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The kinetic equation describing the motion of the dimensions of a pore in space, is solved under the 
condition that at the initial instant of time all the vacancies are in the gaseous phase. During the first 
stage, so long as the supersaturation remains unchanged, the distribution of the pores by dimensions 
has the form of a stationary distribution with a constant flux, which is cut off at a dimension that is 
large compared with the critical dimension, and which increases with time. During the second stage 
the supersaturation decreases. Then the number of pores practically remains unchanged and the criti­
cal dimension gradually overtakes the maximum pore dimension. Estimates of the characteristic 
times of the process are presented. 

1. INTRODUCTION 

IN a solid under the influence of neutron bombardment, 
a large number of vacancies and interstitial atoms are 
produced. The latter have relatively large mobility and 
rapidly emerge to the surface or annihilate with the va­
cancies. In thermal annealing, when the mobility of the 
vacancies becomes noticeable, and the concentration is 
still higher than the thermal equilibrium value, clus­
ters of vacancies are produced in the form of multiva­
cancies and pores. 

We consider in this paper the kinetics of the conden­
sation of vacancies, using the following formulation: at 
t = 0 there are only elementary vacancies, and it is re­
quired to describe the time evolution of the process. It 
is assumed in addition that the supersaturation by the 
vacancies is not too large. Such an assumption makes 
it possible to simpli.:::y the calculations and to delineate 
distinctly the main stages of the process. We propose 
to treat the problem of condensation of a strongly su­
persaturated system in a separate article. 

The formation of pores (multi vacancies) is a particu­
lar case of a first-order phase transition far from the crit­
ical point, when the metastable phase can be regarded as 
a rarefied gas, and the stable phase is precipitated in 
the form of drops or pores. Classical examples of 
such transitions are the condensation of vapor in air 
and precipitation in a supersaturated solution. Having 
in mind the deep analogy between these processes, we 
shall use henceforth the terminology of the classical 
processes, identifying the vacancies with molecules and 
the pores with drops. 

The process of condensation has three stages. The 
first stage is characterized by intense decomposition of 
the supersaturated solution (vapor) and formation of nu­
clei of a new phase (drops, grains, pores). At this stage 
drops whose dimensions exceed the critical value are 
produced through fluctuations. The calculation of the 
steady-state flux in dimension space, corresponding to 
this process, has been the subject of most papers on 
condensation kinetics.Ll-eJ At this stage, our problem 
is to determine the time-dependent distribution function 
of the multivacancies by dimensions. The probabilities 
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of evaporation and absorption of one vacancy by a mul­
tivacancy of a given dimension will be assumed known 
and we shall not dwell on the details of the calculation, 
confining ourselves only to model representations con­
cerning these quantities. During the first stage, the to­
tal number of molecules in the liquid phase (volume) is 
small compared with the total number of molecules 
(vacancies) and the supersaturation is practically con­
stant. 

The second stage sets in when the volume becomes 
comparable with the total number of molecules and the 
supersaturation begins to drop. This stage is charac­
terized by the fact that most drops have a supercritical 
dimension, and their number if practically constant. 
The volume increases mainly because the drops grow. 
For this stage we obtain the time dependence of the su­
persaturation and of the multivacancy dimension distri­
bution function. 

During the next, third stage, when most of the super­
saturated vapor (vacancies) has already been consumed 
in the formation of nuclei (of multivacancies), the main 
role is played by the growth of large drops at the ex­
pense of dissolution of small ones (coalescence). The 
theory of coalescence has been constructed by I. M. 
Lifshitz and V. V. Slezov. L 7 l We can add nothing that 
is essentially new concerning this stage. 

2, CONSTRUCTION OF MODEL 

The time variation of the density Nn of multivacan­
cies containing n elementary vacancies is described by 
the equation 

oN a l 8 J -=-- IN--(QN) ot on on 
(2.1) 

in which the term IN is the average flux of multivacan­
cies in the space of numbers n. I is equal to the differ­
ence between the evaporation probability Q and the 
probability of absorption of an elementary vacancy. 
This difference is determined by the diffusion flux of 
the vapor of vacancies from the surface of the pore, 
which is assumed to be spherical: 

1=4nRDN,·(~'-~)· (2.2) 
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Here R is the radius of the pore, D is the diffusion co­
efficient, and N~ the equilibrium concentration of the 
vacancies. The quantity Rs = 2av /T (a is the surface­
tension coefficient and v- the specific volume of the va­
cancies in the pore) determines the dependence of the 
density of vapor in equilibrium with the drop on the 
drop radius (at R >> Rs): 

N,(R) =N,'(i+R,/R). (2.3) 

The critical radius of the drop Rc is determined by the 
density of the supersaturated vacancy vapor 

N, =N,'(i +R,JR,), R,>R.. (2.4) 

The last term in (2.1) is of fluctuation origin and in­
dicates a tendency towards equalization of the concen­
trations when the absorption and evaporation probabili­
ties P and Q are close to each other: 

p = Q- I, Q = 4nR'cN,'(R). (2.5) 

Here c is a quantity of the order of the thermal veloc­
ity of the vacancy vapor (c "=~ a/T, a is the lattice pe­
riod, and 1/T is the frequency of the transfer of vacan­
cies from one site to another). 

It can be shown that the partial differential equation 
(2.1) can be used to describe the kinetics of condensa­
tion of drops whose dimensions are large compared 
with 

R. = (R.v) '1•. (2.6) 

In the present paper we consider the case of weak su­
persaturation, so that 

R,>R,. (2.7) 

In this case the drops whose dimensions are smaller 
than Ri play a minor role, since within a very short 
time on the order of 

t,~ (R;/a)'IQ(R,) (2.8) 

there is established a local equilibrium between these 
drops; this equilibrium is subsequently not violated. 
Bearing this in mind, we shall solve Eq. (2.1) with the 
initial condition (t = ti) 

N,=N,'(1+~(0)), 

N.= 0, n > n, = 'J,rrR.'Iv 
(2.9) 

and with the boundary condition 

N., = const, t > t,. (2.10) 

We are interested in times that are large compared 
with ti, and in multivacancies whose dimensions are 
large compared with ni. We shall therefore formally 
refer the initial condition to the instant t = 0, and the 
boundary condition to n = 0. 

Finally, if there is no external source for the super­
saturation of the vacancy vapor and the times in ques­
tion are short enough to be able to neglect the emer­
gence of the vacancies to the surface of the crystal, 
then the total number of vacancies both in the free state 
and in the form of pores should be regarded as speci­
fied by: 

N, + E nN. = const. (2 .11) 
.... 

3. KINETICS AT A SMALL CONSTANT SUPERSATU­
RATION (INITIAL STAGE OF CONDENSATION) 

The detailed form of (2.1) is 

aN =-v _ _!_[4nRDN,•(R'- R,)N+-v-~(4nR'cN,'N) ]· 
at 4nR' aR R R, 4nR' aR 

(3.1) 
We introduce "natural" measurement units: 

p= R/R,, r1 = p'l2, ~ = tvDR,N,• I R,', 

1 + ~ = N, I N,•, x = R, I R., ~ = R,J R,x, (3.2) 
2i'2 

g = Np-3-(4n/vR.')'/N,', R. = vc/4rrDR,. 

In the new notation, the complete system of equations 
(3.1) and (2.11) has the simplest form 

:~=-a:[ ( +-+) g- :: ]. 
(3.3) 

~(0) = !':.. + v, v = J drJrl1•g. 
0 

Bearing in mind the remarks of the preceding section, 
we shall pay no attention to the fact that Eq. (3.3), 
strictly speaking, is not valid near zero. 

The kinetic equation (3.3) can be regarded as a con­
tinuity equation in the space of the pore surfaces. The 
flux 

j =(.!...-c.!..) g-ag 
X p i}(J 

(3.4) 

consists of a hydrodynamic part with "velocity" 1/x 
- 1/ p and a diffusion part with a diffusion coefficient 
equal to unity. 

The static solution of the kinetic equation (3.3) cor­
responds to zero flux 

j=O; g,=bexp(-p+ (p'l2x)]. (3.5) 

If the supersaturation value a is negative (x < 0), then 
the function gx specifies the distribution of the "hetero­
phase fluctuations" of the unsaturated vapor ,L 4 J if a = 0 
then the function g00 specifies the thermodynamic-equi­
librium distribution of the drops by dimensions in the 
saturated vapor 

(3.6) 

A similar distribution in the pure saturated vapor takes 
the form of the Boltzmann distribution connected with 
the surface energy of the drop.L 4 J The distribution (3.6} 
for vapor in a medium reflects the fact that the mini­
mum work necessary to produce in the vapor a quasi­
stationary state of a drop includes additional energy of 
the diffusion vapor cloud with increased partial pres­
sure. Formula (3.6) casts no doubts on the expression 
(2.3), since it is derived by considering a vapor in equi­
librium with the drop, and in this case the partial pres­
sure does not depend on the distance to the drop, and 
there is no diffusion cloud. 

The total number N~ of molecules in the liquid 
phase, per unit volume and per unit density, is equal, 
for a uniform distribution, to 

v ~ = sdr1 r1''·c~ = 6-{2b. (3. 7) 
0 

Since for saturated vapor the fraction of molecules 
in the drops is small compared with the number of mol-
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ecules in the free state, V 00 << 1 and consequently 
b << 1. Obviously, a system in the state (2.9) is super­
saturated only if 6.(0) > V000 We shall henceforth use 
the parameter b as a boundary condition for the non­
equilibrium distribution function (see the remarks fol­
lowing (2.10)): 

(3.8) 

If 6. > 0 (x > 0), the distribution (3.5) is close to the 
equilibrium distribution (3.6) for p << x, reaches a 
minimum when p = x, and increases without limit for 
p > x. 

In solving the system (3.3) with the initial condition 

g!t~o = 0 (3.9) 

the supersaturation is practically constant so long as 
the number of molecules in the liquid phase is small 
compared with the total number of molecules (initial 
stage of condensation): 

V~A(O). (3.10) 

If the initial supersaturation is large, so that 6.(0) 
>> V00 (but 6.(0) «:: 1), then the first stage with constant 
supersaturation is well prolonged and is of interest in 
itself. 

The main idea of solving the problem of condensa­
tion during this stage lies in the fact that the rate of 
establishment of local equilibrium between the number 
of drops of close dimensions, characterized by a unity 
diffusion coefficient, greatly exceeds the "hydrodynam­
ic rate" of change of distribution after local equilib­
rium has been established. It is therefore natural to 
assume that the solution of the problem will be a local 
equilibrium distribution cut off at a certain value p = y 
that depends on time. 

Let us find the formal distribution G, which is a lo­
cal equilibrium one at all values of p, and which is fi­
nite at infinity. Such a distribution is the stationary 
(x = const) solution of the kinetic equation (3.3). Putting 
in (3.4) j = h = const, we get 

i= (1/x-1/p)G-oG/oa; 
(3.11) 

G=g.(1-<p}, <p=Jdajg:'. 
0 

This distribution is finite at infinity if 

<p(oo}=Jdcrjg;'=1. 
0 

(3.12) 

By the saddle-point method we obtain 

. . 1 () b [ X] ] = ]. = ---= gx X = ---= exp -- , 
l' 2nx' l'2nx' 2 

(3.13) 

The function G decreases monotonically with increas­
ing p: 

\ 

g.(p}, 
G= 'f,gx(x)[1-(p-x)/l'nx], 

j(1/x -1/p)-'-+xj, 

p < x--.;x, 
(3.14) p ~ x,, 

p >X+'/~. 
The lower expression is obtained directly from the def­
inition of the flux (3.11), in which it is necessary to neg­
lect the diffusion term, which is small when p >> x. 

The behavior of the function G is a reflection of the 
fact that the system of supersaturated vapor is stable 

against fluctuations in the formation of the drops (pores) 
whose dimensions are smaller than critical, and there­
fore when p << x the distribution G coincides with the 
equilibrium distribution. The system of supersaturated 
vapor is unstable with respect to drops of supercritical 
size. Large drops increase with an overwhelming frac­
tion of the probability. 

We seek the solution of the kinetic equation (3.3) 
the form 

g=G'\'. (3.15) 

Substituting (3.15) in the kinetic equation (3.3), we ob­
tain 

o'l' o'l' o't~J 
- =- u-+-, t~JI,~o = 0, 1\llo~o = 1, 
81: oa oa' (3.16) 

u = j- G- 1aG/aa is the hydrodynamic velocity and is 
always positive in this equation: 

l x/p-1, p<x--.;x 
2j ( 1 1) 1 -U=G+ --;;----;- =-; 4lJI2nx+(4/n-1)(p-x)/x, p;:::;= 

1-x/p-+1. p>x+l'x 
(3.17) 

It is more convenient to solve (3.16) relative to 1/J 

= azp/ih: 
o,P o¢ o',P 
8; =- u 00 + 00,, ¢·l.~o = 6('t}, >Jil,~o = 0. (3.18) 

In the zeroth approximation we neglect in (3.18) the 
term with the second derivative 

o;p otlJ 
- = -u- ;p = 6(1:-T). 
O't da' 

(3.19) 

The function T(p) is a solution of the equation 

dT ada' 
T!"'"' =0, T =J-. a;;=-;- 0 u 

( 3.20) 

We obtain a more accurate solution by replacing (3.18) 
with 

(3.21) 

' 
x=u-'1,-o, s= ~xd't'. 

It is easy to verify that the conditions for the appli­
cability of the solution (3.21) 

(3.22) 

have been satisfied. The first inequality shows that the 
zeroth approximation describes correctly the behavior 
of the function zp. We see that the variation of the dis­
tribution function with time is described approximately 
by the formula _ 

g=G8('t-T(p)) =G8(y-p), T(y) ='t, 

{ O,y<O, (323) 
El(y) = i,y > 0. • 

Thus, at a constant supersaturation the kinetics of 
the process of condensation is such that at any instant 
of time the distribution is in local equilibrium every­
where except in a narrow vicinity of the front p = y, 
and the region (0, y) is filled while the region (y, oo) is 
empty. 

Let us write out the explicit form of the function re­
sponsible for the motion of the front: 
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.:z:-p 2 .:z:• • l.:z:3 [tn _.:z: - p/.:z:- .!_.e:_J 
T(p) = 1/ 2.:z:3 ln.:z:, p =.:z:- yZ, (3.24) 

1/ 2.:z:3 (ln.:z: + f2n) , P = .:z: + VZ. 
.:z:cr7 p>.:z:. 

We note that according to (3.23) nuclei of critical di­
mension are produced within a time 

(3.25) 

Let us find the time dependence of the supersatura­
tion at small values of time. Substituting (3.23) in the 
conservation law (3.3) we get .. 

~ (0) = ll + 1 da a'1•G,, Gv = y'/20 (3.26) 
0 

Let us estimate the integral . 
V (a)= J da a'1•G, a ~ .:z:'/20 

0 
(3.27) 

When p increases from zero to .fX, this integral 
reaches rapidly a value V000 The region from .fX to x 
adds very little. With further increase of p, the func­
tion G tends to a constant value and 

V = V ~ + (a,/ C1M)'1•~(0), 

ll(O) (-1-)''• = ~.:z:,j..,o 
(1M ;) 

(3.28) 

It is clear from (3.28) that so long as the states with 
a ~ CJM remain unfilled, saturation is practically con­
stant. Since according to (3.23) ay = T /x when y >> x, 
we obtain from (3.26) for small values of time 

(3.29) 

where TM determines the duration of the initial stage. 
We emphasize that the supersaturation begins to change 
when the lion's share of the molecules in the liquid 
phase are in drops with supercritical dimensions, and 
the distribution of the latter is approximately constant 
up to p = y(y >> x). 

4. KINETICS AT VARIABLE SUPERSATURATION 
(SECOND AND THIRD STAGES OF 
CONDENSATION) 

In the course of time, the number of vacancies (mol­
ecules) V in the condensed state increases approaching 
the value 6.(0). The concentration of the molecules in 
the free state then decreases and the critical dimension 
becomes a monotonically increasing function of time, 
thereby greatly complicating the problem. However, so 
long as the times are not too large, the main final re­
sult of the preceding section, namely that most drops 
(pores) have dimensions larger than the critical, re­
mains in force. Such drops grow monotonically with a 
hydrodynamic rate u = 1/x and fluctuations are of no 
importance for them. The kinetic equation (3.3) then 
degenerates into the simple equation 

{)g = _,!__(..!.) 
a-r: aa .:z: ' 

(4.1) 

according to which the function g is an arbitrary func­
tion of one argument 

g = g(a- cr,(-r)), 
• d-r 

Gv= s-(-) o 

o .:Z: T (4.2) 

The form of this function is determined, first, by the 
initial condition (at T =To we have ~ << T 0 << TM), 
and it is natural to choose as the initial condition the 
distribution of the large drops (3.23), obtained in the 
preceding section: 

{ .:z:,;..,, a< cr,(-r) 
g(-r =To)= 0, C1 > cr,(-r) (4.3) 

Second, the form of the solution of (4.1) is determined 
from the boundary condition, i.e., from the distribution 
of the drops whose dimensions are relatively close to 
critical. For small dimensions, the distribution of the 
multivacancies is close to G(p, x( T)). Indeed, the 
function G satisfying the Eq. (3.11) describes well the 
solution of the kinetic equation (3.3) far from the front, 
if the left side of this equation (3.3) is small compared 
with any term on the right-hand side of this equation. 
In particular, it is necessary to satisfy the inequality 

I a'G I~ l!!!..l =I aG !=_I· aa• a-r . {).:z: d-r 
(4.4) 

Substituting in this inequality the function (3.14), we find 
that the inequality (4.4) is satisfied for all the dimen­
sions smaller than or of the order of critical, if 

d.:z:/th<tt:, 1/.:z:'. (4.5) 

Assuming the condition (4.5) to be satisfied, we can as­
sume as the boundary condition for (4.2) 

(4.6) 

Thus, we find that the distribution of the drops 
(pores) of large dimension for variable supersaturation 
is given by 

g= { [.:z:j.]=*'>• 
0, 

a< cr,(-r), 
a> cr,(-r). (4.7) 

and the delayed instant of time T' is determined from 
the equation 

cr,(-r)- a= cr,(-r'); 
• d-r 

a=Jz-0 (4.8) 

Inclusion of the second derivative in (4.1) shows that 
the width of the front is equal to ...fT. 1> The flux ix at 
the critical point drops exponentially with increasing x, 
and therefore the main part of the drops is concentrated 
in the region near the front, their number being prac­
tically constant. 

The dependence of the critical dimension on time is 
obtained by substituting the obtained distribution (4.7) in 
the conservation law (3.3): .. 

5 1 )''• 1 =~+-(- J dcrcr'1•exp[.:z:,-.:z:(-r')]o 
.:z: 2 a,. , 

(4.9) 

So long as x is close to its initial value, Eq. (4.9) does 
not differ from (3.28). At large values of the time, Eq. 
(4.9) takes the form 

1=-+ C- ; .:Z:o ( Gv )''• 
.:Z: (1M 

(4.10) 

1>The more accurate expression for Eqo ( 4o 7) is 

• 1 [ 1 ( • d~ )'] g(~,cr)= sd~'i•C•') exp ---- <1-s ~ o 

0 }'4n(~-T') 4(~-T') <' :z; 
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where C is a number of the order of unity. 
Substituting here the expression for ay in terms of 

x (see (4.2)), we get 

x = x, exp ('/,C"t / "t.,). (4.11) 

Thus, the supersaturation decreases exponentially with 
a half life of the order of TM· The front grows in this 
case very slowly. The volume a}l2 of the pores (drops) 
increases in accordance with (4.11) only by a factor of 
two when the critical dimension changes from the value 
2Xo to very large dimensions (when x0 /x << 1). 

The preceding analysis was based on the assumption 
(4.5) and on the condition y >> x. These inequalities 
cease to be valid in times of the order of 

(4.12) 

The violation of the inequality (4.5) is immaterial, 
since it only leads to the result that in the region of 
drops whose dimensions are close to critical there is 
not enough time for the establishment of a state of the 
same type as in the case of constant supersaturation. 
However, during this stage only an insignificant number 
of particles is present in this region, and the lack of in­
formation concerning these particles is of no import­
ance. 

Violation of the inequality y >> x makes Eq. ( 4.10) 
incorrect. Indeed, this equation virtually implies that 
the number of supercritical drops is constant. When 
the critical dimension x catches up with the frontal 
point, then the dimensions of a certain fraction of the 
drops of the main group become subcritical, and these 
drops begin to evaporate intensively so that their num­
ber decreases rapidly. At this instant, a new stage of 
the process begins, during which the ratio y /x exceeds 
only insignificantly unity, and remains at approximately 
the same level. Since the exact equation of motion of 
the front is 

da,/d"t=i/x-1/y 

we get from the condition y /x = canst 

Y = 'f,x, x' = '/,"t. 

(4.13) 

(4.14) 

We have thus arrived at the coalescence process (4.14), 

which was analyzed in detail in L7 J. This process is 
characterized by the fact that the critical dimension in­
creases approximately like t 113, and the leading front 
of the distribution lies in the vicinity of 3x/2. We shall 
not consider this stage in the present paper. 

In conclusion we present the characteristic times of 
the process: the time during which nuclei of critical 
dimensions are produced is 

't'L ~ Zo3 ln zo; (4.15) 

The time during which the critical dimension remains 
constant is 

'1:.11 ~ Zo ''exp(zo/5); (4.16) 

The time during which the critical dimension changes 
by a factor of two is 

(4.17) 

The time of start of coalescence is 

'tp ~ 'TM}U't'M, (4.18) 

The authors are sincerely grateful to I. M. Lifshitz 
and V. V. Slezov for a useful discussion that resulted in 
an appreciable revision of the present article, and to 
Yu. M. Kagan and V. V. Vasil'ev for interest in the 
work. 

1 H. Volmer, Kinetik der Phasenbildung, 1939. 
2 R. Becker and W. Doring, Ann. d. Phys., 24, 719 

(1935). 
3 Ya. B. Zel'dovich, Zh. Eksp. Teor. Fiz. 12, 525 

(1942). 
4 Ya. I. Frenkel', Statisticheskaya fizika (Statistical 

Physics), AN SSSR, 1948. 
5 Yu. Kagan, ZhFKh (Journal of Physical Chemistry) 

34, 92 (1960). 
6 V. I. Vladimirov and Sh. Kh. Khannakov, FMM 26, 

409 (1968). 
7 I. M. Lifshitz and V. V. Slezov, Zh. Eksp. Teor. 

Fiz. 35, 479 (1958) [Sov. Phys.-JETP 8, 331 (1959)]. 

Translated by J. G. Adashko 
157 


