112 • Equations (2) contain the dimensionless 
parameters R = D2 = g(3Al 4/ vx (the Rayleigh number) 
and P = v/x (the Prandtl number). The velocity and 
temperature perturbations vanish ort the boundaries of 
the cavity: 

v=O, T=O. 

The boundary-value problem (2)-(3) is self-adjoint; 
its eigenfunctions satisfy the orthonormalization 
conditions [21 

(3) 

(4) 

and the eigenvalues (the decrements i\n) are real. The 
spectrum of i\n is, generally speaking, discrete. If, 
however, at least one of the dimensions of the cavity is 
large compared with the others, then the spectrum of 
the decrements condenses, and under certain conditions 
it can be regarded as continuous. 

So long as R < R0 , all the decrements are positive, 
i.e., the equilibrium perturbations are attenuated 
monotonically. When R approaches R 0, one of the 
decrements (with n = 0) tends to zero in accordance 
with 

R,-Rs Ao(R)=--- (rotv0 ) 2 dV. 
Ro (5) 

(Such a result is obtained in first order of perturba­
tion theory, if the initial approximation is taken to 
comprise the proper solutions of the problem (2)-(3) 
at R = Ro.) 

When R > R 0 , the perturbation with n = 0 increases, 
and this leads in final analysis to establishment of a 
new stationary regime, in which the velocity U of the 
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liquid differs from zero, and the tempere~.ture J is no 
longer a linear function of the vertical coordinate. In 
the quasilinear approximation, which is valid at a 
small excess of R over Ro, we obtain 

U = sv,(r}, t} = -DP-'z + eT,(r}, 

e'= R;,R•[_Et..-'H • .' r J<rotv,)'dV, ..... (6) 

H.,=- H,. = J {v.(voV)vo + PT.(v,V) T,} dV. 

Thus, the motion resulting from the instability of the 
mechanical equilibrium has the structure of a critical 
perturbation v 0 ( r) with an amplitude proportional to 
the square root of R - R0 • 11 

The investigation of the stability of the obtained 
motion is analogous to that in the case of equilibrium. 
It turns out again that the perturbation that attenuates 
most slowly is of the type v0, T0, the decrement of 
which is now 

R-R, J J..o(R)= 2--- (rotv0 ) 2 dV. 
R, 

2. HYDRODYNAMIC FLUCTUATIONS IN THE CASE 
OF A DISCRETE DECREMENT SPECTRUM 

(7) 

The fluctuation velocities and temperatures excited 
in an immobile liquid by random forces are described 
by the system of inhomogeneous equations 

(8) 
P~=AT+Dyv-divq, divv=O, 

iJt 

where sa{3 is the "extraneous stress tensor," q is 
the vector of "extraneous heat flux"; as shown in[ 5l, 
if additional terms are introduced in this manner into 
the equations of hydrodynamics, the fluctuations of 
sa{3 and q are not correlated with one another. 

Let us consider first the case of 0-correlated 
extraneous forces. For these we have21 

(s«~(r,, t,)s,,(r,, t,)) = 28 (11«.,/lpo + 1:1.,1:1~,) 1:\(r,- r,)ll(tz- t,), 
(q«(r., t,)q~(r2, t2)) = 2$1\.pl\ (r,- r,)l:l(tz- t,), 

(q.(r., t 1 )s~,(r2, t 2)) = 0. (9) 

In particular, for thermal fluctuations we have 

e = .!=! (I) - g~kT' (1 o) 
pv'l' - pcp'v'Al ' 

where T is the average temperature of the liquid. 
Fluctuations arise not only in the liquid, but also in 

the solid that bounds it. We shall, however, neglect the 

I) This result, predicted by Landau on the basis of rather general 
considerations [ 3], was obtained in the theory of thermal convection by 
Sorokin [4]. 

2> Relations (9), which were obtained in [ 5], are valid, strictly 
speaking, only for a liquid that is in thermodynamic equilibrium. We 
can, however, also employ these formulas for small deviations from 
equilibrium, when each physically infinitesimally small volume is in the 
state of local equilibrium. We note that the use of the macroscopic equa­
tions of motion of the liquid already presupposes satisfaction of this 
condition. 

fluctuation displacements of the boundaries of the 
cavity. In addition, we assume as before that the tern­
perature perturbations vanish on the walls of the 
cavity (the boundaries have infinite thermal conduc­
tivity). Allowance for the finite thermal conductivity of 
the solids surrounding the liquid leads to the same re­
sult with inessential changes in the calculations. Thus, 
the velocity and temperature fluctuations in the liquid 
will satisfy the boundary conditions (3). Taking this 
into account, let us expand the solution of the inhomo­
geneous system (8) in the complete system of eigen­
functions of the homogeneous problem (2)-(3): 

{v,T,p} = _Ec.(t){v.,T.,p.}. (11) 

Substituting the expansion (11) in (8) and recognizing 
that vn, Tn, and Pn satisfy Eqs. (2), we get 

,E (c.+ J...c.) v.« = ~~:, P .E (c.+ t..c.) T. =- div q. (12) . . 
We multiply the first equation by Vma and the second 
by Tm, add them, and integrate over the volume of 
the cavity. Taking into account the orthogonality con­
ditions (4), we obtain 

c.+t..c.= J (v.« 8;;: -T.divq)dv. (13) 

The integral in the right-hand side is transformed into 

~(v •• s.~-T.q~)df~- J (s.p 80:7-qVT.)dv. 

The surface integral vanishes by virtue of the boundary 
conditions, so that 

c.+t..c.= J (qVT.-s./;;:)dv. (14) 

From this we obtain for the components of the Fourier 
coefficients en( t) 

(-iw+J...}c.(w}= J{q«(w} aT. -s.~(w} ov •• }dv. (15) 
ox. OXp 

Using this expression and the correlation function of 
the components qa_(w) and saf3(w), we get 

< ( } • , K ll(w- w') 
Cm Iii C0 (Iii))= 4n(8/mn +(I) mn} . . , 

(-!Cil+l.m)(!lil+l..} 

Let us return to the correlation relations for the 
coefficients en( t): 

(16) 

For T > 0 we find, closing the integration contour in 
the upper half-plane 

e-"n'C 
(cm(t)c.(t +'r)) = 2(8/mn + IDKmn)~, {18) 

With the aid of (18) and (11) we can calculate the cor­
relation relations for the temperature and for arbi­
trary velocity components. For example, 

(T(r1,t)T(r,,t+-.:)) = I>cm(t}c.(t+-r))Tm(r,)T.(r,). (19) 
tn,n 

The behavior of the function (19) depends on the value 
of T and turns out to be essentially different for the 
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discrete and continuous decrement spectra. In this 
section we consider the case of a discrete spectrum. 

U the neighboring levels A.o and ,\ 1 are separated by 
a finite interval, as is certainly the case for cavities 
whose linear dimensions are of the same order, then 
the relation (A.1 - A. 0 )r' = 1 determines the character­
istic time r'. Near the equilibrium -stability boundary, 
where the critical-perturbation decrement is small, 
the main contribution to a sum such as (19) at times 
r > r' ~ A.i1 is made by the term with m = n = 0, for 
which 

(co (t) Co (t + T)) = (®loo + <DKoo) e-'•' I A0 • 

(20) 

For values r < r', and particularly when calculat­
ing the simultaneous correlation, it is necessary to 
sum the infinite series (19). It is easily understood, 
however, that consideration of simultaneous fluctua­
tions at different points of an incompressible liquid 
has no physical meaning at all, since the signal propa­
gation velocity in such a medium would be infinitely 
large. Even the incompressibility condition div v = 0 
implies that the velocity fluctuations are correlated in 
the entire volume of the liquid. For the same reason, 
the simultaneous temperature fluctuations, which are 
connected with the velocity fluctuations by the general 
system of Eqs. (8), are likewise not <5-correlated. We 
note that in the absence of heating ( R = 0 ), when the 
temperature fluctuations are determined independently 
from the equation 

iJT Pat= L'!T-divq, 

we obtain for the simultaneous correlation3> 

(T(r,)T(r,)) = <DP-'II(r,- r,). 

For the thermal fluctuations we obtain from this, 
returning to dimensional notation 

kT' 
(T(r,)T(r,)) = --1\(r,- r,), 

pep 

which coincides with the usual expression for the 
thermodynamic tern perature fluctuations. 

It is clear from the foregoing that the correlation 
relations of the type (19) are meaningful only for 

(8') 

values of T such that the condition cr >> I r2 - r 1 1, is 
satisfied, where c is the velocity of sound in the liquid. 

Let us continue the analysis of the fluctuations at 
r > r'. At Rayleigh numbers close to critical, we can 

3>Let us show how this result is obtained. We expand Tin (8') in the 
eigenfunctions of the equation -XPT = 6. T, which satisfies the orthonor­
malization conditions 

We now have in place of (19) 

e-J.nt 

(T(r1, t)T(r2, t+ T)) = 2<1> ~ Kmn ---Tm(r!)T.(r2) 
.l...J Am+ An 

=<I>~ e-'•'T n (r,)T n (rz). 

Putting here T = 0 and recognizing that the Tn(r) form a complete system 
of functions with normalization (a), we obtain the formula given in the 
text. 

put R = R 0 in the integrals J 00(R) and K00(R). Then 
Joo = Koo, as follows directly from equations (2) at 
Ao = 0: 

J (rotv,)'dV= J (VT,)'dV=Do J yv,T,dV. 

Substituting expression (5) for A. 0 in (20), we get 

(c,(t)c,(t+-r))=R,(B+<D)exp{ l.,(R,-R)-r:} (21) 
R,-R R, ' 

after which the correlation functions for the tempera­
ture and for the velocity components take the form 4 > 

(T(r~, t) T(r,, t + -r:) > = R,(e + :) e-'1', T,(r,) T,(r,), 
R,-

R,(8 +<D) _,1, 
(va(r~,t)v,(r,,t+-r))= e oVoa(r,)v,,(r,), 

R,-R 

T, =Ro I loo(Ro -R). 

(22) 

As seen from these formulas, the amplitude of the 
fluctuations occurring in an immobile liquid increases 
in inverse proportion to the distance from the critical 
point; the correlation time Tc increases in accord­
ance with the same law. 

For the thermal fluctuations, the correlation rela­
tions simplify somewhat, since the ratio 

<DIe = g~T I c,A, 

is always small in the case of an incompressible 
liquid. This means that the thermal fluctuations of the 
velocity and of the temperature are determined mainly 
by the tensor sa{3• and the random heat fluxes qa in 
Eqs. (8) can be omitted, Neglecting in (22) the value of 
<I> compared with ®, we write out the correlation func­
tions in dimensional form: 

T kTA,v R, 
( (1)T(2)>=-1, R R-R e-'1',T,(r,)T,(r,), 

p gpx. ,-

kT Ro 
(va(1) v,(2)) =-1, -R--e-'1', Voa(r,) v,,(r,). 

P ,-R 
(23) 

It is clear, therefore, that growth of the fluctuations 
near R0 is inevitable even if the external actions that 
disturb the equilibrium of the liquid are very carefully 
eliminated. A crisis-free transition through R = R 0 , 

the possibility of which is sometimes discussed in the 
literature, is not realizable to the extent that the 
thermal fluctuations cannot be suppressed. 

U R exceeds R0 slightly, the thermodynamic fluc­
tuations arise against the background of the stationary 
motion (6) and are described by the equations 

ava ( OVoa ava) ap asa, 
- 8-+e v,-,-+v,,- =--+L'lva+DvaT+--, 

t 'ux, ax, OXa ax, 

P 0T +Pe(vVT,+v,VT)=L'lT+Dvv-divq, divv=O. (24) at 
It is convenient to seek the solution of this system, as 
before, in the form of the expansion (11). The ampli­
tudes { vn, Tn, Pn}, in terms of which it is now neces­
sary to carry out the expansion, are determined as the 
eigenfunctions of the homogeneous boundary-value 
problem corresponding to the system (24). At nonzero 

4>we assume here that the ground level ,\0 is not degenerate. 
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values of c::, this problem becomes non-self-adjoint, 
and therefore we have in lieu of the orthogonality con­
dition (4) 

(25) 

where v and T comprise the solution of the adjoint 
problem. Calculations analogous to those made above 
yield in place of (18) 

lmn= Jrot;mrot;;av, Kmn= JVTmVT.'dV. 
(26) 

Near Ro, the correlator ( c 0(t)c~(t + r)) is maximal, 
and, as can be seen from formula (7), the decrement 
;:>,. 0 is real and v0(R) and v0(R) coincide, accurate to 
terms of order €, with Vo(Ro). Therefore Joo(R) 
ro; Koo(R) ro; J 00(R0 ) and 

R,(Ei+«D) _,~< 
(c,(t)c,(t+-r))= Z(R-R,) e '• 

R, 
-r,= 2/oo(R-R,). (27) 

The correlation functions for any pair of physical 
quantities are determined in the transcritical region 
by formulas of the type (22). 

If the random forces are not a-correlated, then 
relations (9) are replaced by 

(s.,s1o) = 2'1', (r,- r., t,- t,) ( liavll,. + ll.ollov), 

(q.q,) = 2\f,(r,- r~, t,- t,)b.,, (q.s01 ) = 0. 

The functions -.}11 and -.}1 2 decrease when their argu­
ments r = I r2 - r2l and t = I t2 - t1l increase. Let 

(28) 

r 1, T1, and r 2 , T2 be the characteristic radii and cor­
relation times for the quantities sa.(3 and qa.. The 
random forces can obviously be regarded as a-corre­
lated if the times T1 and T2 are small compared with 
the fluctuation correlation time Tc, and the radii r 1 
and r 2 are small compared with the correlation radius 
rc. As seen from the foregoing, the fluctuation corre­
lation time is determined by the decrement of the 
critical perturbation Tc = ;>..(/ ~ (R 0 - Rt\ and the 
correlation radius is rc ~ l. Therefore, at sufficiently 
small I R0 - R I, the conditions T11 T2 << Tc are satis­
fied for all finite T1 and T2. If in addition r 11 r 2 « l, 
then practically any random action can be regarded as 
a-correlated, and 4> and ® should be taken to mean 

~= J'l'.(r,t)drdt, «D= s'l',(r,t)drdt. (29) 

3. FLUCTUATIONS IN THE CASE OF A CONTINUOUS 
DECREMENT SPECTRUM 

By way of an example of a problem with a continuous 
eigenvalue spectrum, let us consider a flat horizontal 
layer of a liquid heated from below. If the horizontal 
layer dimensions Lx = Ly = L are much larger than 
its thickness l, then the dependence of the perturba­
tion amplitudes on x andy is determined by the 
formulas 

v.=L-'u,(z,k)e'"', T •. =L-'T,(z,k)e'"', (30) 

where k and r are vectors in the (x, y) plane, the 
index v denotes the vertical structure of the perturba­
tion, and n stands for the aggregate ( v, k). The sys­
tem of functions (30) satisfies the orthogonality condi­
tions 

(31) 

The correlation relations for the coefficients en( t) 
- cvk(t) are determined by the previous formula (18), 
where now 

J( au.au: k' •)a /ll.,= ---+ Up.Uv z, 
dz dz 

and expression (19) for the temperature fluctuations 
takes the form 

For brevity, we shall henceforth assume ® >> 4>, as 
in the case, for example, of thermal fluctuations. 

(32) 

(33) 

The equilibrium crisis sets in at R = R0 , when the 
decrement ;>,. 0(k0 ) goes through zero. At R close to 
R0 and at k close to k0 , the corrections to ;:>,. 0 ( R0 , k0 ) 

can be taken into account independently: 

R, - R I " k k ' (34) I.,(R,k)=-- oo(ko)+ p( - o). R, 

This formula reveals the characteristic region of 
spatial dispersion 

IJ.k = [Ioo (R,- R) / ~R,]'h. 

The decrement spectrum can be regarded as continuous 
if L is large compared with the other characteristic 
horizontal dimensions, i.e., L » ki/ and L » (~kt1 . 
Since k0 ~ 1, the first inequality simply means that 
the length of the layer should be much larger than its 
height. The second condition is less trivial. When 
written in the form 

(Ro- R) I R, ~~I L'loo, (35) 

it limits the closeness of R to R 0 • When condition (35) 
is violated, the spectrum ;>,.v(k) should be regarded as 
discrete. One can then use the results of the preceding 
section, taking into account the degeneracy with respect 
to the direction of the vector ko. 

Assuming the condition (35) to be satisfied, we 
change over in (33) to integration with respect to k. 
Retaining in the sum over J1. = v = 0, we obtain 

(T(r,, z., t)T(r, + r, z,, t + -r)) 
Ei e-'·' . 

=-l00 (k,)T,(z,)To'(z,) J--,e-'"'dk. 
4n' ~, 

(36) 

We have taken the functions l00(k) and T 0(z, k) at the 
point k 0 outside the integral sign, since only a small 
vicinity of k 0 is important in the integration. Let us 
examine this integral. Using expression (34) for Ao(k) 
and introducing the notation 

R, (37) 
-r,=loo(R,-R)' 

we obtain 

For values of r satisfying the inequality kor >> 1, 
we can use the asymptotic representation of the Bessel 
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function Jo(kr ). Introducing a change of variables 
~ = rc(k- k0 ) and taking into account the rapid con­
vergence of the integral, we obtain after simple trans­
formations 

The last integral is known[ 6l. We present the final 
expression for the temperature correlation function 
(36) 

Ellookor:, , 
(T(1)T(2)) =--_-l,(k,r)T,(z,)T, (z,) 

2r, l'n (38) 

x{ e-'1',Erfc [f ~ ( ;, - ;, ) ] + e'1',Erfc rv :, ( ~ + 2:, ) ]} , 

where 

l'n( 2 s" ,, ) Erfc(x)=- 1--=- e- dt . 
2 yn, 

The character of the correlation function depends 
essentially on the ratio of r and T. For small T, when 
r/r » rc/Tc, we obtain from the general formula (38), 
using the asymptotic form of the error integral[7l, 

(T(1)T(2)) = '(,ek,roe-'1',J,(k,r)T,(z,)To'(z 2). (39) 

This expression does not contain T and describes the 
exponential damping of the correlation with the dis­
tance. For large values of r, i.e., at r/r << rc/rc, 
the attenuation of the correlation becomes asymptotic 
in time 

1 Ro koe-T./T. c • 
(T(1)T(2))=-El---=-l,(k,r)T,(z,)T, (z,). (40) 

2 R,-R l'n~-r: 

In this limiting case the attenuation of the spatial cor­
relation is determined only by the slowly decreasing 
Bessel function. 

As seen from the last two formulas, the quantities 
rc and Tc, defined in (37), have the meaning of the 
correlation radius and correlation time. As R ap­
proaches R 0 , they increase without limit. We note 
that the condition (35), as expected, means that L >> rc. 

To determine the constants in (38) it is necessary 
to solve the corresponding boundary -value problem. 
The simplest solution, which was obtained already by 

Rayleigh[ 8l, is obtained for a layer with free boundaries 
maintained at specified temperatures. In this case 

R, = 27n' /4, k, = n / ')!Z, 

and for the dimensional values of the radius and the 
correlation time we obtain 

r =E._(~)''• -r:,= 3n'l'x R, 
' n R,-R ' 2v(v+x) R,-R 

In conclusion we note that the results presented in 
the article cannot be extended to the immediate vicinity 
of the point R0 • When I R0 - R I is close to zero, the 
fluctuations become large, and it becomes necessary 
to take into account the nonlinear terms in the hydro­
dynamic equations. More important, however, is the 
fact that near the convection threshold, where the 
radius and the correlation time increase strongly, the 
macroscopic equations themselves may turn out to be 
inapplicable. 
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