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We calculate the dipole interaction in the antiferromagnets MnC03 and CsMnF3. Numerical values 
are obtained for the second-order anisotropy constants in the expansion of the thermodynamic po
tential in the dipole approximation. Comparison with the experimental data shows that the main 
contribution to the anisotropy energy of the investigated antiferromagnets is made by the dipole in
teraction. 

1. Experiments on antiferromagnetic resonance have 
shown that the temperature dependences of the energy 
gap in the high-frequency branch of the AFMR spectra 
of certain antiferromagnets[l-31 are close to the square 
of the reduced Brillouin function. This gives grounds 
for assuming that the anisotropy energy is proportional 
to the square of the magnetization of the sublattices, 
and consequently the main component in the anisotropy 
energy of such substances is the dipole interaction. 

In this paper we calculate the anisotropy constants 
for the "easy-plane" antiferromagnets MnC03 and 
CsMnF3 in the dipole approximation, The results are 
in good agreement with the experimental data. 

2, The crystal symmetry of MnC03 is described by 
the space group D~d (Fig. 1). The atomic coordinates 
of the Mn ++ ions are Y4, Y4, Y4 and %, %, %; the lattice 
parameters are a= 5.84A and a= 47°20'[41, Accord
ing toPl, the anisotropy terms in the expansion of the 
thermodynamic potential up to second order are given 
by 

+(b-a)s,,s,, 

where S1 and s 2 are the magnetic moments of the sub
lattices, l = s1 - s2, and m = S1 + s 2 (the z axis is di
rected along the principal axis of the crystal). 

Let us consider two states of the spin system with 
S1z = S2z = 0 and I s1z I= I S2z I = Mo, where the mag
netization of each sub lattice is M0 = ( Y2) NgiJ. BS 
= 13.95 x 103 cgs emu/mole, N is Avogadro's number, 
iJ.B is the Bohr magneton, S is the spin of the Mn++ 
ion and equals %, and the g-factor is g = 2.00 [ll, We 
denote the proper dipole energies of each sublattice and 
the interaction energy of the two sublattices E1- and 
E2- respectively in the first state and by E11 and E2t 

in the second state. Equating the corresponding terms 
in the increments of the energy and of the thermody
namic potential, we obtain 

1 
a-b= M,'(E, 1 -E,~). 

The dipole energies were calculated by the Kornfeld
Ewald method[sJ with a computer and two different 
values of the auxiliary parameter were specified to 
monitor the calculation. We obtained the following 
results: 

E,t -E,~ = 1.12·10'erg/mole, E,1 -E,_ = 1.80·10' erg/mole, 
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FIG. 1. Unit cell 
ofMnC03 . 

whence 

FIG. 2. Half of the unit cell of CsMnF3 . 

a= 0.104 erg/ mole / ( cgs emu)', 

b=0.117·10-1 erg/mole 1 (cgs emu)'. 

The accuracy of the obtained values is determined by 
the accuracy with which the lattice parameter and the 
g-factor are specified, and if calculation error is taken 
into account it amounts to ~ ifo. 

3. The crystal symmetry of CsMnF 3 is described 
by the space group D~h (Fig. 2). The Mn++ ions in 
CsMnF3 are in two crystallographically nonequivalent 
positions. The unit cell contains two ions, denoted 
Mni, in positions with point symmetry D3d, and four 
ions Mnll in positions with point symmetry C3V• We 
see therefore that to describe the magnetic properties 
of CsMnF3 it is necessary to consider six magnetic 
sublattices. The crystal lattice parameter are: 
a= 6.213A, c = 15.074A, u = 0.849[ 61, The atomic 
coordinates of the Mn++ ions are (0, 0~ O) and 
(0, O, Y2) for Mn I and (Y3, %, u), (Y3, 7'3, % - u), 
(%, Y2, Y2 + u), (%, Y3, - u) for Mn 11[ 61. 

We denote the magnetic moments of the sublattices 
of Mni by s1 and s2, and those of Mnll by ah 0"2, a3, 
and 0"4, Taking into consideration the alternation of the 
sublattices along the z axis: s1, 0" 1, 0"2, s 2, a 3 , a4, we 
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denote by E 1 the proper energy of each sublattice, and 
by E2, E 3, E4, E 5 , E6, and E1 the interaction energies 
of the sublattices 1 and 4, 2 and 3, 2 and 5, 2 and 6, 
1 and 3, and 1 and 2, respectively (1-6 are the num
bers of the sublattices along the z axis, starting with 
s1). 

The general formula for the anisotropy terms in 
the expansion of the thermodynamic potential for 
crystals of the type CsMnF 3 f2l is 

a1 2 az 2 a3 2 a~,. 2 
tD = 2 1,, + 2 1,, + cl"L + 2 1,, + z-l" 

b, ' b, ' - a, + b, 2 ' +2 m., +2m2, + dm"m,,- --2-(s,, + s, ) 

a, + a, + a, + b2 ( 2 + , + , + ( b,- a,)s,,s,, + 2 a,, a, a, 

+a.,')+ (-a,+ a,- a,+ b,) (a,,a,, + a,,a.,) 
+ (-a,- a,+ a,+ b2) ( a,,a, + a,,a.,) +(a,- a,- a, 

+ b,) ( a.,a,, + a2,a3,) + (c +d) (s"a,, + s"a" + s,,a" + s,,a.,) · 
+ (d- c) (s"a,, + s,,a., + s,,a,, + s,a,), 

where 

It= St- Sz, fit= St + Sz, lz= -O't + O'z + <JJ- a~.,'"= -O't- Oz 
+a, + a,, I, = -a, + a, -- a, + a,, m, =a, + a, + a, + a,. 

Using the same reasoning as for the case of MnC03, 

we obtain 

a1 + b, _ a, + a, + a, + b, = _1-(E _ E ) 
2 - 2 Moz tt 1-+ '-

1 
a,- b, = M,' (E,t - E,~), 

1 
a,-a,+a,-b, = M,' (Est -EH), 

a,+ a,- a,- b, = : •• (Eq-EH),. 

1 
a,-a,-a,+ b,= Mo' (E,t -E,~), 

1 1 
c + d = -, (E,t -E,~), c-d = M, (E,t -E,~), 

M, o 

where M0 = (}'6 )NgJ.LBS = 4.66 X 103 cgs emu/mole 
(g = 2.00[71). Computer calculations yielded (in 
erg/mole) 

Eq- E,~ = 0,476·107 , E,t- E,_. = 0,276·10', 
Est- EH = 1,066 ·10', E.t - E,.~ = 0,268 ·10', 

E,t- EH = -0,238·107, Eot- E,~ = -0,255·107 , 

E,t-EH= -0,119·107 • 

From this we obtain (in erg-mole/ (cgs emu)2) 

a,=2,83·10-', a,=2,36·10-', a,=0,4.5110-', a,,=2,2!l·10-', 
b, = 1,56·10-', b, = -0,714·10-', c = -0,861·10-', d = -0,313·10-'. 

Substance I Measured quantity Experimental value Theoretical 
value 

MnCOs 

I 
HA=2aMo 3.0 kOe ± 3% ['•'] 2.89 kOc± 2% 
2bMo 0± I kOe [') 0.34 kOe:!: 2% 

<:BMnF, HA = 2/sMo (at+ 4a,+4c) 2.48 kOe ± 3%['] 2.72 kOe ±: 2% 

4. The table lists the results of an experimental 
investigation of the magnetic anisotropy and the calcu
lated data obtained on the contribution of the dipole 
interaction for the antiferromagnets MnC03 and 
CsMnFs. 

A comparison of the calculated and experimental 
results shows that the main contribution to the aniso
tropy energy of the antiferromagnets MnC03 and 
CsMnF 3 is made by the dipole interaction. The slight 
deviation from experiment is due to the presence of 
other types of anisotropic interactions. 

We note that an estimate of the dipole interaction 
in CsMnF 3 was presented inr 7J, where a two-sublattice 
model was used. The value obtained for HA was 
6.80 kOe. Such an appreciable discrepancy between the 
results can be attributed to the strong simplifications 
used by the authors of17 l in the calculations. 

In conclusion, the author is deeply grateful to P. L. 
Kapitza for interest in the work, to A. S. Borovik
Romanov and L. A. Prozorova for valuable discussions, 
and to E. L. Kosarev for help with the computer calcu
lations. 
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