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A theory is constructed for nonstationary processes of the photon-echo type occurring in crystals 
with paramagnetic impurities after the passage through them of an arbitrary number of light pulses. 
The calculations are carried through to conclusion for the case of three exciting pulses of coherent 
radiation. The spatial synchronism, the phase relations, the intensity, energy, and attenuation of the 
coherent radiation produced in the medium are investigated. The results are discussed as applied 
to a ruby crystal. 

INTRODUCTION. FORMULATION OF PROBLEM 

THE photon-echo effect predicted in[1l promises to be 
an effective method of measuring the relaxation time 
both in solidsr2-41 and in gases(s,sJ. This method con
sists of successively passing through a resonant 
medium two exciting coherent pulses of light separated 
by a certain time interval r 1. At the instant of time 
2r 1 after the passage of the first pulse, a coherent 
quantum state is produced in the medium and leads to 
the occurrence of a radiation signal-photon echo. From 
the attenuation of the intensity of the photon echo as a 
function of T 1 it is possible to determine the relaxation 
time T2 of the quantum coherence. 

A characteristic feature of photon echo, unlike the 
widely known spin echo, is its spatial synchronism: it 
is necessary that the wave vectors k 1 and k2 of the 
exciting pulses and the wave vector k of the photon 
echo satisfy the relation r 31 

k=2k,-k,. (I) 

New effects of the photon-echo type appear when 
three and more light pulses act on a resonant medium. 
Under certain conditions, the so-called "stimulated" 
echo can arise (see Fig. 1, pulse with b = 2). The 
first experiments with such an excitation were per
formed on rubyr 7• 8l, and the question of the spatial 
synchronism was considered by one of the authors [9 1. 

In this paper we develop a theory of nonstationary 
processes of the photon-echo type in crystals with 
paramagnetic impurities, through which an arbitrary 
number of light pulses passes. The calculations are 
carried through to conclusion for the case of three 
exciting pulses of coherent radiation. We investigate 
the spatial synchronism, the phase relations, and the 
intensity and attenuation of the coherent radiation 
produced in the medium (see the summary table). 

The theory of photon echo as applied to a gas has by 
now been thoroughly developed; namely, investigations 
were made of the polarization effectsr 10• 11l, and account 
was taken of the influence of the magnetic fieldsr 12 l. 
Besides taking into account the attenuation, the main 
difficulty lies in the fact that the energy levels of the 
atom have a degeneracy of one degree or another. At 
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the same time, the spatial-synchronism condition (I) 
for such an isotropic medium, as a gas is satisfied 
only in the one simple case when all three vectors have 
the same direction, since they are equal in magnitude. 

In anisotropic crystals with paramagnetic impurities, 
the spatial synchronism becomes more complicated, 
since the light beam breaks up into two rays, ordinary 
and extraordinary, having different phase velocities. 
However, the degree of degeneracy of the energy levels 
of the paramagnetic ions is small, and this makes it 
possible to simplify the problem considerably. It is 
known that the ground state of paramagnetic ions in a 
crystal is either nondegenerate (for an even number of 
electrons) or else is a Kramers doublet (for an odd 
number of electrons) (see, for example,E 131 ). In particu
lar, in ruby with the electric vector parallel to the op
tical axis of the crystal (extraordinary wave), the 
following transitions are distinguished in the trivalent 
chromium ion[ 14l: 

'A,(M, = 1/ 2) ++ 'E(E) (M,, = - 1h); 'A,(M, = - 1/.) ++ 'E(E) 

(fl1,, = 1/2), 

these are two independent two-level systems. A simi
lar separation is valid also for light propagating along 
the optical axis of the crystalr 31 . We shall therefore 
limit ourselves henceforth to a model of a nondegener
ate two-level system. This makes it possible to use the 
spin formalism in such problemsr 15l, 

We assume further that the electromagnetic field is 
described classically, which is perfectly sufficient for 
the calculation of coherent radiation of impurity ions in 
a crystal. This radiation is concentrated in a very 
narrow interval of angles relative to the preferred 
direction, so that contribution of the coherent spon
taneous radiation is very small r 31, 

We assume, finally, that in the absence of a field the 
level population remains practically unchanged during 
the time intervals in question, and the quantum coher
ence (the off-diagonal elements of the density matrix) 
attenuate exponentially with a time T2. This is perhaps 
the crudest assumption, but this is precisely the as
sumption which makes it possible to carry through to 
conclusion the calculation of the attenuation of the light 
pulses that follow directly an arbitrary number of 
exciting pulses. 
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1. FUNDAMENTAL EQUATIONS 

The state of the impurity ion in the crystal is de
scribed by a density matrix p(t) satisfying the equa
tion 

a[, . .-, . . (af>) inar=IHo+v,pJ-;-z1i. at,· (1.1) 

The unperturbed Hamiltonian for a two-level system is 

s. = -nro .. s,, (1.2) 

where llw 10 is the energy ~nterval between the resonant 
states 11 ) and I 0 ), and Sz is the operator of the 
fictitious spin S = %. For interaction with an electric 
field E we have, in the dipole approximation, 

V=-cfE, (1.3) 

where 

c1 = dOl'Y. + dlO'Y_, 8± = s .. ± i&v. (1.4) 

The term ili(apjat)Y describes the relaxation proces
ses; under the assumptions made here it takes the form 

( 8p ) ~ • 1 ( ) 8t ,= -y(po,S+ +P•.S-), y =r,· 1.5 

At the initial instant of time the ion is in the ground 
state, and therefore the initial condition for Eq. (1.1) 
is written in the form 

(1.6) 

Assume that a series of coherent light pulses whose 
electric field E is represented by the expression 

E.(Rh t) = Re {8.(R;, t) exp [ik.R;- iwt + j(p.]} (1. 7) 

passes through the crystal in sequence. Here Rj is the 
coordinate of the center of gravity of the j -th ion in the 
crystal, Ba is the slowly-varying amplitude of the 
field (a real quantity); ka is the wave vector and w is 
the field frequency and is close to the transition fre
quency w10 in the ion; 'Pa is an arbitrary initial phase; 
a= 1, 2, 3 ... numbers the sequence of pulses. The 
field of the light pulses will be assumed fixed and con
sequently the concentration of the impurity ions will be 
assumed quite small (see the criterion (4.7)), so that 
the electromagnetic field produced in the medium is 
much weaker than the external field. 

In fixed fields (1.7), the solution of (1.1) makes it 
possible to calculate the induced dielectric polarization 
of the medium at the point R by means of the formula 

P = .E Sp {p(R;) d} 6 (R- R;), (1.8) 

where the summation is over all the impurity ions. 
We note that the time T2 describes the homogeneous 

broadening of the levels of the ion, whereas the devia
tion of the transition frequency w 10 from a certain mean 
value wo leads to inhomogeneous broadening of the 
levels. If g(w 10 - w0 ) is the distribution function of the 
transition frequencies of the ions, then the polarization 
(1.8) can be rewritten in the form 

P=No Jdm.,g(w.,-w,)Sp{p(R)d}, (1.9) 

where N0 is the impurity concentration and the function 
g( w) is normalized to unity. With the aid of (1.9) we 
can solve Maxwell's equations for a nonmagnetic 
medium: 

a• 1 
rot rotE+ af'"7z"(E + 4nP) = 0, div(E + 4nP) = 0, (1.1 0) 

and for a definite geometry we can calculate the field 
and the intensity of the coherent radiation resulting 
from the action of the incident light. 

2. SOLUTION OF THE EQUATION FOR THE DENSITY 
MATRIX 

1. Case of Strong External Field 

The solution of Eq. (1.1) for specified external fields 
is sought in the approximation oa « T 2 ( 6a is the 
pulse duration). Then the relaxation term (1.5) can be 
neglected during the time of action of the pulse. We 
introduce the operator 

A=-wS, (2.1) 

and subject the sought density matrix p(t) to the uni
tary transformation 

p(t) = eU..<•-··~(t)e-IAit-•.l, (2.2) 

where ta are the instants when the external field is 
turned on. Taking (2.2) into account, we obtain for the 
equation 

. iJp • .... .e 
In ar= (a+ V, p], (2.3) 

where 
a=iio-n.ll, V=ei.1<t-•.>v(t)e-iK<•-~.>. (2.4) 

After averaging 1> in Eq. (2.3) over the time interval 
( ~ad/lir1 » t » w-\ we obtain 

. 8p • (J .<:, 
z1i.Tt=(a+ ,p], 

(2.5) 

where 

(; = -- 1/ 2 d01 "i a exp (- ik,.R; - i<p0 + iwt.) S + 

- 1/ 1 d10 i.exp(ik,.R; + icp0 - iwta) S_. 

In strong electric fields when the inequality 8ad 
» 11/Tf is satisfied ( Tf characterizes the inhomo
geneous broadening, which is the largest in this case), 
Eq. (2.5) is replaced by 

. i}~ • ;::, (2 6) zn Tt = [U, p]. ' 

The solution of (2.6) can be expressed by the formula 

(2.7) 

where 

e.= : jB.(t')dt', (2.8) 
• . 

f.= - 1/ 2exp(-tk.R1 - iql. + twt.).§+- 1/2exp(ik.R;+ tcp.- iiDt.).L 
(2.9) 

Finally, the density matrix in a strong field is given by 
the expression 

(2.10) 

2. Without External Field 

In the absence of an external field, Eq. (1.1) simpli
fies to 

llsuch an averaging means that we neglect the rapidly-varying part 
of V(t). 
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ai; - ~ (ap) ili-=[H,, p]+ili - . at at , (2.11) 

A solution of (2.11) that allows for relaxation in the 
form (1. 5) is 

p (t) = e-i'ilo<t-toll'p (to) /Ho(t-t,)f' X (t _to) 

{ 1 i=k. 
x(t- t,) = e-"1('-'•l i =I= k. 

(2.12) 

Thus, the obtained solutions (2.10) and (2.12) enable us 
to calculate the density matrix, and consequently also 
the induced polarization of the medium (1.9) for an 
arbitrary number of consecutively acting strong-field 
light pulses. Indeed, at the initial instant of time the 
state of each ion is determined by expression {1.6); 
after the action of the first pulse this state is described 
by a density matrix {2.10), in which p(ta) =p' 0l; before 
the action of the second pulse this state is expressed 
by formula {2.12), in which p(t 0 ) should be replaced by 
the matrix {2.10) with allowance for the statement made 
above, and so on. 

We consider below the case of three light pulses. 

3. INDUCED POLARIZATION 

Assume that the crystal is acted upon successively 
by three light pulses at the instants t 1, t2, and t3; the 
pulses have respective durations o1, 02, and o3 (see 
Fig. 1). We place the origin at the center of gravity of 
any particular ion and assume that for this ion t1 = 0. 
Then for ions with an arbitrary coordinate Rj we have 

t, = k,R;/ w, t, = k2R;/ (t) + ,;, + ~ .. t, = k,R;/w +-r, + -r, + 1\ 1 + 6,, 

(3.1) 
where 71 and 72 are the distances between pulses. 

-r,+tc;-. 

FIG. I. Instants of occurrence of coherent radiation of the photon
echo type upon excitation by three coherent pulses of light: &a-slowly 
varying amplitude of the external field; ta-instance when the field is 
turned on; t(b)-instance of echo occurrence; r 1 and r2 -distances be
tween the exciting pulses; shaded-coherent radiation of the crystal. 

Following the procedure described in Sec. 2, we find 
the density matrix p ( t), after which it is easy to calcu
late the average dipole moment induced in the j -th ion. 
The induced dipole moment then contains eight terms, 
which determine the coherent radiation of the medium. 
Three pulses of the medium occur simultaneously with 
the external ones, and since their intensity is small 
compared with the incident pulses, they are not con
sidered here. The remaining five are responsible for 
the formation of the signals of the photon-echo type, 
and are the only ones considered from now on. To 
simplify the formulas that follow, we assume that the 
pulse durations oa are small compared with the inter
vals 7a between them, and let furthermore r 2 > T 1 (the 
case 72 < 71 is considered in Sec. 5). With respect to 
the light pulses, we shall assume also that they are 
linearly polarized along the optical axis of the crystal 
and propagate perpendicular to it. Then ka = wne ( w )/ c, 
where ne( w) is the refractive index of the extraordi
nary wave. Substituting the obtained dipole moment in 
{1.9), after integration with respect to the frequencies, 
we obtain the following final expression for the polari
zation: 

P(R, t) = N,d .tHe {9",(R, t)exp [t w~ kc•JR- iw,t ]}. (3.2) 
b=t 

9",(R, t) = f,g (t- kc•)t - t<•J) · ,., 

X exp [- y ( t- ~ - T(lv(R) + iL'>wt<•J + i(!J<•J (3 .3) 

where g(t) is the autocorrelation function connected 
with the distribution function g{ w) by means of a 
Fourier transformation, t::..w = w 0 - w, and d is the 
reduced matrix element. The time in expressions (3.2) 
and (3.3) is t > t 3(R) for all the terms with the excep
tion of b = 1, for which t > t2{R). 

The values of the quantities t(b), T(b)• k(b)• and 
<l>(b) are summarized in the table. The data in the 
table coincide with the results obtained earlier by one 
of the authors[ 9 l by another method, which is suitable 
for the calculation of coherent radiation produced un
der the influence of an arbitrary number of light pulses 
of finite duration without allowance for the attenuation 
processes. The same results are obtained also by cal
culation of the coherent radiation by the Dicke method, 
used by Kopvillem[ 16 l to investigate "stimulated light 
echo." In[IaJ there are discussed also certain features 
of incoherent spontaneous radiation, which we do not 

Parameters of polarization of a medium excited by three 
coherent light pulses 

b I '<b) I k(b) fb T(bj(R) "(b) <I>( b) 

2~. 2k,-k, sin8rsin' (8,/2) 2(kr - k,) R/w 2~. 2cp,-cp,-n;2 
2~.+~• ks +k• -kr l/2sin8tsin82sin6s ~. + 2(kt- 2~. 'P•+'P•-

k,) R/w 'P•-nf, 
3 2~, 2ks-2k,+kt sin8,sin'(8,/2) sin'(Ss/2) 2(k,- ks) R/w 2~, 2cp, -2cp,+ 

+cp1 +nf2 
4 ~. + 2~, 2ks- k, cos6,sin8,sin'(8s/2) Tr+ 2(k,- 2~, 2cps-cp,-nj2 

ks) R/w 
5 2 (~. + ~.) 2ks-kt sin6tcos'(8•/2) sin'(Ss/2) 2(kt- ks) R/w 2(~. + ~.) 2cps-!pt-n/2 

Note. Here b-index of coherent pulse of the medium; k(b)-wave vector; t(b)-instants 
of time at which the pulses are maximal; fb-factor determining the intensity; <f>(b)
phases; T(b)-attenuation parameters (see the text, formula (3.2)). 
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second and third pulses, and also for the echo from the 
first and third pulses. 

However, simultaneous observation of all five pulses 
of the coherent radiation of the crystal can be realized 
only if the condition for the spatial synchronism is 
satisfied for all the vectors k(b )· It is easy to see that 
the case of total spatial synchronism is realized for 
the vectors k(b) and k(a) lying on a single straight 
line, with 

~.) = k., b = 1 ..;-- 5. (5.1) 

The condition (5.1 ), incidentally, can be satisfied also 
for small angles between the vectors k 1, k2, and k 3 • 

The general picture of the occurrence of the photon 
echo for this case is shown in Fig. 1. Such a sequence 
of pulses is observed if T 2 > 2r1. On the other hand, 
if r 1 < T 2 < 2rh then the pulses with b = 2 and b = 3 
"interchange places," that is, first to come is the 
pulse with b = 3 and then already with b = 2. At T2 

= 2r1 both echo signals merge into one, and interfer
ence is possible. 

The intensities of the coherent-radiation pulses ap
pearing in the crystal depend on the "rotation angles" 
e of the dipole moment by the electric field of the light 
wave (see the values of fb in the table). The usual 
photon echo is maximal, as expected, if the first and 
second pulses are respectively 1rl2 and 1T pulses. The 
"stimulated echo" is maximal when all three pulses 
are 1112 pulses. We note that the intensity of the echo 
from the second and third pulses depends on the "angle 
of rotation" by the first pulse. Thus, for example, if the 
first pulse is a 1112 pulse, then there will be no photon 
echo with b = 4 at all. Conversely, the echo is maxi
mal if the first pulse is a 1T pulse, the second a 1rl2 
pulse, and the third a 1T pulse. In exactly the same 
manner, the intensity of the echo from the first and 
third pulses (b = 5) depends on 82. There will be no 
pulse with b = 5 if the second pulse is a 1T pulse. 

In the case r 2 < T 1 the usual photon echo occurs 
already after the third pulse, and therefore the pulse 
with b = 3 will be missing, and only the photon echo 
from each pair of pulses and the "stimulated echo" 
remain. In addition, the factor f1, which determines 
the intensity of the ordinary photon echo, will contain 
a function of the angle Bs: 

t . e . ' e. ' e, , = sm ,sm 2 cos 2 . (5.2) 

We see thus that the optimal conditions for the ob
servation of certain pulses of coherent spontaneous 
radiation are not the same as for others. 

At arbitrary angles between the vectors k,, k2, and 
k 3, the condition of spatial synchronism for the coher
ent state of the ions and the radiation field is not satis
fied, and therefore the intensity decreases sharply by 
a factor (LI;~f. However, the spatial synchronism for 
the "stimulated echo" (b = 2) and the pulse with b = 3 
can be reconstructed at certain angles between k,, k2, 
and k 3 (see Fig. 2). Thus, the synchronism of the 
"stimulated echo" is realized for the directions 

1) ~.) = k,, if k, = k,, (5.3) 

In case 1) the ordinary echo will be observed, and in 
case 2) echo from the first and third pulses will be ob-

FIG. 2. Vector diagram illustrating 
the directions of the spatial synchronism 
for "stimulated echo" (a) and a pulse 
with b = 3(b). 

served in the direction k,. For the pulse with b = 3 we 
have 

2) k(" = k,, ,if k, = k,, 

3) ~·l '= -k,, if k, = -k,. (5.4) 

If case 1) of (5.4) is realized, there will be produced in 
the direction of k2 also an echo from the second and 
third pulses, while in case 3) of (5.3) or 2) of (5.4), 
only pulses with b = 2 and b = 3 respectively are 
realized. 

Let us estimate the obtained expressions for the 
ions Cr 3 + in Al30 3 : T: = 10-10 sec, corresponding to a 
line width 0.1 cm-1 at T = 4.2°K and d ~ 10-20 
g1/ 2 cm-1/ 2 sec-1; we then have for the electric field e a 
» liiT!d ~ 3 x 105 VI em. The pulse duration for such 
fields should be of the order of Oa ~ 1rlil e ad « 3 
x 10-10 sec. In order for the effect of multiple photon 
echo not to appear at fields 3 x 106 VI em and at dura
tions Oa ~ 10-11 sec it is necessary to choose the ion 
concentration and the sample length such that LNo 
« 0aA.Oa /€iii47T2dT; ~ 3 x 1017 cm-2 • 

It should be noted that if (5.1) is satisfied then our 
results are valid for Cr 3+ ions in AbOs not only for 
light that is linearly polarized along the optical axis 
of the crystal. All the foregoing applies also in this 
case for light propagating along the optical axis. For a 
wave circularly polarized in the right-hand direction 
there are separated in "pure form" the independent 
transitions 

1) k(3) = k,, if k, = k,, 

A .f A 2) (k(3)> k,) = 2:p, 1 <p = (kl> 2k, - k,). 

and for a left-hand circularly polarized wave we get 
the transition 

'A,(M, = '/2) _....... 'E(E) (M,, = 112), 
•A,(M, = -'12) ...-..'E(E)(M,,=- 1/2), 

The authors are most grateful to A.M. Afanas'ev 
Yu. A. Bykovskii and V. M. Galitskii for help in the 
work and for a useful discussion. 

'A, (M, = 112) ++ 'E (E) (M,. = 112), 
'A,(M, = -'/,) ++ 'E(E) (M,. = - 1/2). 

1 U. Kh. Kopvillem and V. R. Nagibarov, FMM 15, 
313 (1963). 
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consider here because it is small compared with the 
coherent radiation. 

4. FIELD AND INTENSITY OF COHERENT RADIATION 

To find the electromagnetic field it is necessary to 
solve Maxwell's equations (1.10) with allowance for the 
polarization (3 .2) and for the definite geometry of the 
crystal. Let the crystal be a layer of thickness L, let 
its surfaces be normal to the vector k(b ), and let the 
direction of the z axis be parallel to the vector k(b). 
The amplitude of the macroscopic polarization 9'b is 
a slow function of the point t and of the distance z, so 
that the electric field will also be sought in the form . 

E(z,t)= _ERe {.r,(z,t)exp[ik<•JZ-iw,t]}, (4.1) 

where Li~b(z, t) is a slowly varying function of z and t 
compared with the wavelength of light and the period of 
its oscillation, k(b) = w 0 /v, and v = c/ne(w 0). Sub
stituting (3.2) and (4.1) in (1.10), we obtain for the 
slowly-varying amplitude of the field the following 
equation: 

( iJ iJ ) 2nw, 
at+v--az- .r,(z,t)=i~.9',(z,t). {4.2) 

After changing over to new variables 

r = t - z I v, 6 = z (4.3) 
Eq. (4.2) takes the form 

& 2nwo 
v-.r,(s,-r)=i--2 .9',(§,-r). 

iJ\; n, 
(4.4) 

If 
(4.5) 

the values of T(b){R) in (3.3) can be chosen at the point 
R = 0, and then we write the solution of (4.4) in the 
form 

( z) 2nw,z ( z) .r. t-- = i--.9', t-- ' 
v ve 11 v (4.6) 

where E:ff = n~(w 0), and 0 :s z :s L. When (4.5) is satis
fied, we have at all points of the crystal t 2 > t 1 and t 3 

> t 2, and consequently the external pulses do not over
lap in the crystal. 

From {4.6) we obtain the condition for neglecting the 
reaction of the medium on the external field: 

T,'w,zN,d I Veu<'l. ~ .r., d.r.fJ. I li ~ 1, {4. 7) 

since 9't ~ N0d. For the radiation flux density we ob
tain 

v • n(w,zN,d) 2 ( z ) 
l(z,t)=-.r$, = j.'g' t---t<•> . 

8n 2veu' v 

X exp { -2y (t- :- T<•>(O) )}. {4.8) 

The values of the energy flux density will be maximal 
at t - z/v = t(b) and equal to 

(4.9) 

It is now easy to calculate the energy of the coherent 
pulse by means of the formula 

W = S J dtl(z, t), (4.10) 

where S is the cross section of the beam or the trans
verse dimensions of the plate. In the case when the in-

homogeneous broadening is dominating ( T: « T2), the 
correlation function has a 6-like character, so that 
after substituting (4.8) in (4.10) we obtain 

(w,zN,d)' • 2 (4 11) 
W(z)=f\S' 2 T,f,exp{-2y(t<•>-T<•>(O))}. • 

ve 11 

where {3 = 1r/2 for a Lorentz line shape and {3 = 1T ...f1f 
for a Gaussian shape. 

5. DISCUSSION OF RESULTS 

In Sec. 3 we obtain a general expression for the 
macroscopic polarization (3.2) produced in a crystal 
when three coherent light pulses pass through it. 
Whereas excitation of the medium by two pulses causes 
the coherent "response" to appear at the instant of 
time 271, where 71 is the interval between the pulses, 
in the case of three light pulses the picture becomes 
much more complicated. In the general case the num
ber of coherent "responses" of the medium is equal to 
5. Indeed, the term with b = 1 in (3.2) describes the 
usual photon echo, which appears earlier than the third 
pulse, since 72 > 71. The polarization responsible for 
the appearance of the photon echo is characterized by 
the wave vector ( 2k2 - k 1) w0 / w and attenuates like 
exp ( -7(1/T2) = exp ( -271/T2). We emphasize that the 
radiation occurs at a frequency w 0 that differs from 
the frequency of the external incident pulses. 

At the instant of time 271 + 72 there appears in the 
medium polarization with a wave vector (k3 + k 2 
- k1lwo/w (b = 2), the attenuation of which does not 
depend on the interval 72 between the second and third 
pulses. This is the "stimulated echo." Such an unusual 
result is connec_ted with the fact that under the influence 
of the second pulse a change takes place in the relaxa
tion time of the quantum coherence of the medium. In 
fact, under ordinary conditions the coherent state re
laxes with a characteristic transverse-relaxation time 
T2, something we took into account as the attenuation 
of the near-diagonal element of the density matrix. The 
second light pulse transfers part of the ''phase 
memory" of the medium to the diagonal density
matrix elements, in other words, to a population that 
attenuates with the longitudinal relaxation time T 1 of 
the medium. In paramagnetic crystals the inequality 
T 1 » T2 is usually satisfied, and therefore the damp
ing of the "stimulated echo" will be significant only in 
the intervals between the second and third pulses, 
which are comparable with T 1. 

The term with b = 3 describes the coherent state 
of the matter, stored by the usual photon echo and 
"realized" by the third light pulse. This attenuation 
is determined both by the interval between the ordi
nary photon echo and the third pulse, and by the atten
uation of the photon echo itself 7 (3> = 2 ( 7 2 - 7 1) + 271 
= 272. It is interesting to note that at the instant of 
time 271 there is essentially no external strong field 
at all in the crystal (we have assumed that the field 
produced by the medium is much weaker than the ex
ternal field). Nonetheless the crystal is in this case in 
the superradiating state produced when the first two 
pulses of light passed. This coherent state is then 
"realized" by the third pulse at the instant of time 272. 

Analogously, the terms with b = 4 and b = 5 in 
(3.2) are responsible for the photon echo from the 



THEORY OF NONSTATIONARY PHOTON ECHO 719 

2 N. A. Kurnit, I. D. Abella, and S. R. Hartmann, 
Phys. Rev. Lett., 13, 567 (1964). 

3 1. D. Abella, N. A. Kurnit, and S. R. Hartmann, 
Phys. Rev. 141, 391 (1966). 

4 A. Compaan, L. Q. Lambert, and I. D. Abella, 
Phys. Rev. Lett., 20, 1089 (1968). 

5 C. K. N. Patel and R. E. Slusher, Phys. Rev. Lett. 
20, 1087 (1968 ). 

6 B. Bolder and J. C. Diels, Phys. Lett. 28A, 401 
(1968). 

7 N. A. Kurnit and S. R. Hartmann, Bull. Am. Soc. II, 
11, 112 (1966). 

8 N. A. Kurnit and S. R. Hartmann, Inter. of Radia
tion with Solids, Plenum Press, Inc., N.Y., 1967, 
p. 693. 

9 E. A. Manykin, ZhETF Pis. Red. 7, 345 (1968) 
[JETP Lett. 7, 269 (1968)]. 

10 A. I. Alekseev and I. V. Evseev, Zh. Eksp. Teor. 
Fiz. 56, 2118 (1969) [Sov. Phys. JETP 29, 1139 (1969)]. 

11 J. P. Gordon, C. H. Wang, C. K. N. Patel, R. E. 
Slusher, and W. J. Tomplinson, Phys. Rev. 179, 294 
(1969 ). 

12 A. I. Alekseev and I. V. Evseev, Zh. Eksp. Teor. 
Fiz. 57, 1735 (1969) [Sov. Phys.-JETP 30, 938 (1970)]. 

13 W. Low, Paramagnetic Resonance in Solids 
(Russian Translation), IlL, 1962. 

14 S. Sugano andY. Tanabe, J. Phys. Soc., Japan, 13, 
880 (1958). 

15 R. P. Feynman, F. L. Vernon, and P. W. Helwarth, 
J. Appl. Phys. 28,49 (1957). 

16 U. Kh. Kopvillem, In: Nekotorye voprosy magnitnoi 
spektroskopii i kvantovoi akustiki (Certain Problems of 
Magnetic Spectroscopy and Quantum Acoustics), Kazan', 
1968, p. 99. 

Translated by J. G. Adashko 
150 


