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A theory is constructed for the tails of interband light absorption in the frequency region where the 
quantum energy tiw is smaller than the width of the forbidden band Eg. The case when there is no 
Fermi filling of the upper band is considered. The method employed is applicable in the region of 
quantum-energy deficits 1::1. = Eg - tiw such that the absorption coefficient a(i::1..) is exponentially 
small. It is shown that a ( 1::1.) at not too large values of 1::1. does not duplicate the tail of the density 
of states and decreases like exp{ -%w-112 (1::1./EB) 514 (Na3 t 112}. At larger 1::1., the absorption dupli
cates the density of states calculated in[ 1 • 2l. 

J. The present paper is devoted to the theory of inter
band absorption of light with quantum energy tiw 
smaller than the width of the forbidden band Eg. In a 
strongly doped semiconductor, this absorption is con
nected with the electron levels produced in the for
bidden band as a result of fluctuations of the shallow
impurity concentration. We consider the case when the 
extrema of the valence band and of the conduction 
bands are at the same point in k-space. The experi
mentally-observed coefficient of interband absorption 
a ( 1::1.) decreases exponentially with increasing quantum
energy deficit 1::1. = Eg - tiw. The characteristic energy 
of this decrease increases with the impurity concen
tration, and its magnitude is usually smaller by two 
orders of magnitude than the width of the forbidden 
band Eg. We therefore always have 1::1. « Eg in the 
experimentally-observed region. This makes it pos
sible to construct a theory of electronic states respon
sible for the absorption, within the framework of the 
effective-mass method. 

For concreteness, we consider a semiconductor of 
n-type, in which, however, there are both donors and 
acceptors. The density of states in the forbidden band 
was investigated in[1 • 2 l. We shall assume that the hole 
mass is larger than the electron mass. Therefore, in 
accordance with the terminology of[ll, the case con
sidered by us is "classical" for both hands. The 
density of the fluctuation levels in the forbidden band 
is shown dashed in Fig. 1. At not very large E, the 
density of states decreases like 

ln p(e) = -~ 
p(O) y' • 

- e' 
y = Z}'n-(Nr,')'", 

xr, 
(1) 

where E is the energy reckoned towards the interior 
of the forbidden band, e is the electron charge, r 0 is 
the screening radius, K is the dielectric constant, and 
N is the impurity concentration. In this energy region, 
the fundamental role is played by fluctuations of the 
impurity concentration, with a dimension on the order 
of the screening radius r 0 ; these fluctuations are de
scribed b(a Gaussian statistics. When E > E 1 

= y 413/EB 3 PJ, more compact clusters of the attracting 
impurities become significant, and form nuclei of 
multiply-charged atoms. The law governing the de
crease of the density of states is 
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1 p(e) ,(;·l [(e)' 1 ] 
np(O) =- V E. n Es Na' ' (2) 

where EB is the ionization energy of the isolated im
purity in the semi-conductor, and a is the effective 
Bohr radius. The density of states of the electrons in 
this region is determined only by the donors, and the 
density of the hole states only by the acceptors. We 
note that the mean-squared impurity potential y in (1) 
includes the total concentration of the donors and ac
ceptors. 

The theory developed in[l-31 for the absorption of 
light pertains to the case when the electrons are de
generate and the compensation is small, so that the 
Fermi level is high in the conduction band. In this 
case the frequency dependence of the light-absorption 
coefficient has the same form as the density of states 
of the valence band. We consider in this paper the 
case when the Fermi level lies deep in the forbidden 
band. This may be the consequence of high tempera-

FIG. 1 FIG. 2 

FIG. 1. Logarithm of the density of states p(e) as a function of the 
energy e reckoned towards the interior of the forbidden band (dashed 
curve), and the logarithm of the coefficient of interband absorption of 
light, as functions of the deficit t. (solid curve). The curves are shown 
for the case r0 < a. 

FIG. 2. Distortion of the bands by the impurity potential. The 
straight lines represent the bottom of the conduction band and the top 
of the valence band in the absence of impurities. Upper curve-poten
tial energy of the electron in the field of the impurity-concentration 
fluctuation as a function of the coordinate. Lower curve-potential 
energy of the hole, taken with the minus sign. It is obtained from the 
upper curve by a downward parallel shift equal to the energy Eg. 
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ture or of exact compensation. This pertains also to 
the situation (existing, for example, in germanium[4 l) 
when a direct transition to an unfilled band takes place, 
and the electrons are in a lateral extremum lying lower 
than this band. 

As noted earlier [3• 41, in this case the absorption 
coefficient, generally speaking, does not have the same 
behavior as the density of states. This is clearly seen 
from Fig. 2. Let us assume that we investigate a 
transition resulting in the formation of an electron and 
a hole with energies ~e and ~h (we reckon the ener
gies upward from the bottom of conduction band and 
from the top of the valence band). This is accompanied 
by absorption of a quantum with a deficit t::.. = ~h - ~e· 

As seen from Fig. 2, if t::.. > 0, then the regions in 
which the electron and hole are located are separated 
in space. Indeed, the region to the right of the point A 
is classically forbidden to the electron, and the region 
to the left of the point B is classically forbidden to the 
hole. The absorption coefficient contains the overlap 
integral of the wave functions of the electron and the 
hole. If the electron and hole were to be classical 
particles, then the absorption of the light quanta with 
energy smaller than Eg would be impossible. At the 
same time, the density of states in the forbidden band 
would be different from zero and would satisfy formula 
(1 ), which is purely classical. 

Thus, the absorption of the light is limited not only 
by the probability of occurrence of fluctuation levels in 
the forbidden band, but also by the tunneling probability, 
which is likewise exponentially small. Therefore the 
fluctuations that determine the density of states cannot 
be optimal for the absorption of light. Nonetheless, as 
shown in[2J, in the case of large deficits, when formula 
(2) is valid, the absorption coefficient behaves like the 
density of states. (For the derivation given in[ 3J it is 
immaterial whether the electrons are degenerate or 
not.) This can be readily understood by recognizing 
that in this case the principal role is played by im
purity clusters forming the nuclei of the atoms. To 
absorb a light quantum with a deficit on the order of 
the Bohr energy of this atom, the electron must tunnel 
through a distance on the order of the radius of its 
state. The probability of such a tunneling is not small, 
and therefore the absorption of the light is li~ ited only 
by the number of states with energy on the order of t::... 
Thus, when t::.. > E 1 the absorption coefficient is de
scribed by the formula 

In a(~)=-Y ~ ln[(!.)'-1 ] . (3) 
a(O) Es Es Na' 

The situation is entirely different in the region of 
small deficits. In the region of applicability of (1), for 
the density of states an important role is played by 
large-scale fluctuations producing a smoothly varying 
potential. The probability of tunneling in this case is 
very small and such fluctuations, as shown below, are 
not optimal for the absorption of light. Thus, the ab
sorption of light in this case calls for a special analy
sis. Essentially this is the l<'ranz-Keldysh law, but not 
in an external electric field but in the random field of 
charged impurities. This problem was considered by 
Redfield and Afromovich[sJ. They averaged the coef
ficient of light absorption in a homogeneous electric 

field. In the averaging they used the probability of 
randomly placed impurities producing a given field at 
a certain point. (It was assumed in fact that the entire 
field is produced by the nearest impurity.) It turned 
out that an important role in the integration is played 
by the field .C c = t::.. ..J mt::../tie, which is produced by an 
impurity located at a distance rc = a(EB/1:::..)314 from 
the electron. It can be shown, however, that this method 
is applicable if the inequalities rc > a, rc > t::../ e 6' c. 
and rc < N-113 are simultaneously satisfied. This is 
possible only in the case of weak doping ( Na 3 < 1) and 
only when t::.. < EB. We are interested, on the other 
hand, in the case Na3 > 1 and t::.. > EB. 

2. Our main idea is to find an impurity configura
tion that makes the maximum contribution to the ab
sorption of light with a given deficit. In the region of 
large deficits, where the absorption coefficient is ex
ponentially small, the number of impurities participat
ing in the fluctuation is large. Then the maximum cor
responding to the sought fluctuation turns out to be 
very steep. Therefore the principal term ln a is de
termined by the contribution made from the optimal 
fluctuation. Of course, such a method does not make 
it possible to determine the pre-exponential term in 
0! (t::.. ). 

In this section we present a simplified derivation, 
which makes it possible to determine the argument of 
the exponential in a(t::..) accurate to a numerical factor. 
This factor is determined in the rigorous theory, which 
will be presented in the succeeding sections. 

Let us assume that fluctuation of the impurity con
centration has produced a homogeneous electric field 
E in a volume with linear dimension R. We shall as
sume that R and 8 are connected by the relation e <~ R 
= t::... This is necessary in order that a field of such a 
fluctuation be capable of absorbing a quantum with 
deficit t::... (The absorption of the quantum will take 
place also when R > t::../ e <'· , but of course such a 
fluctuation is less probable.) The excess number of 
impurities Z needed to produce the required fluctua
tion is determined from the condition i!l = Ze/ KR 2 , i.e., 

Z = 8-.ill.' I e = xRll/ e'. 

(We do not write out here the numerical factors which 
depend on the form of the fluctuation.) The contribution 
made to the absorption coefficient by such a fluctuation 
is proportional to 

( Z2 
) ( R'fm~) exp - NR3 exp --li- . (4) 

The first factor is the probability of the appearance 
of Z excess impurities in the volume R3 • The second 
factor is the probability of tunneling through a depth R. 
Here m is the effective mass of the lightest carrier. 
Expressing Z in terms of R and t::.., we rewrite (4) in 
the form 

exp (- x2~2 - Rfm~ ) 
eWR 1i ' (5) 

from which it is clear that at a given t::.. the tunneling 
probability increases with decreasing R, whereas the 
probability of fluctuation production decreases. 

We determine the dimension Rc of the optimal 
fluctuation from the condition that the argument of the 
exponential in (5) be a maximum 
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( 11 \ .,, 1 ) (6) 
Rc=a EB (NaS)'I• . 

Substituting (6) in (5), we obtain the contribution made 
to a(~) by the optimal fluctuation. In accordance with 
the foregoing, we obtain ultimately 

a(/1) ( 11 )''• 1 (7) 
ln a(O) =- p EB (Na3) '1• • 

Here f3 is the numerical factor which cannot be ob
tained from such a simplified derivation. As will be 
shown below, {3 = 2/5 ..ri. It is seen from (7) that the 
law governing the decrease of the absorption coefficient 
differs significantly from the density of states (1 ). We 
note that (7), like (1), contains the total donor and ac
ceptor concentration. 

Let us now investigate the region of applicability of 
(7). We did not take into account in the foregoing 
derivation the fact that the Coulomb potential of the 
impurities is screened by the electrons. Therefore 
the result is valid if Rc < r 0, i.e., if ~ < ~lt where 
~ 1 = EB(r0 /a) 413 (Na3)213. If Rc > ro, then when 
R = r 0 the second term in (5) is small compared with 
the first, i.e., the tunneling is insignificant. The proba
bility of producing a potential well with depth ~ and 
dimension R with R > r 0 decreases with increasing 
R[ll. (The potential of the remote impurities does not 
reach the center.) Therefore, just as in the theory of 
the density of states, the dimension of the optimal 
cluster is in this case r 0 • Substituting R = ro in (5), 
we obtain for ~ > ~ 1 

ln a(/1) = -~. (8) 
a(O) y2 

which varies just like the density of states. 
If ~ 1 < E1, i.e., r 0 <a, then with increasing ~ the 

absorption coefficient passes through three regions. 
Formula (7) holds when ~ <~It formula (8) when E1 
> ~ > ~lt and formula (3) when ~ > E1. This situation 
is illustrated by the solid curve of Fig. 1. 

If ~ 1 > E1 (r0 > a), then fluctuations of the type 
of the atom become significant before Rc becomes 
equal to r 0• Indeed, comparing (3) and (7), we see 
that this occurs at ~ = ~ 2 = EB(Na3 )213 < E1, ~ 1 • Thus, 
in the case when r 0 > a, Eq. (7) is valid when ~ < ~2, 
Eq. (3) when ~ > ~ 2, and there is no region where (a) 
is valid. We recall that in the spirit of our derivation, 
formulas (3), (7), and (8) are valid only if 

lln :~~;I >1. 
Taking this circumstance into account and bearing in 
mind ~ » EB, we can easily show that a region of 
applicability of (7) and (8) exists only when Na3 » 1. 

We note further that the fluctuation in question, 
as seen from Fig. 2, represents a potential well for the 
electron and an adjacent potential well for the hole. In 
our derivation it is assumed, in essence, that states 
with binding energies on the order of the well depths ~ 
exist in these wells. The validity of this assumption 
can be verified by recognizing that the well dimension 
is ofthe order of Rc, and consequently the energy of 
the ground state is located at a distance ti 2/mR~ << ~ 
away from the bottom of the well. The latter inequality 
follows from the fact that the logarithm in (7) is always 
much larger than unity. It can thus be assumed that in 

the wells considered here the levels are very close. 
This circumstance will play an important role in the 
derivation of the rigorous theory. 

Thus, the main feature of the interband absorption 
in the absence of filling of the upper band is that there 
exists a region in which the absorption coefficient does 
not behave like the density of states, and ln a(~) de
creases in accordance with (7). In the experimentally 
observed region, it is apparently difficult to distinguish 
between this decrease and a linear one. 

Let us now discuss the possibility of experimentally 
observing (7). The region of existence of (7) is large if 
the screening radius r 0 is large. This would be aided 
by a high temperature and strong compensation1>. When 
the concentration changes from Na3 ~ 1 to Na3 >> 1, 
a transition from (3) to (7) takes place. This can be 
revealed by the dependence of the characteristic. energy 
of the decrease (slope) of the function ln a(~) on N. 
This dependence is logarithmic at small N and of the 
square-root type at large N. The experimental data[4J 
pertaining to direct transitions in germanium do not 
contradict our conclusions. The order of magnitude of 
the slopes and their dependence on N are similar to 
those expected. It was difficult to draw more definite 
conclusions in view of the large errors in the deter
mination of the slopes and of the impurity concentra
tion. 

3. The next two sections are devoted to a rigorous 
derivation of (7) and to a determination of the coeffi
cient {3. The wave function of the electron in the 
classically inadmissible region changes significantly 
over a distance ti/.J m~. This distance is large com
pared with the average distance between the impurities 
N"113 in the entire region of applicability of (7). There
fore the fluctuations in question can be characterized 
by a macroscopic concentration of the excess impuri
ties Hr), which is obtained from the excess micro
scopic impurity density N( r) - N by averaging over 
distances that are large compared with the average 
distance between the impurities, but are small com
pared with the characteristic dimension of the varia
tion of the wave function. The potential energy of the 
electron Ur { ~} in the field of the fluctuation H r), at 
distances small compared with the screening radius 
ro, is given by 

U{ }--~J 6(r')d3r' 
,6- x lr-r'l' 

(9) 

The absorption coefficient a(~) can be presented in 
the form of a functional integral over all the functions 
Hr): 

(10) 

Here exp (-G) is the probability of producing the fluc
tuation ~ ( r ). If the impurities have a random distribu
tion[a], then 

R= S[ (N + s)ln (N ~ s) 6] d3r. (11) 

As already mentioned, we are interested in the 

1>we note, however, that in the case of appreciable compensation, 
the role of the screening radius may be assumed by the characteristic 
length of the correlation in the impurity location. 
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region of Gaussian statistics, where 1; << N. In this 
case 

(12) 

The functional 0/.f::. { 1;} is the coefficient of absorption 
with an energy deficit t:. in the field of the fluctuation 
1;( r) 

(13) 

where C is a quantity independent of t:., E:r and E:~ 
are the energies of the hole and electron states (see 
Fig. 2), Pmn is the square of the modulus of the over
lap integral 

(14) 

and wfP and w~ are the wave functions of the hole and 
of the electron. As seen from Fig. 2, at large t:. the 
regions that are classically admissible for the electron 
and the hole are separated in space and therefore Pmn 
is smalL 

We shall assume henceforth that the mass of the 
hole is much larger than the mass of the electron. 
This allows us to assume that the hole does not tunnel 
beyond the surface Ur {!;} = E:fP (we call this the h 
surface), and consequently the integral in (14) is de
termined by the value of the wave function of the elec
tron on this surface. Actually, we need only the argu
ment of the exponential of the wave function (the 
imaginary part of the phase). To find it, we use a 
quasi-classical method, the applicability condition of 
which is 

_!_I tz 1~1. 
dr l'2m(een-U(r)) 

(15) 

As is clear from the statements made in Sec. 2, this 
condition reduces to the inequality n/ ..J m t:.Rc << 1, 
which is always satisfied in the region where (7) is 
valid. 

We shall seek the wave function of the electron in 
the classically forbidden region in the form 

'¥=A (r)e'8 (')!", (16) 

where the truncated action S satisfies the Hamilton
Jacobi equation. Assume that we know the wave func
tion on the surface €~ = Ur{l;} (the e surface). By 
the same token, the action So( r) and its gradient Y' S 
are specified at each point of the surface. The normal 
component of the gradient is determined from the 
Hamilton-Jacobi equation, which yields on the e sur
face (vs? = 0. We draw for each point of the e sur
face trajectories (rays) satisfying the classical equa
tions of motion and havong on the e surface a momen
tum p = Y'S. The action at an arbitrary point r can be 
represented in the form of an integral over the particu
lar trajectory that passes through the point r: 

' 
S(r)= So(re)+ s l'2m(een- U(r) )dl, U(r) == U,{s}, (17) 

where re is the point at which this trajectory inter
sects the e surface and dl is an element of the tra-

jectory length2 >. If r is in a classically forbidden re
gion, then the trajectory and the point re may turn out 
to be complexr 7l: 

We shall show that the states of importance are 
those close to the bottom of the well, i.e., with kinetic 
energy K ~ t:. (of course, K <: n2/mR~). On the e 
surface, the components of Y'S are of the order of 
..J mK. On the h surface we have I Y'S I ~ ffili:. » ..J mK, 
and therefore when solving the mechanical problem it 
can be assumed that the momentum on the e surface is 
equal to zero. It can easily be shown that in this case 
the trajectories in the classically forbidden region are 
real. (The time characterizing motion along these tra
jectories is imaginary.) These trajectories can be ob
tained by solving the mechanical problem of motion 
with potential energy - U( r ), total energy -€, and zero 
initial velocity. 

In the three-dimensional case, the wave function on 
the e surface may turn out to be exponentially small, 
i.e., n.- 1 Im S0(r) > 1. (Let us imagine, for example, 
that the potential energy depends on one coordinate, 
and the particle has a momentum along another coordi
nate.) However, the maximum imaginary momentum 
on the e surface is ~ ..J mK, and on the h surface of 
the order of ffili:.. We can therefore neglect the first 
term of (17). Let us determine the argument of the 
exponential in the integral (14). To this end, we draw 
from all the points of the h surface trajectories satis
fying the equations of motion and intersecting the e 
surface with zero velocity. We furthermore find an 
h-surface point rh for which the pure imaginary inte
gral in (17) is minimal. The integrand in (14) has a 
sharp maximum at this point, and therefore 

(18) 

In similar fashion we obtain the principal term of 
the sum (13). To this end we examine all the hand e 
surfaces (with potential energies differing by t:.) for a 
given potential and find points re and rh (U(re) 
- U( rh) = - t:.) such that the action calculated along 
the trajectory emerging from rh and arriving from 
re with zero momentum is minimal. Then, retaining 
in (13) only the principal term of the sum, we obtain 

a,.{S} = exp (-<D{S} ), (19) 
where 

'h 

<!>{£) =! j V2m(U, m + /J.- u,h {s))dl, (20) 
r e 

with 

(20a) 

Since the fluctuation in question is macroscopic, the 
integrand in (10) has a sharp maximum at a certain 
function "H r ). Therefore, in accordance with the state
ments made in Sec. 2, we have 

a(L1) -} -} In--=- Q{S - <D{S , 
a(O) 

(21) 

2l Strictly speaking, the quasiclassical approximation is not valid on 
the surface e~ + U(r). Our arguments, however, remain unchanged if we 
take the e surface to mean the surface e~ + T = U(r), where the energy 
Tis chosen such as to satisfy the condition ( 15) on the surface, butT 
%, /',, 
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where f is a function that minimizes the functional 
0 + <P. To find this function we calculate first the 
variation of <P{ !;} • In (20 ), rh is a functional of ~' and 
the prescription for constructing this functional was 
given above. The vector re is a functional of I; and a 
function of rh. Finally, the potential energy and the 
form of the trajectory are functionals of ~. 

We note first that when (20) is varied rh must be 
regarded as constant, since, in accordance with the 
method used for its construction, the functional <P in
creases for an arbitrarily small change of rh, i.e., 
(a.pjarh )1irh = 0. The variation of (20) with respect to 
the lower limit is equal to zero, since the correspond
ing derivative is equal to the momentum at the point 
re. Finally, the change of <P due to the variation of the 
form of the trajectory is equal to zero, as a result of 
the Maupertuis principle r sJ. Thus, in the variation of 
(20) it is necessary to take into account only the ex
plicit functional dependence of Ur{ !;}. This yields 

{2m~ (W,{6}-Wr,.m)dl 

1'1«1>{6} =-tt-l lru, {6} - u- {6} + Ll • 
re rh 

where, according to (9), 
IIU,{6} = _ e~ J 66(r')d3r'. 

x jr-r'l 

Substituting (23) in (22), we obtain 

(22) 

(23) 

e• {2m • . '~h ( 1 1 ) dl' 
6«1>=--\ d3r6S(r) ------, - · -:-::r-=====::~ xn J ..! I rh - r I I r - r I V U (r') + Ll - U (ih) r, 

(24) 
From (12) we have 

6Q = J 6~6 a•r. (25) 

From the condition 1i0 + 1i<P = 0 we obtain equations 
for the determination of the extremal function 'f( r): 

f(r) = Ne• 12m~(-, _1 ___ 1 ) dl' ' 
xn J I r - r I I rh -- r I V U (r') + .'1 - U (-;") 

• (26) 

where U(r) is expressed in terms of f by means of 
formula (9), and the points re and rh are connected 
by the condition (28) and by the classical equation for 
the trajectoryraJ 

d2r =[dr(vudr) -vu]j2(U(~.)-U(r)), 
dl2 dl dl 

(27) 

the velocity at the point re being equal to zero. 
We introduce the dimensionless quantities 

r ( Ll )''• 1 
x=R,• R,=a E. (Na')'", 

[ (A)''• U 
F(x)=N EB' , W(x)=T· (28) 

In terms of this notation, Eqs. (26), (9), and (20a) take 
the form ., 

F(x)=2 J ( lx'-xl .. 
1 ds' 

--) (29) 
lx,-xl l"1+W(x')-W(x1) 

S F(x')d':&' 
W(x)=-2 

lx-x'l' 

W(x,)- W(x,) = 1. 

(30) 

(31) 

Here Xl = rh/Rc, x2 = re/Rc, and the trajectory s(x) 
is determined by Eq. (27), which in terms of the new 
variables likewise does not contain any parameters. 
Substituting (28), (12), and (20) in (21), we obtain the 
result (7), where 

fl = 2 j [W(x)+ 1- W(x,)]'l•ds+ : J F'(x)d'z, (32) ,., 
and F(x) and W(x) constitute the solution of the 
dimensionless equations (29)-(31). 

4. We shall show that the solution of Eqs. (27), 
(29)-(31) is a straight-line trajectory joining the 
points X1 and X2. Let us assume that this is so. Then 
it follows from (29) that the distribution of the concen
tration F(x), and consequently also of the potential 
W(x) has cylindrical symmetry with respect to this 
straight line. This means that at any point of the tra
jectory the force is directed along the trajectory. It 
follows therefore that such a trajectory satisfies the 
equations of motion, since at the point X2 the particle 
velocity is equal to zero. 

We introduce cylindrical coordinates 11 and p with 
origin at the point x2 and with the axis 11 directed 
along the trajectory. We then obtain from (29) 

~. 1 

F(p,'I'J)=-2 J { [('11•-'lll'+p']''• 
0 

1 } d't']' 

- [('11'-'ll)'+p'J"' )'W('I'J')-W(O). 
(33) 

Substituting (33) in (30), we obtain an equation for the 
potential on the 11 axis 

~; d I 

W('I'J) =8n J (1'11'-'111-l'llt-'111) '11 -. (34) 
0 }'W('I'J')- W(O) 

It follows from (34) that when 11 < 0 
1!. d'I'J' 

W('I'J)=W(0)=8nJ ('11'-'I'Jt) , (35) 
0 }'W('I'J')- W(O) 

and when 11 > 1'11 we have W(71) = -W(O). In the region 
0 < 11 < 71 1, differentiating (34) twice with respect to 11, 
we obtain the equation 

tPV 16n (36) 
d'1'] 2 = )'V('I'J) 

with boundary conditions V(O) = 0; dV/d711 71 =o = 0. 
Here, by definition, V( 11) = W( 11) - W( 0 ). The solution 
of (36) is 

(37) 

From (31) we find that 71 1 is determined by the condi
tion V{Tj 1) = 1, i.e., 1'11 =Yah. Substituting (37) in (35), 
we get W(O) = -Y2. 

Thus, the potential of the optimal fluctuation U(71) 
varies along the 11 axis in the following manner: when 
11 < 0 it is constant and equals -1:1../2, when 11 > 1'11 it 
is equal to 1:1./2, and in the intermediate region its 
variation is given by (37). Of course, if screening is 
taken into account, then the potential on the axis 
vanishes at distances larger than r 0 • The obtained 
potential satisfies the assumptions made concerning 
the smoothness of its variation. Therefore there exist 
in such a potential states with small kinetic energy. 
In addition, the form of the optimal potential is such 
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that absorption of a quantum with energy A is possible 
only as a result of these states. 

The charge distribution in the optimal fluctuation 
can be obtained by substituting (37) in (33). As x - oo, 
the function F(x) decreases like 1/x2• Therefore the 
second interval in (32) converges. After rather labori
ous calculations we obtain f3 = 2/5 ..f1T from (32), (33), 
and (37). 
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