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We consider the problem of nonlinear interaction of waves with random phases in a magnetoactive 
solid-state plasma. To describe this interaction, a system of kinetic equations is used. It is 
demonstrated that a stationary state can be established as a result of turbulent phenomena in the 
development of the instability of acoustic waves under the influence of an external constant electric 
field. In the stationary state, the phonon-energy level is determined and the influence of the turbu­
lent phonons on the electron drift velocity is considered. 

1. In a solid-state plasma situated in a constant elec­
tric and a constant magnetic field, acoustic waves build 
up under certain conditions as a result of the inductive 
coupling between the conduction electrons and the 
lattice[ 1' 21. Limitation of the gain and establishment of 
a stationary amplitude are made possible by the non­
linear interaction of the waves. This interaction varies 
with the phases of the waves. If the phase of the wave 
remains constant during the characteristic time of its 
amplitude variation, then the stationary state is the re­
sult of energy transfer from the amplified wave to 
damped waves of lower frequency (decay instability). 
It is obvious that a problem of this kind is meaningful 
in the case of amplification of a wave generated by an 
external energy source with a narrow spectrum, and 
such a problem was cons ide red in [ 31. 

In this paper we consider the problem of nonlinear 
interaction of waves having random phases, i.e., the 
correlation between the initial and final values of the 
phase vanishes before the amplitude of the wave 
changes. The state of a plasma in which waves with 
random phases are excited is called turbulent. If the 
energy of the interaction between waves is small com­
pared with the energy of the waves themselves, then 
the turbulence is weak, and we can use the kinetic 
equations for its description[ 4l. We assume that a 
weakly turbulent plasma is produced as a result of the 
development of instability of acoustic waves under the 
influence of the constant electric field. In this case 
wave generation occurs in the region of small wave 
vectors determined by the dimensions of the system, 
and as a result of the nonlinear interaction the energy 
is transferred to the waves with large wave vectors. 
In the region of large wave vectors, energy dissipation 
takes place. The energy level of the acoustic waves 
(phonons) in the stationary state is determined by the 
growth increment. In the stationary state, under the 
influence of the fields of the excited phonons, a change 
takes place in the constant drift velocity of the elec­
trons, and leads to violation of Ohm's law. 

2. To describe processes occurring in a magneto­
active solid-state plasma in the presence of a constant 
electric field, we use the following system of equations 

c rot E = -aH I at, (1) 
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c rot II= 4n:eN(au/ at- v), (2) 

Eo+E+..:_[v,H,+HJ+!!!::!...(v- au) =0, 
c e ~ 

(3)* 

M[a'u -s,'.1u-(s,'-s,')V(Vu)] =e(E+Eo) 
at' 

+.!.. [ au, H, + H] + mv ( V- ~) . 
c at at (4) 

Here E and H are alternating electric and magnetic 
fields; e, m, N and v are the charge, mass, concen­
tration, and velocity of the electrons; u is the lattice 
displacement vector; st and sz are the velocities of 
the transverse and longitudinal sounds; M is the 
"effective ion mass," equal to M = p/N, where p is 
the crystal density; v is the effective electron colli­
sion frequency. The constant electric field Eo is 
parallel to the constant magnetic field Ho. In the ab­
sence of alternating fields, the conduction electrons 
drift with velocity v0 along the constant electric field, 
where Vo = e I Eo i/mv' u~ = 0. 

We have omitted the inertial term from the electron 
equations of motion, since we are interested in fre­
quencies that are small compared with the electron 
cyclotron frequency WH = I e I H0 /mc. In addition, we 
disregard the change of the electron concentration and 
the displacement current in Maxwell's equations, since 
the carrier concentration is assumed to be sufficiently 
large. 

We represent the variable quantities in Eqs. (1)-(4) 
in the form 

~ 

v = L, c.(t)v.e'<•·-···>, 
"=-~ 

u = L, c.(t)u.e'<"·-··') 
b-oo 

etc., where CJ.t(t) is the slowly varying amplitude of 
the harmonic with frequency Wk and wave vector k; 
Vk and Uk constitute the solution of the linear system 
of equations (1)-(4), 

Ct = Ct- ', Vt = Vk- ', w(k) = -,w'( -k). 

*[v,H0 +H] =vx (H 0 +H). 
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The frequency and the wave vector are connected by 
the dispersion relation 

(w'-k's,')'(w'-k's,') [(w-k,vo+ ik'c.' v )' k'k.'c'Ho'] 
· Wo2 (4neN)' 

Ho" ( k'c'v} =- 4np(w'-k's,') w+i---;;,z [w'(k'+k.')-k'(k.'+k.')s,' 

2k'k 2 2 ] w'Ho'k.' [ { 4neNv0 )"] - • s, - k'- --- [w' - (k '+ k 2 ) s 2 - k 's 2 ] 
( 4np)' cH, • " ' ' ' . 

(5) 

The z axis is parallel here to the magnetic field Ho. 
Since the parameter Hg/ 47T pst z of the coupling be­

tween the electromagnetic and acoustic waves is small, 
Eq. (5) can be solved by successive approximations 
with respect to this parameter 1>. When p- oo, rela­
tion (5) breaks up into equations for the transverse 
(w = kst) and longitudinal (w = ksz) acoustic waves 
and an equation for the helical waves (helicons) 

kk,cH o k'c'v 
w=k,vo±~4 N +i-. ,-, 

ne w, 

where wg = 47Te 2N/m. Taking into account the finite 
value of p, we can find the correction to the linear 
dispersion laws and the electronic damping of the 
acoustic waves. Acoustic waves with such a dispersion 
and such a damping have electromagnetic-field com­
ponents and are therefore called coupled. We shall 
henceforth be interested in the instability of only the 
transverse acoustic waves, since it sets in at rela­
tively low electron drift velocities. Depending on the 
relations between the plasma parameters, different 
expressions are obtained for the growth increment. It 
can be shown that if the condition 

( 
llo cos e - St ) 3 v' H,' ->--s, COS ij WH2 4rtpSt2 ' 

is satisfied, where () is the angle between k and Ho 
(weak coupling between the helicons and the acoustic 
waves), then the electronic correction to the dispersion 
is 

llw=llw'+iy=- Ho' ( 4neN v,-k) 
8np cH, 

[ kcH kc'v ]-' 
X cos' e s,- Vo cos e + 4ne; cos e + i ~ 

(6) 

if Vo > cH0 k/47TeN, then the electronic damping of the 
sound reverses sign. 

For acoustic oscillations to build up it is necessary 
that the electronic growth increment exceed the lattice 
absorption. Since the occurrence of instability can be 
expected for long-wave phonons, then the condition 
WTph << 1 (where Tph is the relaxation time of the 
thermal phonons) is well satisfied, and the lattice ab­
sorption is described by the Akhiezer mechanism[sJ 
and is proportional to the square of the wave vector. A 
comparison of the electronic growth increment and of 
the lattice-absorption coefficient shows that in the wave 
vector region k < 47TeNst/ cH 0 ( v 0 ~ st) and for semi­
conducting materials of the type PbTe ( N ::;:; 4 
x 1017-2 x 1018 cm-3, p = 3.5 g/cm 3, st ~ 105 em/sec, 
v::;:; 2 x 1010-10 11 sec-\ m::;:; 10-29 g, and H0 

llThe solution of Eq. (5) for the one-dimensional case when the 
wave vector is directed along the magnetic field H 0 was investigated 
in [ 1]. 

= 10 3-104 Oe) at helium temperatures the lattice ab­
sorption is negligibly small [sJ. (All the numerical 
estimates will henceforth be carried out for PbTe, 
since interaction of helical and acoustic waves was 
recently observed in it experimentally[ 7 l.) As seen 
from (6), the growth increment reaches a maximum 
when the frequencies and wave vectors of the sound 
and of the helicon coincide, i.e., 

v0 cos 8 - s1 = cHok cos 8/ 4rteN. 

Thus, at k ::;:; 27T/L = 1.5 em -1 ( L is the length of the 
sample), H0 ~ 10 3 Oe, and e ::.. 0 we obtain v0 - st 
~ 7.5 x 10 3 em/ sec and y ::;:; 3 x 102 sec-\ 

In strong magnetic fields (Ho ~ 104 Oe) it is possi­
ble to satisfy the strong-coupling condition 

( 
llo cos e - St ) 3 v' Ho' -<-­

St COS 8 Cthl 81tOSt2 ' 

and the growth increment at the point of resonance of 
the helical and acoustic waves reaches the value 

lvpl= [ eH, kcos'e (v,- cH,k)]''• Y• ~ 3·10'sec-~ (7) 
2Mc 4neN 

3. We proceed now to analyze nonlinear effects of 
wave interaction. The simplest forms of such an in­
teraction are three-wave processes of the type of de­
cay and coalescence of waves. These processes are 
characterized in the equations of motion (3) and (4) by 
linear terms (Lorentz force). Taking these terms into 
account, we can find the nonlinear current jnl [aJ. In 
the Lagrangian of the system, the wave interaction 
governed by the nonlinearity of the Lorentz force is 
described by the term jnlA/c (A is the vector poten­
tial of the electromagnetic field, H =curl A, 
E = -c-1 aA/at, the oscillations are assumed nonpoten­
tial, cp = 0 ). In addition, the interaction of the waves is 
connected also with the anharmonicity of the lattice[9l, 

We are interested primarily in the time evolution of 
a packet of transverse acoustic waves. Let us assume 
for simplicity that there is no constant electric field. 
Since we are interested only in the orders of magnitude 
of the matrix elements, it is clear that the order of 
magnitude cannot depend strongly on the constant elec­
tric field. This is also seen from the fact that the 
values of the matrix elements for weakly-damped 
waves are determined by their frequencies w = w'(k) 
and do not depend on the wave damping. The frequencies 
of the acoustic waves, in turn, are practically independ­
ent of the electron drift. 

The term jnlA/ c in the Lagrangian of the system 
can be transformed into 

(8) 

x exp{i[ (- k + k' + k")r- (- w. + w,. + Wt••)t]}C,' c,.c, .. +c. c. 

The physical meaning of Ck can be explained from the 
following considerations. Namely, the coupled-wave 
energy per unit volume can be written, on the basis of 
the system (1)-(4) in the form (v = 0, E0 = 0) 

w = ~ IC•I' {~+ rlu•l'lw•l' + ps(l [ku,] I' +~I (ku,) I'} 
.l...l 8 2 2 2 . ~) 

( hk and Uk are connected by the system of linear re­
lations (1)-(4)). On the other hand, the energy of the 
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coupled electromagnetic and acoustic waves can be 
represented in the form W = ~ nk I Wk I , where I Wk I 

k 
is the energy of the k-th harmonic (particle) and nk is 
the number of particles. We then obtain 

ISh• I'+....£_ (I ro•l' lu•l' +I [ku] I' s,' +I (ku) I' s?) = lro•l• (9a) 
n 2 

nk = I Ck 12, with ck and ck having the meaning of 
particle creation and annihilation operators. 

Expressing the quantities Vk, hk, and uk in terms 
of Wk with the aid of the linear equations, we can 
represent the Lagrangian L< 3) describing the interac­
tion of three waves in the form 

where V~'k" is the matrix element. The explicit 
form of the matrix element is quite cumbersome and 
will not be presented here. However, the order of 
magnitude of Vkk'k" can be estimated by starting from 

the expression (18), the linear relations between the 
components of u, v, and H, and the normalization con­
dition (9a). It must be borne in mind here that in 
formula (9a) for the helicons we can neglect the terms 
proportional to u and I hk I R:: ( 87Twk)112, whereas for 
sound I uk I R:: (pwkt 112• We did not write out terms of 
the type CkCk'Ck" etc. in the Lagrangian, since, owing 
to the conservation laws, they make no contribution to 
the probabilities of the processes. 

The matrix element yakk'k"• due to the lattice an­
harmonicity, is of the following order of magnitude[ 9l: 

(11) 

where B is the effective value of the third-order 
modulus of elasticity. In order of magnitude, B R:: ps 2 • 

Knowing the form of the matrix elements, we can 
write down a system of kinetic equations[lo] describing 
the variation of the number of particles as a result of 
decay and coalescence, and estimate the characteristic 
relaxation times: 

- n •• n.,~) a •. k'+k'' + Bn E I v~~~., I' a ( w.,.v -· ro. a - ro.,~) 
~. 'l, kt, kn 

(n.,~ n.,,v + n. a n.,v- n.,~ n. ")a.,, k+k'· {12) 

The summation is carried out here over positive fre­
quencies. The indices 01., {3, and y denote the types of 
interacting waves and each can stand for the following: 
t-transverse sound, [-longitudinal sound, h-helicon. 

It can be shown that wave-interaction processes in 
which two helicons and sound take part are determined 
by the matrix elemenel Vhhs. (In estimating the 
matrix element, we assume that st ~ sz ~ s. This 
condition is equivalent to ku = 0. For all the known 
semiconductors sz/st ~ 1.4-3.) we have 

, k'l• cH0 
vhh.~ for 2neN(ps)'!. 

k !meNs 
< cH, ' (13a) 

, ( k's f' k 4neNs 
vhh• ~ -- for >--. 

p cH, 

2lThe matrix element describing scattering of helicons by phonons 
in deformation interaction was obtained by Suramlishvili [ 11 ]. 

In this case 

R _, V hh."l 4nps' f 
= Vhhs• ~ Ho' or 

k<4neNs 
cH0 ' 

R ~ 4nps' ( kcH, )' for 
H,' 4neNs 

k 4neNs 
>-. --

cH, 

(13b) 

In processes in which one helicon and two acoustic 
waves take part we have 

k ( eNH, )'h 
Vhul"'oJ- -- , 

p c 
(14a) 

R ~ 4neNs for k < 4neNs 
kcH, ~· 

R ~ kcH, for k > 4neNs . 
4neNs cH, {14b) 

Finally, in interactions of three acoustic waves, the 
matrix element due to the lattice turns out to be the 
largest and equal to 

k' ( k's ) 'I• v.:. ~ ps' (pw)'l• ~ -p- . (15a) 

Here 

v• ~ v• H,' ( 4neNs) for k 4neNs 
"' '" 4nps' kcH, <~, (15b) 

V.~. ~ v.:,_!!i___( 4neNs )' for k > 4neNs' 
4nps' kcH, cH, 

i.e., we have V~ss > V~ss for all possible k. 
Assume that at the initial instant of time a packet 

of transverse acoustic waves with energy Wo is 
located in the region k ~ k 0 and its width is ~k ~ k 0 • 

Two waves interact in the interior of the packet and 
form either a helicon or longitudinal sound. The oc­
currence of a transverse-sound wave is impossible by 
virtue of the energy and momentum conservation laws. 
It should be noted that, in principle, the interaction of 
three transverse acoustic waves is possible if the 
wave damping greatly exceeds the correction that must 
be introduced into the frequency because of the dis­
persion of the speed of sound[ 12• 13l. However, when the 
inductive interaction between the lattice and the con­
duction electrons is taken into account, the frequency 
increment due to the electronic dispersion of sound is 
larger than the electronic damping of the sound by a 
factor WH / v. 

From the kinetic equation (12) we find that the non­
linear increments of the damping of sound ynl with 
formation of a helicon or of longitudinal sound are 
respectively equal to 

(16) 

(17) 

i.e., ytth « yttl. Thus, the time evolution of the packet 
is determined by the interaction of the acoustic waves 
with one another. As a result, the number of trans­
verse phonons in the region k 0 decreases. 

4. If the phonon damping is offset by generation, 
then a stationary state is established. It is clear that 
in the presence of electron drift in a constant electric 
field, a situation is possible when the growth increment 
(6) is equal to the nonlinear damping decrement (17). 
Under the influence of these two competing factors, the 
phonon energy turns out to be 

W, = _'V_ps'. (18) ro (ko) 
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Thus, the nonlinear damping of the transverse 
acoustic waves is effected by transferring their energy 
to the longitudinal sound, which in turn is damped. If 
the linear damping of the longitudinal sound in the 
region k ~ k 0 turns out to be very small, then it can 
be assumed that the damping of the transverse and 
longitudinal sounds in the interval k ~ k0 is effected 
via further transformation of the energy towards large 
k >> k0 , where the damping of the sound is large, since 
it is proportional to k 2• In this case apparently the 
energy-containing region is separated from the damp­
ing region by a certain intermediate or intertial region. 
In the latter region, starting from the assumption that 
the weak turbulence is local [141, we can find the spectral 
distribution of the phonons. Namely, the amount of 
energy dissipated per unit time, i.e., the energy flux, 
is a constant quantity equal to p0 = V2nkk6 • Hence 

n, ~ p,'f, I Vk' ~ (Po I k') 'I•, (19) 

and the energy spectrum is Wk ~ nkwkk2 ~ ( p0 /k3 ) 112 • 

Let us estimate the influence of the nonlinear 
processes on the electron drift velocity, assuming 
that the external electric field remains unchanged. 
From (2) and (3) it follows that 

e ( au. au.) v, = v,--- H.---H.-- . 
mcv at at 

(20a) 

As seen from this formula, the sign of the increment 
of the drift velocity depends on the phase relations be­
tween H and au/8t. For growing waves, H and aujat 
are in phase and therefore the electron drift velocity 
decreases under the influence of the alternating fields. 
Let us change over to the Fourier representation and 
use the linear relations between H and u: 

Me w'- k'st' 
H:x = u11 ; Hx = iH11 , Ux = iU11a. 

e Vo- kcH,/4neN 

For simplicity we have put here k = kz. With the aid 
of the dispersion equation (5) we obtain, after averag­
ing over the volume, 

H,c ~ w'k'lu•l' 
(v,) = v,- --.E . (20b) 

2neN •=' (w- kv, + k'cH,/4neN)' + k'c"v'fw,' 

When v0 « st, the growth increment is y ~ mvvUMs 2, 

W0 ~ vNmv~/w(k0 ), and the change of the drift velocity 
is equal to 

~v = (v,) _ Vo ~ _ k,cH, W, ~ _ ...Y_ W, ~ _ y(k,)v 0 • (21) 
2neN ps' mv v,N w(ko) 

It follows therefore that in a weakly turbulent plasma 
the effective electron collision frequency increases, 
Veff ~ v( 1 + y/ w(ko)). 

At resonance, obviously, the change of the drift 
velocity will be more appreciable. In this case a 
narrow wave packet with the maximum growth incre­
ment (6) is separated out of the set of growing waves. 
The width of the packet is determined, for weak coup­
ling, from the condition 

I e k cos ecH, ,.--- kc'v 
VoCOS -St- . A\i;:::-, 

4rr.eN W0 2 (22) 

M v 
-,..;---~1. 

ko Wn COS 8 

In the wave-vector region ~k, the acoustic waves 
have a linear dispersion and interaction of three trans-

verse phonons is therefore possible. Such a situation 
is connected with the fact that in the resonance region 
the correction to the linear dispersion law is much 
smaller than the growth increment. The growth incre­
ment is wH:/v 2 times larger than outside the resonant 
region. The matrix element describing the interaction 
of these waves is determined as before by formula 
(15a). 

Establishment of the stationary state causes, first, 
the phonons to diffuse by collision out of the resonant 
region, and second, the electron drift velocity to 
change under the influence of the alternating fields of 
the resonant waves. The change of the drift velocity 
can take the system out of the resonance state (the 
condition (22) is violated), leading to a decrease of the 
growth increment. 

If the correction to the drift velocity is small, then 
a stationary state is established in the resonant region, 
and the phonon energy W 0 reaches the value W 0 

~ w1INmv~/vw. Since the range of v0 corresponding 
to resonance is determined by formula (22), ~v 
< kc 2v/wg, and (see (20b)) 

C!lx C!lo' W, (23) 
I ~vI ~ (k ) , , v,, w o v pc 

it follows that the resonance-conservation condition 
for a developed turbulence takes the form 

k,>..::?:!..~(.!!:~~)'!.. 
vcMcv 

In this case the change of the drift velocity is 

(24) 

(25) 

If the inequality ~v > kc 2v/w~ is satisfied, i.e., k 0 

< w~c-2(wHW0 /pv 3) 112 , then the change of the drift 
velocity causes an appreciable change in the growth 
increment: 

1 m v'c' k,'w (ko) p' 
y'(v-l~vl)~ . ' ' 

2M WnWo W, 

The energy of the phonons in the stationary state is 
determined from the condition yt(v- I ~vi ~vI) 

w(k0 )Wo/ps 2 and turns out to be 

, 'v' ( m w'(ko) )'/• 
w.~ pc -, --- • 

C!lo M WH'V 

The change of the electron drift velocity is given by 

(26) 

(27) 

( m Wx' )''• (28) 
~v=-Vo Mw(ko)V · 

Estimates show that to find the stationary state 
under strong-coupling conditions it is also necessary 
to take into account the change of the growth increment 
under the influence of the alternating fields. The pho­
non energy level and the change in the constant electron 
velocity can be determined from the same considera­
tions as in weak coupling: 

(29) 

(It is assumed in (23)-(29) that v0 ~ s.) For the 
parameters of PbTe, the change of the electron drift 
velocity in the resonance region increases appreciably 
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compared with the nonresonant region and can lead to 
an appreciable deviation from Ohm's law: t:.. v 
Ri vo(l0-1-10-2 ). 

It should be noted that although we have considered 
an unbounded medium, the results apparently can be 
valid also for a qualitative description of processes in 
samples with finite dimensions. Since the interaction 
has a resonant character, the waves in which the phase­
velocity direction coincides with the drift direction 
have a growth increment larger than the damping 
decrement of waves traveling in opposite directions. 
For this reason, multiple reflections from the bounda­
ries lead to an increase of the effective interaction 
length. 

In conclusion, the authors thank ~. A. Kaner for 
interest in the work. 
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