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Long-range order over very large distances in three-dimensional systems, in particular, Bose con­
densation in the level with momentum p = 0, does not exist for all ratios between the linear dimen­
sions of a system. However, this does not lead to a dependence of the thermodynamic functions on 
these ratios. It is shown that superfluid persistent currents can exist in rings without ODLRO for 
T = 0 and for T > 0. In particular, the possibility of such currents is indicated within the frame­
work of the exactly soluble one-dimensional model of Lieb and Liniger. 

A superfluid system is an example of a system with 
long-range order. If the long-range order is preserved 
over arbitrarily large distances, then nonvanishing 
quasi-averages exist in the systemYl The latter is 
quite frequently regarded as a necessary condition for 
the existence of such a system as a superfluid liquid, 
ferromagnetic substances, or crystals. This idea 
eliminates the possibility of the existence of one- and 
two-dimensional ordered systems since the long wave­
length fluctuations destroy the long-range order over 
large distances, [2 • 31 which makes the existence of 
quasiaverages impossible.[4l 

However, the long wavelength fluctuations destroy 
the long-range order not only in one- and two-dimen­
sional systems, but also in three-dimensional systems 
having markedly different macroscopic dimensions 
{see the Appendix), which is in agreement with the 
previously well-known facts concerning the impossi­
bility of Bose condensation and the vanishing of the 
quasi-averages in such systemsY-91 Therefore the 
number of particles No in the level with momentum 
p = 0 is not an additive thermodynamic function since 
the density of such particles n0 = N0 /V { V denotes 
the volume of the system) depends on the shape of the 
surface bounding the system. In this connection, a 
theory with a precipitated condensate and the perturba­
tion theory constructed within its framework lead to 
nonadditivity of the thermodynamic functions and to 
anomalous size effects[ 9J associated with this. 

Such effects are not present in the theory of collec­
tive variables, [lo,u] which does not use the concept of 
condensation in the level p = 0. Here, as is shown in 
Sec. 1, the value of n0 is determined by the shape of the 
system's surface. At the same time the theory of col­
lective variables leads to the very same energy for the 
ground state and the same quasi-particle spectrum as 
does perturbation theory for three-dimensional sys­
tems, provided off-diagonal long-range order {ODLRO) 
exists over arbitrarily large distances and n0 ;z' 0. 

Since the presence or absence of ODLRO does not 
determine the thermodynamic properties of a super­
fluid system, the question arises of the necessity of 
ODLRO for the appearance of superfluid properties. 
In connection with this, in the present article the 
necessary conditions for the existence of metastable 
superfluid currents in rings for T = 0 and for T > 0 
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are examined within the framework of the quasi­
particle model of a Bose liquid {Sec. 2) and for the 
case of the exactly soluble one-dimensional model of 
Lieb and Liniger[ 12- 14l {Sec. 3). It is shown that these 
conditions do not require the existence of ODLRO and 
nonvanishing quasi-averages. However, for the exist­
ence of persistent currents at all temperatures below 
the :x-transition point with the rather large critical 
velocities observed experimentally, it is necessary to 
introduce an assumption about the small probability for 
a transition between microstates with different values 
of the superfluid velocity. Such an assumption is suf­
ficient for the existence of one-dimensional super­
fluidity, and in a somewhat different form it was al­
ready made earlier in connection with arguments in 
favor of the existence of one-dimensional superfluidity 
and superconductivity. [ls,Is] In Sec. 3 arguments are 
presented in favor of the plausibility of such an assump­
tion in the one-dimensional model of Lieb and Liniger. 
In this connection, an expression is obtained for the 
normal mass of the liquid which is analogous to the 
expression obtained in the quasi-particle model. 

1. ODLRO AND THE MOMENTUM DISTRIBUTION OF 
THE PARTICLES IN A NONIDEAL BOSE GAS 

In systems where ODLRO and quasi-averages can­
not exist, in particular, in one-dimensional systems, 
the theory of perturbations using the concept of a con­
densate in the level p = 0 leads to integrals for the 
density of the particles in excess of the condensate 
which diverge at small momenta. At the same time, a 
comparison with the exactly soluble one-dimensional 
model of Lieb and Liniger[ 12• 13l for a Bose gas with a 
o-function interaction shows that perturbation theory 
correctly gives the first two terms of the expansion 
for the energy of the ground state and correctly pre­
dicts the phonon spectrum of the excitations. This in­
dicates that the incorrectness of perturbation theory in 
systems where ODLRO does not exist is confined to an 
incorrect determination of the occupation of the single­
particle levels in the region of small p. Since this in­
correctness is associated with the separating out of 
the condensate into the level p = 0, the momentum 
distribution of the particles is of interest in the theory 
of collective variables which was developed for a Bose 



774 E. B. SONIN 

gas in the articles by Bogolyubov and ZubarevfloJ and 
by Bohm and Salt, r u) where such a separation is not 
made. For three-dimensional systems where ODLRO 
exists, this theory actually leads to a finite density of 
the condensate.P7 l However, as we now show, this does 
not always occur. 

According to the theory of collective variables, in 
configuration space the wave function of the ground 
state has the form 

'¥ = flt(r,-r;), (1) 

where the indices i and j of the particles with co­
ordinates ri and rj take the values from 0 to N, and 
the function f( r) is given by 

f(r) = exp [ .E rp(p)exp(ipr/li)]. (2) 

'*' 
The function cp ( p) has a 1/ p singularity as p - 0. If 
f( r) - 1 for large values of r, then for a weakly non­
ideal Bose gas one can represent the function llJ in the 
following form : 

\[f = .E r (r,- r,)f'(rs- r,), • • f'(rN-1- lN), (3) 

where 
f'(r) = 1 + _Erp(p)exp(ipr/li), 

'*' 
and L; denotes the summation over all permutations 

s 

(4) 

of the indices of the particles. In the representation of 
second quatization 

'I'= .E i;;]~'! IT (f~ a;ltLp)NP jO), (5) 
N,, ..• ,Np p... }"'N;f 

where the summation goes over all Np which satisfy 
the conditions Np = N_p and L; Np = N. 

p 
If we assume that the fluctuations No are small, 

then in (5) one can introduce the constant No for all 
terms. This considerably simplifies operations on the 
wave function, which may be written in the following 
form: 

II (a +)N• 
'¥ = exp[!p(p)a,+a_,+] --' -jO). 

'*' (N,/2)1 
(6) 

As a result we have obtained the wave function for 
the ground state of the Bogolyubov theory. Since the 
average number of particles ( Np) in the level with 
momentum p is proportional to cp ( p), then ( Np) has 
the same 1/p singularity as cp(p). It is clear that if 
the 1/p singularity turns out to be nonintegrable (one­
dimensional and also two-dimensional and three­
dimensional systems with markedly different dimen­
sions), then it is impossible to make the transition 
from (5) to (6). In this case the ratio N0 /N tends to 
zero, and evaluation of the average occupation numbers 
( Np) for small values of p is considerably compli­
cated. Thus, an increase of one of the dimensions of 
the system leads to a smearing out of the condensate 
over a certain range of momenta near p = 0.1) In con-

I) According to Girardeau [ 18) a generalized Bose condensation 
takes place in three-dimensional systems of arbitrary shape, i.e., the 
particles of the condensate have momenta in a region near p = 0 whose 
size tends to zero in the thermodynamic limit; however the number of 
levels in this region remains rather large. 

nection with this, it is advisable to not relate the 
definition of the Bose condensate to the occupation 
numbers of one level or of a group of levels in momen­
tum space. 

A definition of Bose condensation which is useful 
for an analysis of superfluid properties in a one­
dimensional Bose gas is given in Sec. 3. The concept 
of a spatially-inhomogeneous condensate has also been 
used in the literature;r1s-21l according to this concept, 
in the condensed state a very large number of particles, 
proportional to the volume of the system, is found in 
one and the same single-particle state, but the wave 
function of this state (the wave function of the con­
densate) is not spatially constant. 

In order to determine the condensate's wave func­
tion, a nonlinear Schrooinger equation was used, simi­
lar in form to the phenomenological equations of Ginz­
burg and Pitaevski'lr 22l for the order parameter near 
the ;\-point. The idea of a spatially inhomogeneous 
condensate is, in fact, also the starting point of at­
tempts to construct a theory of superfluidity with the 
aid of the formalism of coherent states.r16 l 

It should be noted that the 1/p singularity for T = 0 
and the 1/ p2 singularity for T > 0 in the momentum 
distribution, which are characteristic for the theory 
with a separated-out condensate, can be obtained as a 
consequence of the fluctuations in the phase cp ( r) of 
the condensate's wave function lj!(r) = Aeicp<r>. 

Everything said above enables us to conclude that 
perturbation theory with a separated-out condensate 
correctly determines the energy of the ground state 
and the excitation spectrum, but it does not adequately 
reflect the collective nature of the long wavelength 
excitations. 2> 

2. SUPERFLUIDITY IN THE QUASI-PARTICLE 
MODEL OF A BOSE LIQUID 

Let us consider the problem of the existence of 
persistent currents for a system of N bosons in a 
ring of length L, which is large enough so that the 
properties of bosons in such a ring and in a rectangu­
lar box of height L are similar. For this purpose we 
isolate from the canonical ensemble of microstates of 
the system a more restricted ensemble of microstates 
with a given value of the projection P of the total mo­
mentum onto the circumference of the ring. If minima 
exist in the dependence of the free energy F0 ( P) of 
such an ensemble on P, then, as was shown inf 8l, 
persistent currents exist provided that the depth of 
such minima exceeds kT many times over. 

Let us determine the free energy F 0 ( P) in the 
quasi-particle model of a Bose liquid. 3> In this case 
each microstate is determined by the velocity of the 
superfluid mass Vs and by the numbers of quasi­
particles with momentum p and energy ~(p) in the 

2>Such an assertion agrees with the results of the work by Bohm 
and Salt, [11 I where the distinction between collective and one-particle 
excitations is developed. In the region of small momenta, only the col­
lective excitations permit the supplementary condition which appears 
in the theory of Bohm and Salt. 

3lThe stability of the metastable states in the quasi-particle model 
was considered earlier in [23] forT= 0. 
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FIG. 1 

system, which is moving with velocity Vs· At T = 0 
the function Fo( P) represents the least energy Eo( P) 
for a given P. 

Microstates without quasi-particles exist only for 
quantized values of the momentum Ps = shN/L and 
velocity Vs = sh/Lm, where s is an integer. They can 
be obtained from the ground state by changing the 
momentum of each particle by s quanta h/L. The 
corresponding values E0 ( P) differ from the energy of 
the ground state by P 2/2Nm. For other values of the 
momentum, the microstates with minimum energy are 
realized by the creation of P/p quasi-particles with 
momentum p, minimizing the quantity ~(p)/p. For 
different values of Vs the lines asmsbs on Fig. 1 
indicate the minimum energy in a weakly nonideal Bose 
gas, for which min [ ~ ( p )/ p] = c, where c denotes the 
velocity of sound. The energy E0 ( P) is indicated by 
the solid line 1. If the energy P 2/2Nm is subtracted 
from E0 ( P) we obtain a periodic function of P with 
period hN/L. 

The minima on the curve E0 ( P), determining the 
possibility of persistent currents, vanish at velocities 
Vs = min[~( p)/p] corresponding to the critical veloci­
ties according to Landau. However, in order for a 
state corresponding to a certain minimum to actually 
be long-lived, the probabilities for a transition to 
states with a smaller energy near a neighboring mini­
mum, which corresponds to another value of vs, must 
be small. Such transitions (for example, from the 
point m 2 to m 1 ) are associated with a change of the 
system's momentum by an amount of the order of N/L, 
and increase without any limit in the thermodynamic 
limit for two- and three-dimensional systems, There­
fore, for such systems the quasi-particle model, 
satisfying the Landau criterion, leads to superfluidity 
at T = 0 independently of the existence of ODLRO. 

For T > 0 the free energy F 0 ( P) is determined by 
the expression 

( Fo(P)) ~ (F(P,v,)) 
exp ~ = ~ exp --;;;r- , 

where F( P, vs) denotes the free energy for an en­
semble comprising microstates with a given P and 
with a given value of the superfluid velocity Vs. 

(7) 

Since it is sufficient to know F0(P) to within kT, 
on the right hand side of Eq. (7) one can leave only the 
one term corresponding to the smallest value of 
F(P,vs). Thequantity F(P,vs) for Vs"'O is related 
to F( P, 0) by the relation 

P'-(P-P,)' 
F(P,v,)=F(P-P.,O)+ 2Nm (8) 

Using the usual methods of statistical physics, we 
obtain the following result for the ensemble of micro­
states with vs = 0 

F(P,O)=kT~ln(1-exp 8{p~;up)=F{O,O)+ Vp.~)u' G(u), 

P# ~) 

where u denotes the velocity of the normal mass of 
the liquid in a reference system moving with velocity 
Vs, related to the momentum P for Vs = 0 by the 
relation 

~p:[expC(p~;pu)-t] -•=Vp.(u)u=P, (10) .... 
Pn(u) is the density, which depends on u, of the normal 
mass of the liquid.[ 241 The function G(u) in Eq. (9) 
varies from 1 as u - 0 to 2 as u approaches the 
critical Landau velocity min[~(p)/p]. 

The free energy F( P, vs) has a minimum with re­
spect to P at u = - Vs, i.e., where the normal velocity 
vn = Vs + u vanishes in the fixed coordinate system. 

We present expressions for G(u) and Pn(u) in 
systems of different dimensions for the approximation 
of the quasi-particle spectrum by the expression 
~ = cp. 

One-dimensional system: 

p.{u)=n~:~·(t-(:)'r'. G(u)=t+(:f (11) 

Two-dimensional system: 

1,803 (kT)' ( ( u )') -'" 
p.(u)=-;-~ 1- c , 

(12) 

Three-dimensional system: 

_ 2n'(kT)• ( ( u )') -• 
p.(u)- 45c~li' 1 - --;;- ' 

(13) 

G(u) = 1 + : (: }'- ! (: )'. 
In Fig. 2 the dashed lines indicate the free energy 

F( P, vs) for a three-dimensional system for three 
values of Vs (s = 0, 1, 2), and the solid line denotes 
the free energy F 0(P). The value F(O, 0) = F0(0) is 
adopted as the zero reference for the free energy. Let 
us define the magnitude of the barriers Eb ( s) on the 
curve F 0 ( P) to be equal to the difference of ordinates 
for the points ts and ms. The values of u on these 
segments of the curves F 0 ( P) are inversely propor­
tional to 1/L; therefore, for the definition of Pn(u) 
and G(u) one can take the values Pn(O) = Pno and 
G( 0) = 1. In this approximation we obtain 

h'N p ( 1 p.o )' Eo(s)=--2 - ---6 . 
4mL P•• 2 p 

(14) 

Barriers exist only for s < (% )p/ Pno, which corre­
sponds to a critical velocity 

h p ( 
Vcr < 2 L-' 15) 

m P•• 
which decreases in proportion to 1/L for large rings. 

\ 

' ' 

1 2 
f &Niiiil 
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In order for at least one minimum to exist on the 
curve F 0 ( P) for s = 1, fulfilment of the condition 

P·• I v < 1/2. (16) 

is necessary. The lifetime of the current states in­
creases without limit in the thermodynamic limit ac­
cording to Eq. (14), provided N/L2 - co. This, as 
follows from Eq. (A.6), is one of the conditions guaran­
teeing ODLRO around the circumference of the ring. 
However, since in this connection the second condition 
(A.6) can be violated, then very large barriers Eb can 
exist even without ODLRO around the circumference 
of the ring, but only for two- and three-dimensional 
systems. In any case, the use of ODLRO as the neces­
sary condition for superfluid currents unconditionally 
leads to the inequality (15). 

From the estimates made above of the stability of 
the current states, it follows that superfluid currents 
exist only far away from the ~-transition point (condi­
tion (16)), and the critical velocities decrease like 
1/L (inequality (15)). Neither of these is confirmed 
experimentally. [251 

An additional factor contributing to the stability of 
the current states, which was not taken into account 
above, may be the small probability of a transition 
between microstates with different values of vs, which 
is necessary, as already indicated above, for the 
existence of one-dimensional superfluidity at T = 0. 
In this case the metastable ensemble of states is char­
acterized by the free energy F( P, vs) but not by 
Fo( P). The critical velocities are determined by 
processes which violate the stability of the ensemble 
of microstates with a given value of Vs for sufficiently 
large values of u. In particular, the formation of 
vortices is among such processes. 

Thus, the quasi-particle model of a Bose liquid 
agrees with the experimentally observed superfluid 
phenomena only upon making an additional assumption 
about the small probability for a transition between 
microstates with different superfluid velocities vs. 
This same assumption leads to one-dimensional super­
fluidity for T = 0 and T > 0. 

3. SUPERFLUIDITY IN THE EXACTLY SOLUBLE 
MODEL OF LIEB AND LINIGER 

The exactly soluble model of Lieb and Liniger makes 
it possible to verify, at a microscopic level, how valid 
the conclusions are which follow from the quasi­
particle model. According to articles[ 12- 14l each 
microstate of a system of N bosons with a 0 -function 
interaction 

h' 
V(r,- r,) = -all(r,- r,) 

m 
(17) 

corresponds to a set {I} of nonidentical quantum num­
bers Ii ( i = 1, 2, ... , N) which are integers for N odd 
and half-integers for N even. Each set {I} deter­
mines a set N of nonidentical quasimomenta Pi, so­
called because without being the momenta of particles 
they are related to the energy and total momentum by 
the same relations 

E= \"lE 
.l....lzm' 

-tfl -J 0 
pt/h 

FIG. 3 

as the ordinary momenta. To each integer (half­
integer) for odd (even) N which is not included in the 
set {I}, there corresponds a certain quasimomentum 
of a hole. Thus, certain effective one-particle states 
exist with different quasimomenta, where the distribu­
tion of the particles in these states obey Fermi-Dirac 
statistics. However, the spectrum of the quasimo­
menta of the particles and holes not only depends on 
the interaction constants, but it also depends on the 
set {I}. This dependence vanishes for the strong in­
teraction a - co, when the spectrum of the quasi­
momenta Pi = hii/L coincides with the spectrum of 
the momenta of noninteracting fermions. In the limit 
a- co the bosons become impenetrable, i.e., a colli­
sion between them always reverses the direction of 
their motion. 

In Fig. 3 the black circles denote the quasimo­
menta of the particles, and the open circles denote the 
quasimomenta of the holes as a - co for a certain 
microstate. One can divide the spectrum of quasimo­
menta into continuous bands, inside of which holes are 
not present. These bands are indicated in the figure by 
curly brackets. Upon switching off the interaction for 
a given set {I} the quasimomenta of each such band 
tend to a certain single-particle momentum of an ideal 
Bose gas, and the number of quasimomenta in such a 
band becomes equal to the number of particles with 
this momentum. Such a deformation of the quasimo­
mentum distribution, associated with the transition 
from the case a = co to the case a = 0, is shown in 
Fig. 3. The distance between the limiting momenta, 
associated with a = 0, for two adjacent bands is equal 
to the number of holes between the bands multiplied 
by h/L. 

Now let us define the concept of a condensate for 
interacting bosons. If upon switching off the interaction 
a certain microstate of the interacting system goes 
over into a microstate of an ideal Bose gas containing 
a condensate, i.e., containing a large number No of 
particles in a level with momentum Ps = sh/L, then 
in the initial microstate of the interacting system N0 

particles are also found in the condensate with a 
velocity Vs = Ps/m. Such a definition of the condensate 
means that for an arbitrarily strong interaction, in the 
ground state all of the particles are found in the con­
densate with a velocity Vs = 0, since in this case all 
of the quasimomenta form a single band which is sym­
metrically distributed with respect to the point p = 0. 
In analogy with a Fermi gas, one can call this band the 
Fermi sphere. For nonvanishing total momentum in 
the state with the least energy, a single hole appears 
which moves with increasing P from the right bound­
ary of the Fermi sphere to the left boundary (a type n 
spectrum according to the terminology of Lieb[ 13l) . 
The energy E 0 ( P) of such states is indicated in Fig. 1 
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by the solid line 2 for a = ao. It coincides with the 
corresponding curve 1 in the quasi-particle model for 
P close to the quantized values Ps = shN/L, when the 
hole is located close to the Fermi boundary. 

For T > 0 there exists an ensemble of excited 
states with a certain number of particles outside of 
the Fermi sphere and a certain number of holes inside 
it; however a considerable fraction of the particles 
remains inside the continuous band without holes, which 
corresponds to the condensate. 

If the velocity of the condensate is associated with 
the superfluid velocity, then in order to determine the 
free energy F( P, vs) for Vs = 0 it is necessary to in­
clude in the ensemble only microstates with zero 
velocity of the condensate. One can show that for such 
microstates the number of particles with quasimo­
menta p > 0 must be equal to the number of particles 
with quasimomenta p < 0, that is 

1 - 1 ° -s p(p)dp = -s p(p)dp = ~. (18) 
h 0 h_~ 2 

where Lh-1p(p)dp is the number of particles with 
quasimomenta in the interval from p to p + dp. 

In order to determine F( P, 0) we shall seek the 
most probable distribution p( p) of the particles with 
respect to the quasimomentum, repeating the procedure 
used in[141 in order to determine the free energy of an 
ordinary canonical ensemble. However, in finding the 
extremal distribution, the single supplementary condi­
tion ofr 14J 

which guarantees a given average value for the num­
ber of particles, is now replaced by three additional 
conditions, viz., the two conditions (18) and the condi­
tion which guarantees a given average value for the 
momentum P: 

L-
h Lpp(p)dp = P. 

Consequently three Lagrangian multipliers appear, 
determined by the conditions (18) and (19): the two 
chemical potentials JJ. + and JJ. _ for particles with 

(19) 

p > 0 and p < 0, and the velocity u. As a result we 
obtain the following equations : 

p(p) (1 + exp( e(p))) = 1 + ha+s- p(q)dq 
kT n_~(ha)'+(p-q)'' (20) 

( ) - _ ( )+ p' kThaJin[1+exp(-e(q)/kT)]dq 
e P- ll P --up--- (21) 

?m n -~ (f!a)'+(p-q)' 

where 
J.L(p)= {"+t p > 0 

fl-· p < 0. 

F(P,O) = ll+ ~ ll-N -L k: J..rn [ 1 + exp(- 8!~) ]ap +Pu. (22) 

For small values of u expression (22) coincides in 
form with the analogous expression (9) in the quasi­
particle model: 

F (P, 0) = F {0, 0) + Lp.ou' / 2, (23) 

where Pno = dP/duiu=o denotes the density of the 
normal mass for u = 0. 

Equations (20)-(22) are most easily solved in the 
limit of a strong interaction.r 14J Correct to terms of 
second order in n/ a, for kT « JJ.± we obtain 

(24) 

Pno = ( 1 + 2...!:) Jexp(e(p)/kT)de(p)/du d _ ( 1 2 n) n(kT)' 
a __ (1+exp(e(p)/kT))' P- + '7 3c'h• 

(25) 

where c = (hn/2m)(1- 2n/a) is the velocity of sound. 
For n/ a = 0 the obtained expression agrees with 

Pno in the quasi-particle model, in spite of the fact that 
the elementary excitations obey Fermi-Dirac statistics 
in the first case and Bose-Einstein statistics in the 
second case. The decrease by a factor of two of the 
normal mass for n/a = 0 due to statistics is com­
pensated by the same increase of the normal mass due 
to the contribution of the holes. 

It is considerably more difficult to obtain a solution 
of Eqs. (20)-(22) in the case of small values of n/a 
i.e., for a weakly nonideal Bose gas. We shall confi~e 
our attention to qualitative considerations, enabling us 
to assume that in this case the normal density will 
have the same value as in the quasi-particle model. 
According to[ISJ, each particle in excess of the con­
densate, i.e., each particle lying outside the broad 
continuous band of quasimomenta corresponding to the 
condensate (see Fig. 3), can be associated with an 
elementary excitation having an energy e: = cp. The 
energy of such excitations accumulates additively if 
their number is small in comparison with N. 

Upon switching off the interaction the quasimomenta 
of the continuous bands contract to a certain limiting 
value p; therefore one can equate the number of 
particles in excess of the condensate in each such band 
to the number of quasi-particles with momentum p in 
the quasi-particle model. A microstate is described 
well by the quasi-particle model if the number of 
quasi-particles is small in comparison with N. How­
ever, for small momenta the equilibrium density of 
quasi-particles 

( ( cp) ) -• kT 
n(p)= exp kT -1 ~ cp 

increases without any limit whereas the corresponding 
density of particles p(p) in quasimomentum space 
does not, according to Eq. (20), exceed n/a. There­
fore, the density of quasi-particles n(p) in momentum 
space does not agree with the density of particles p(p) 
in quasimomentum space for n(p) > n/a, i.e., for 

p< kTa= mkT1/ a. (26 ) 
en h V n' 

In the region kT ;$ nah2/m, where superfluidity and 
Bose condensation occur in the sense defined above, 
this region of small momenta does not affect the value 
of the density of the normal mass. 

Thus, one-dimensional superfluidity exists if the 
probability of a transition between microstates of the 
system having different values of Vs is small. Such 
transitions may occur due to the interaction with the 
surrounding medium (thermostat). It is natural to as­
sume that the interaction energy can be represented 
by a sum of single-particle potentials 
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where V( ri) depends on the coordinates ri of the 
bosons of the system and on variables which charac­
terize the state of the thermostat. 

For such an interaction the probability of a transi­
tion per unit time between states with momentum and 
energy Pu E1 and P2, E2 is equal to W(P1E1; 
P2E2)h I M 12/L, where M is the matrix element of the 
operator 

~ ( ipr,) ~exp -h- , p=P,-P" 
i=l 

and W( P1E1; P2E2) is determined by the properties of 
the thermostat. For the one-particle problem the 
quantity I W( P1E1; P2E2)dP2 determines the reciprocal 
lifetime in the state with momentum P1 and energy 
E1( P1). 

In a gas of impenetrable bosons (a = oo ), just as in 
an ideal Fermi gas, nonvanishing values I M I = 1 exist 
for transitions between microstates which are obtained 
one from the other by a change of the quasimomentum 
(momentum) of only one particle. In particular, I M 1 
= 1 for a transition between two neighboring minima 
on the curve E0 ( P) since during such a transition one 
particle goes from one Fermi boundary to another. In 
order to determine the lifetime of the metastable state 
corresponding to a certain minimum of the curve 
Eo{P) for T = 0, it is necessary to take into consider­
ation transitions into all states with smaller energies 
near the neighboring minimum. The number of such 
states for the minimum corresponding to the velocity 
Vs is equal to s to within a coefficient of the order of 
unity; therefore the reciprocal lifetime of such a state 
for impenetrable bosons is equal to ~w( PsEo( Ps); 
Ps-IEo(Ps-l))mvs and becomes small only for very 
small Vs. 

However, in connection with a decrease of a one can 
expect a rapid decrease of 1 M 1 for transitions be­
tween states with different velocities of the condensate, 
since according to perturbation theory for small a 
such transitions have I M I ~ aNo- 1 where N0 is the 
number of particles in the condensate. For transitions 
between minima I M I ~ aN- 1 and one can anticipate 
that I M I does not exceed the value 

(27) 

where y = a/ (a + n) varies from zero to unity. For 
these transitions the exact values of M were calcu­
lated for N = 2 and N = 3. The calculations showed 

FIG. 4 

that (I M 1/M)a < (I M 1/Mh < 1 where (I M 1/Mh and 
( I M 1/M )a are the values of I M 1/M for N = 2 and 
N = 3 shown in Fig. 4. If the inequality I M 1/M < 1 re­
mains valid for arbitrary N, then the probability of a 
transition decreases exponentially as N- oo and long­
lived current states for T = 0 exist for finite values of 
a right up to the velocity where the barriers on the 
curve E0 ( P) vanish, i.e., up to the velocity of sound. 

APPENDIX 

FLUCTUATIONS IN ORDERED SYSTEMS 

Let us show that the long wavelength fluctuations of 
the parameter of degeneracy in ordered systems de­
stroy the long-range order over very large distances 
in three-dimensional systems with strongly differing, 
but macroscopic in all directions, dimensions. The 
degeneracy parameter for a crystal is the displace­
ment of the lattice sites, for a ferromagnetic substance 
it is the rotation of the magnetic moment, and for a 
superfluid system it is the phase of the wave function. 

Let us divide the volume of the system up into cells 
with the radius vector to the center of the cell denoted 
by R and the value of the degeneracy parameter de­
noted by cp ( R). We take the dimensions of a cell to be 
macroscopic, however small in comparison with the 
wavelengths of the fluctuations so that cp(R) can be 
regarded as continuous. The free energy of the entire 
sample only depends on the difference of cp (R) in 
neighboring cells, i.e., on Vcp(R). Therefore, the 
formulation of the problem is completely equivalent to 
the formulation of the problem about fluctuations of the 
density at the critical point, and one can use the results 
of Klein and Tisza [261 and write down expressions for 
the quantities characterizing the fluctuations of cp ( R) 
with respect to its average value, which we take equal 
to zero, ( cp (R)) = 0, and also expressions for the 
correlations between the fluctuations at different points 
of the system : 

(cp(R,)cp(R,)) =_!_ ~~cos(k(R, -R,)) 
AV~ k' ' 

(A.1) 
1k 

( (R)') _ T ~~ 1 
"' -'AV~k'' (A.2) 

k 

({cp(R,)- cp(R,) )') = 2((cp(R)')- (cp(R,)cp(R,))) 

=.E:_ ~~ 1-cos(k(R,-R,)) (A.3 ) 
AV~ k' ' 

k 

where A is a constant which depends on the form of 
the ordered system and T denotes the temperature. 
The system is chosen in the form of a parallelepiped 
with edges Lx > Ly > Lz and volume V = LxLyLz. 
The components of the vector k take values which are 
multiples of 21T/Lx, 21T/Ly, and 21T/Lz, and the symbol 
{ ) denotes averaging over the space of the functions 
cp ( R). The values k = 0 and k greater than a certain 
value q do not appear in the summation over k. In 
order to evaluate these sums, we shall use the method 
employed in[s-sJ, in which we divide the summations 
over k in Eqs. (A.1)-(A.3) into three terms: a one­
dimensional sum over kx ;.o 0 for ky = kz = 0, a two­
dimensional sum over ky ;.o 0 and kx for kz = 0, and 
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a three-dimensional sum over kx, ky, and kz ;" 0. As 
a result of calculation of these summations in the limit 
Lx - oo, Ly - oo, Lz - oo we obtain the following 
result for large R 1 - R2 

(A.4) 

(A.5) 

where x = R1X- R2X and p 2 = X 2 + (R1y- R2y)2 
If the edges Lx, Ly, and Lz of the parallelepiped 

are of the same order and Lx ~ Ly ~ Lz - oo, then 
{q;(R)2) and ( (q;(R1)- q;(R2))2 remain finite for any 
arbitrary points inside the sample. However, the un­
Um ited growth of the quantity Lx / qLy Lz or 
ln ( qLy )/ qLz leads to an unlimited growth of ( <P (R)2). 
The quantity (( <P ( R1) - <P ( R2))2), characterizing the 
correlation between <P ( R 1) and <P ( R2), remains the 
same as in a cubic sample only for I xI < LyLzq and 
p < exp( qLz)/ q. For larger values of x and p the 
quantity ( ( <P ( R1) - <P ( R2))2 ) increases without limit, 
which indicates a disappearance of the correlation. 
The off-diagonal long-range order (ODLRO) in super­
fluid systems also vanishes for such large values of x 
and p. Thus, very large fluctuations of the degeneracy 
parameter associated with large values of Lx/qLyLz 
or ln (qLy)/qLx lead to the "removal" of the de­
generacy and the vanishing of the quasi-averages.[ 27 l 
However it is clear that in a crystalline solid with 
dimensions satisfying just one of the cited inequalities, 
none of the measurements of the thermodynamic func­
tions observe any difference between the properties of 
such a solid and an ordinary crystal of cubic shape. 
Large displacements do not lead to the destruction of 
the binding between atoms since the average deforma­
tions are the same as in a cubic sample.4 l 

From formula (A.5) it also follows that the long­
range order, which vanishes along the very longest 
dimension, may be preserved along the remaining 
directions.[ 29 l It is not difficult to verify that ODLRO 
is preserved with respect to a certain direction along 
all corresponding lengths L, i.e., ((q;(Rl)- q;(R2))2) 
remains finite provided the conditions 

N N 
U-+oo, LL'ln(qL)-+oo, 

(A.6) 

are satisfied in the thermodynamic limit ( N - oo, 
N/V = const), where L' denotes either of the two re­
maining dimensions of the system. 

In conclusion I thank A. F. Andreev, G. E. Pikus, 

4l Arguments against the use of conservation of long-range order 
over arbitrarily large distances as a necessary condition for the existence 
of a crystal were given at one time by Frenkel'. [ 28 ] The author thanks 
A. I. Ansel'm for calling his attention to these statements by Ya. I. 
Frenkel', 

L. P. Pitaevskil, and Yu. A. Firsov for a discussion 
of the results of this work and for helpful advice. 

1 N. N. Bogolyubov, Quasi-averages in Problems of 
Statistical Mechanics, JINR Preprint, Dubna, 1963. 

2L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 627 (1937). 
3 Richard A. Ferrell, Phys. Rev. Letters 13, 330 

(1964). 
4 P. C. Hohenberg, Phys. Rev. 158, 383 (1967). 
5J. M. Ziman, Phil. Mag. 44, 548 (1953). 
6David A. Krueger, Phys. Rev. Letters 19, 563 

(1967). 
7David A. Krueger, Phys. Rev. 172, 211 (1968). 
8E. B. Sonin, Zh. Eksp. Teor. Fiz. 56, 963 (1969) 

[Sov; Phys.-JETP 29, 520 (1969)]. 
9E. B. Sonin, Zh. Eksp. Teor. Fiz. 57, 1411 (1969) 

(Sov. Phys.-JETP 30, 765 (1970)]. 
10 N. N. Bogolyubov and D. N. Zubarev, Zh. Eksp. 

Teor. Fiz. 28, 129 (1955) [Sov. Phys.-JETP 1, 83 
(1955)]. 

11 D. Bohm and B. Salt, Rev. Mod. Phys. 39, 894 
(1967). 

12 Elliott H. Lieb and Werner Liniger, Phys. Rev. 
130, 1605 (1963). 

13 Elliott H. Lieb, Phys. Rev. 130, 1616 (1963). 
14 C. N. Yang and C. P. Yang, J. Math. Phys. 10, 

1115 (1969). 
15 William A. Little, Phys. Rev. 156, 396 (1967). 
16 J. S. Langer, Phys. Rev. 167, 183 (1968). 
17 D. N. Zubarev, Zh. Eksp. Teor. Fiz. 29, 881 (1955) 

[Sov. Phys.-JETP 2, 745 (1956)]. 
18 M. D. Girardeau, J. Math. Phys. 6, 1083 (1965). 
19 L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 

(1961) (Sov. Phys.-JETP 13, 451 (1961)]. 
20 Tai Tsun Wu, J. Math. Phys. 2, 105 (1961). 
21 Eugene P. Gross, J. Math. Phys. 4, 195 (1963). 
22 V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. 

Teor. Fiz. 34, 1240 (1958) [Sov. Phys.-JETP 7, 858 
(1958)]. 

23 Warren D. Grohman and Marshall Luban, Phys. 
Rev. 147, 166 (1966). 

24 1. M. Lifshitz and M. I. Kaganov, Uchenye zapiski 
XGU (Science Notes, Khar'kov Univ.), 49; Tr. fiz. otd. 
fizmat. fak-ta (Proc. Phys. Div. of Phys.-Math. Dept.) 
4, 23 (1953). 

25 William E. Keller, Helium-3 and Helium-4, 
Plenum Press, 1969. 

26 M. J. Klein and L. Tisza, Phys. Rev. 76, 1861 
(1949 ). 

27 David Jasnow and Michael E. Fisher, Phys. Rev. 
Letters 23, 286 (1969). 

28 Ya. I. Frenkel', Kineticheskaya teoriya zhidkostei 
(Kinetic Theory of Fluids), Izd. Akad. Nauk SSSR, 1945. 

29 Gideon Carmi, J. Math. Phys. 9, 174 (1968). 

Translated by H. H. Nickle 
162 


