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We consider the temperature first-order phase transition, at which the magnetic anisotropy of the 
"easy axis" type goes over into magnetic anisotropy of the "easy plane" type. We investigate the 
distribution of the magnetic moments of the sublattices in the boundary between the two different 
phases, and calculate the surface energy of the separation boundary. It is shown that the phase 
transition can give rise to a thermodynamically-stable domain structure due to the weak ferro­
magnetism of the phase with the "easy-plane" magnetic anisotropy. The dimensions of the 
domains are calculated. We investigate also the distribution of the magnetic moments in 180° 
domain boundaries and calculate the surface energies of these boundaries. It is shown that the 
surface energy of an 180° boundary is greatly reduced when the phase-transition temperature is 
approached. 

1. INTRODUCTION 

AS is well known, in a number of antiferromagnets 
(AFM) (for example, in a-Fe20 3 ), the character of the 
magnetic anisotropy changes appreciably with changing 
temperature, namely, above a certain temperature TM 
( TM is the Morin temperature) the magnetic moments 
are oriented perpendicular (parallel) to the chosen 
axis, and below this temperature the magnetic mo­
ments of the sublattices are parallel (perpendicular) 
to the chosen axis. 

Such a change in the orientation of the magnetic 
moments, in the case of uniaxial AFM, i.e., AFM in 
which the anisotropy in the basal plane is small, indi­
cates either a first-order phase transition, or the 
presence of at least two second-order phase transi­
tions. Indeed, from symmetry considerations it is 
clear that in a uniaxial AFM there can be realized 
three phases in sequence: a phase ~ 11 , in which the 
antiferromagnetism vector 1 is oriented parallel to 
the symmetry axis, a phase ~ 1 , in which the vector 1 
is oriented perpendicular to the symmetry axis, and a 
phase ~<• in which the vector 1 is oriented at a cer­
tain angle to the anisotropy axis. The transition from 
the phase ~ 11 to the phase ~ 1 is of first order if these 
phases can coexist; the transition from the phase 
~ 11 ( ~ 1 ) to the phase ~< can be regarded as a second­
order phase transition, for in such a transition one of 
the symmetry elements is lost and one of the frequen­
cies of the homogeneous oscillations vanishes on the 
transition line. 

We consider in the present paper, in the main, the. 
case of a first-order phase transition ~II:;=: ~1 • As is 
well known, in a first order phase transition there is 
coexistence of the phases, and consequently separation 
boundaries are produced between these phases. 

In the phase ~ 1 , as a rule, there occurs a small 
magnetic moment due to the Dzyaloshinskii interaction. 
The presence of the magnetic moment in the phase ~ 1 
makes it possible for the AFM sample to break up at 
temperatures close to TM into domains that are 
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thermodynamically stable. These domains are analo­
gous to those investigated in[1l, which arise when the 
antiferromagnetism vector 1 in an AFM with magnetic 
anisotropy of the ''easy axis'' (EA) type turns over in 
an external magnetic field. 

We obtain in this paper the distributions of the 
magnetic moments of the AFM sublattices in the 
boundaries between the phases ~ 11 and ~ 1 (90° bound­
aries), and also in the 180° introduction boundaries in 
AFM with weak ferromagnetism; we calculate the sur­
face energies of the 90 and 180° interdomain walls, 
determine the domain structures (DS) for a plane­
parallel plate, and estimate the domain dimensions. 

2. THE PHASE TRANSITION ~II~ ~ 1 IN AN 
UNBOUNDED AFM 

Before we investigate the DS, let us consider the 
question of the phase transition ~ 11 ~ ~ 1 in an infinite 
AFM. As already noted in the introduction, this transi­
tion can occur either via a first-order transition, or 
via two second-order phase transitions. The simplest 
density of the non-equilibrium thermodynamic poten­
tial, which makes it possible to describe these two 
possibilities, is 

1 1 1 
w = TII(M, + M,)'- g-Il' (M,- M,, n)'- g-li(M, + M,, n)' 

1 1 (1 1 ) - 2 d(n[M,M,])- 4_16 li,(M,-M,,n)'+/ 2 M,', 2 M,' , 

(2.1) 

where o is the exchange-interaction constant, (3, {3 1 , 

and (3 3 are the magnetic-anisotropy constants, d is 
the Dzyaloshinskii constant, f( Y2M~, Y2M~) is the ex­
change energy, which determines the values of the 
magnetic moments at a given temperature, M1 and 
M2 are the sub lattice magnetizations, and n is a unit 
vector along the symmetry axis; we shall henceforth 
need also the quantities 

I= _!_(M' _ M,) 
2 M, M, 

m = _!_(M' + M,). 
2 M, M, 
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The dimensionless quantities o, (3', and d are func­
tions of the temperature, and the exchange energy f 
depends not only on the values of the magnetic mo­
ments of the sublattices, but also on the temperature. 

Formula (2.1) pertains to a homogeneous quasi­
equilibrium state such that the magnetic moments of 
the sublattices have reached neither their equilibrium 
values nor their equilibrium directions. 

We note, finally, that allowance for only the second­
order terms in the magnetic-anisotropy energy is in­
sufficient for the description of the character of the 
phase transition <P11 ~ <P 1 , and it is necessary to take 
into account in the magnetic-anisotropy energy also 
the fourth-order terms. An analysis of the fourth­
order terms in the magnetic-anisotropy energy of 
AFM is given in[2l, where it is shown that the most 
important role is played by the term ( M1 - M2, n)\ 
which is given in formula (2.1). 

To determine the equilibrium directions of M1 and 
M2 and their equilibrium values, it is convenient to 
change over from M1 and M2 to their components in 
spherical coordinates: 
M" = (M,n) = M, cos 6,, M, = M, sin 6, sin <p,, M, = M, sin 6, cos <p,, 

M,, = (M,n) = M, cos 62, M,. = M, sin 6, sin <p,, 

M,x ,= M, sine, cos <pz, (2 .2) 

where ei and fiJi are the polar and azimuthal angles 
of the vector Mi. 

Substituting these formulas in (2.1) and equating to 
zero the derivatives of w with respect to e 1, e 2, cp 
= cp 1 - cp 2 , Ml> and M2, we can easily verify that the 
following solutions exist for e 1 and e 2: 

1) 

2) 

e.= 6,= n/ 2, 

6,=0, Bz= :rl. 

(2.3) 

(2.4) 

It can also be shown that in either of the two cases 
the magnetizations of the sublattices are the same, 
M1 = M2. 

The angle cp and the value of the magnetization of 
the sublattice are determined in the former case from 
the equations 

d 
tg<p =u· f, + 6(1 +cos<p)+dsin<p = 0, (2.5) 

where 

In the second case, the determination of the angle 
cp has no meaning, and to determine M we have the 
equation 

f,- '/,(W + ~,M') = o. (2.6) 

The solution of (2.3) together with Eq. (2.5) deter­
mines the phase in which the AFM vector l is perpen­
dicular to the chosen axis, and the solution (2.4) to­
gether with Eq. (2.6) determines the phase in which the 
AFM vector l is parallel to the chosen axis. It follows 
from (2.5) and (2.6) that simultaneously with the 
change of the direction of l a change takes place in the 
magnitude of the sublattice magnetization M. To be 
sure, this change is relatively small and is proportional 
to the ratio of the relativistic interactions to the ex-

change interaction (compare (2.5) and (2.6))1>. 
Let us determine now the conditions that must be 

satisfied in order for the phases <P 11 and <P 1 to be 
thermodynamically stable. To this end it is necessary 
to investigate the second derivatives of the potential w. 
Examining the second derivatives of w with respect to 
e 1, e 2, and cp, we arrive at the conclusion that the 
phase <P 1 corresponding to the solution of (2.3) and 
(2.5) is stable if 

(26+Wl ~l'(26)'+d', '/,(~+~') ~l'(21))'+d' (2.7) 

and cos cp < 0 (in the derivation of the conditions (2.7) 
it was assumed that the constant d is negative). 
Recognizing that 6 is due to exchange, and that {3, (3' 
and d are of relativistic origin, we can readily see 
that the second condition of (2.7) is no limitation at 
all 2>, and the first can be represented approximately in 
the form 

1 d' 
~'-46~ 0. (2.8) 

The conditions for the stability of the phase <P 11 are 

I M' 0 R'+~RM'>- d' (2.9) 
26 + ~ + ~' 11 ;;;;. , p 2 P' 11 ,_.- 46 + w + ~,Mn' · 

The first condition of (2 .9) is satisfied by virtue of the 
exchange nature of 6 and the relativistic nature of (3' 
and (3 3, and the second, accurate to terms of second 
order in the ratio of the relativistic-interaction con­
stants to the exchange-interaction constants, can be 
represented in the form 

The conditions (2.8) and (2.10) (or more accurately, 
the conditions (2.7) and (2.9) determine the tempera­
ture interval at which the phases <P 1 and <P 11 are 
stable. To determine these temperature intervals, it 
is necessary to know the temperature dependence of 
the quantities (3', (3 3 , d, o, and M11 • 

Let us consider the simplest case (bearing in mind 
the application of our theory to hematite), when the 
difference (3'- %d2/o = <Ji(T) is a monotonically de­
creasing function of the temperature in the entire 
region of the existence of the AFM 3>. Then the condi­
tion (2.8) can be rewritten in the form 

where T1 is determined from the condition <Ji(TJ = 0. 
Expanding <Ji(T) in a series about T = T1, <Ji(T) 
=-A(T- T1), and assuming that I (3 3 Mf11 « (3', we 
can readily find the region of stability of the phase <P 11 : 

•>we note that besides the solutions (2.3) and (2.4) there exists a 
solution corresponding ot the phase <I><. This solution and its analysis 
are of fundamental importance when the transition <1>11 "T <1>1 proceeds 
via two second-order phase transitions. We shall not discuss this here, 
however. 

2lThis statement is valid only if Tis not too close to TN, where TN 
is the Nee! temperature, since [j becomes small at temperatures close to 
TN. We recall that li(TN) "=' 0 at T =TN. 

3>In the case when the coefficients of the expansion of w are not 
monotonic functions of the temperature, there can exist several tem­
perature intervals in which the phases <1>11 and <I> 1 are stable. 
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0 < T < T,, T, = T, + j3,(T,)Mu'(T,) /A. 

If fh( T 1) > 0, then the regions of existence of the 
phases 4> 1 and 4> 11 over lap and the transition 4> 11 
~ 4> 1 is a phase transition of first order. 

On the other hand, if fh( T1) < 0, then the regions of 
existence of the phases 4> 11 and 4> 1 are separated by a 
finite temperature interval t:.. T = fh( T 1) Mf1 ( T 1 )/A. As 
shown by a more detailed analysis, there exists in this 
temperature interval a phase 4>< in which the AFM 
vector 1 is oriented at an angle to the anisotropy axis, 
n, neglecting the anisotropy in the basal plane, the 
transition 4> 1 := 4> 11 via the phase 4>< constitutes two 
second-order phase transitions. 

In order to determine the temperature at which the 
first-order phase transition 4> 1 := 4> 11 takes place, it 
is necessary to equate the thermodynamic potentials 
w 11 and w 1 obtained from (2 .1) by substituting the 
equilibrium values of M1 and M2 respectively for the 
phases 4> 11 and 4> 1 • Mter simple calculations we find 
that the condition w11 = w 1 leads to[2l 

1 d' 1 
j3'-t;6+213sMu'=0, 

whence 
j3,Mu' 1 --

TM = T, + --=- (T, + T,) ~ -yr,T,. 
2A 2 

(2.11) 

We see from this expression that T1 < TM < T2. 
Differentiating the expression w11 - w 1 with respect 

to the temperature, we find the jump of the entropy in 
the phase transition; when this jump is multiplied by 
TM we obtain the heat of the transition 

(2.12) 

In concluding this section, we note that the possible 
AFM phase diagrams in terms of the variables H and 
T ( H II n) can be represented schematically in the 
manner shown in Fig. 1. For simplicity, these dia­
grams disregard the possible existence of the phase 
4><. Allowance for this phase leads to splitting of the 
ends of the line separating the phases 4> 1 and 4> 11 (a 
splitting of the entire line is also possible). 

3. INTERDOMAIN BOUNDARIES IN AFM 

We shall first consider the distribution of the mag­
netic moments on the boundary between the phases- 4> 1 
and 4> II· Since the AFM vector l rotates through 90° 
inside this boundary, it is necessary, in order to de­
scribe this rotation, to take into account in the expres­
sion for w also the terms connected with the inhomo­
geneity of the magnetic moments. These terms, as is 
well known, have mainly an exchange nature and can be 
represented in the form 

[ 1 am • 1 ai • 
Winborn= -a(-) +-a'(-)] Mo', 2 ax, 2 ax, 

(3.1) 

where a and a' are the exchange constants, a ~ a 
~ oa2 • 

The total thermodynamic potential can be repre­
sented in the form 

W tot =Winborn+ Whom, (3o2) 

where Whom is given by (2.1). We shall consider a 
domain wall (Fig. 2) such that the AFM vector l is 
rotated in the xz plane (the x axis, along which 1 is 
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FIG. 1. a) The AFM does not have a Morin point, b) the AFM has 
one Morin point, c) two Morin points. 

a 

/ 
z• 

I 

/Y 
/ 

__ l_LLhLk""~""=-._...._~.........._, 
X 

~---~-----~v 
b 

FIG. 2. a) 180° -domain wall in phase <1>1; b) 90° -domain wall 
separating the phases <1>11 and <1>1. 

directed in the phase 4> 1 , is fixed by the anisotropy in 
the basal plane), the domain wall being parallel to the 
yz plane, i.e., the angle of rotation e of the vector 1 
and the magnitude of the magnetic moment m depend 
only on the coordinate x. 

The energy Wtot can be represented in this case in 
the form 

Wtot = Jdr{~a'(!Y)'+ 2cSm'-~j3'sin'9 +~13'm'sin'9 
2 2 2 

1 1 } +dmcose- 2 dm'cos9- 4 j3,Mo'(1-m')'sin'9 M,', (3.3) 

where e' = dB/dx. In writing down this expression we 
have discarded the terms proportional to the deriva­
tives of m, and neglected the small difference between 
M11(T) and M1 (T). 

Varying Wtot with respect to e and m, we obtain 
the following equations describing the distribution of 
the magnetic moments in the domain boundary: 
(411 + 13' sin' 9)m + d cos 9- '/,dm' cos 9 + j3,Mo'(1- m')msin' 9 = 0, 

a'S" + 13' sin 9 cos 9 -j3'm' sin 6 cos 9 + dm sin 9 
+13,Mo'(1-m')'sin'llcos9=0. (3.4) 

From the first equation of the system (3.4) we 
readily get 

d ( 13' j3,M 2 
m=--cose 1--sin'll---' sin'e) 

41> 411 411 ' 
(3.5) 

recalling that l "" 1 - Y2m 2• Substituting this value for 
the magnetic moment in the second equation of (3.4), 
we obtain 

a'fl" +a sin fJ cos fJ- 1/ 2b sin 28 cos 29 = 0, (3.6) 

where 
1d' 1 1 d' 

a=j3'-t;6+"213'Mo', b= 2 j3,M,'+13'( 411). (3.7) 

It is easy to see that the first integral of this equation 
is 

1/.a'(H')' + 1/2a sin' fJ- 1/sb sin' 29 = const. (3.8) 

It follows therefore that when a~ 0 it is possible to 
have domain boundaries in which the direction of the 
vector 1 is rotated through 180° (as shown in Fig. 2). 
We recall that far from the domain boundary the dis­
tribution is assumed to be homogeneous, i.e., e' - 0 
as x- ± oo, 
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The case a > 0 corresponds to a 180° domain 
boundary (DB) with rotation of 1 from 13 = 1r to 
(} = 0. Comparing the condition a> 0 with the condi­
tion (2.9 ), we see that it coincides with the condition 
for thermodynamic stability of the phase <I> 11. 

The case a < 0 (which coincides with the condition 
for the existence of the phase <I> 1 , see (2.8)) corre­
sponds to a 180° DB with rotation of the vector 1 from 
13 = -1r/2 to 13 = 1r/2. 

Finally, in the case a = 0 a rotation of 1 from 
13 = 1r/ 2 to 13 = 0 is possible41 • 

The dependence of the angle 13 on the coordinate x 
can in all these cases be described with the aid of the 
formulas 

8(x) = 

where 

[ arcctg [ v a sh --~--]. 
a+ b Xvl 

a>O, 

arctg exp (- x / x0,), a=O; 

- arctg [ J( I a I sh ~ J , 
, \ al + b Xo• 

a<O, 

a~O, 

a=O. 

<lJ II; 

(3.9) 

<P _l_• 

(3.10) 

Let us stop briefly to analyze the obtained formulas. 
Since I b I « I a I far from T = TM, it follows from 
(3.10) that the thickness of the 90° DB which separates 
the phases <I> 11 and <I> 1 is much larger than the thick­
ness of the 180° DB in the phases <I> II or <I> 1 far from 
the Morin point. As seen from (3.5) the magnetic mo­
ment m reverses direction in a 180° DB of the phase 
<I> 1 (a < 0) (from m = -d/ o at x - - oo to m = d/ o at 
x- +""),and in a 180° DB of the phase <1>11 (a> 0) the 
magnetic moment m reaches a maximum absolute 
magnitude I m I = d/ o in the middle of the domain wall 
at x = 0. 

Finally, when the phases <1> 11 and <I> 1 coexist (a= 0), 
the magnetic moment, as follows from (3.5), has the 
following values on the different sides of the 90° DB: 
m = 0 for the phase <1> 11 and m = d/o for the phase 
<I> 1· 

Knowing the distributions (3.5), (3.9), and (3.10) for 
1 and m in the domain boundaries, we can easily find 
the surface energy of the DB. Let us determine it from 

·the formula 

a= ;[Wtot -Hi,~ml=J~x(wtot-Wh;m)=aL(e'M,)'dx(3.11) 
where S is the surface of the DB and whom is obtained 
by substituting in (3.2) the homogeneous values of l 
and m for the corresponding phase. 

Using this formula, as well as formulas (3.5), (3.9) 
and (3.10), (3.2), and (2.5)-(2.8), we get 

a= a 11~Mo 2 ll'lal + b + /alln yb +1"fiif+b 
l'b l'lal • 

1 -
z-l'b, 

ao/=0; 

(3.12) 

a=O. 

It is seen from the foregoing formulas that, 
generally speaking, the surface energy of the 90° DB 

4 >We emphasize that the condition a= 0 coincides with the condi­
tion for the equality of the thermodynamic potentials wll and w1. 

is much smaller than the surface energy of the 180° DB. 
However, as T - TM, as seen from (3.12), the surface 
energy of the 180° DB decreases greatly and becomes 
of the same order as the surface energy of the 90° DB. 

4. DOMAIN STRUCTURE OF AFM 

In concluding this paper, let us stop to discuss the 
domain structure of the AFM. Since an energy aS is 
consumed in the production of the DB, it is clear that 
the 180° DB, which can exist in the phase <I> 11 , are not 
in equilibrium thermodynamically, since their occur­
rence cannot lead to a decrease of any other part of 
the AFM energy. 

The 180° DB in the phase <I> 1 may turn out to be 
thermodynamically stable in AFM samples of finite 
dimensions in the case when the magnetization on the 
opposite sides of the DB has different directions, 
since the appearance of these boundaries reduces the 
energy of the magnetic field outside the body51 • In 
analogy, 90° DB will be thermodynamically stable, 
since the subdivision of the AFM into domains with 
such DB leads to a closing of the magnetic flux inside 
the body and to a decrease of the energy of the mag­
netic field outside the body. 

To estimate the domain dimensions, we start from 
the following express ion for the energy of an AFM 
broken down into domains[!, 316>: 

l, l, ,D'l,, 
E = al,l,-+onl,D-+m l,--M, 

D D n D ' 
(4.1) 

where D are the domain dimensions. l 1 < Z2 < l 3 the 
plate dimensions, n the number of "wedges" per 
domain. Minimizing this expression with respect to n 
and D, we obtain 

D= (a'hl,/mM,)'\ n= (m'M,"'l,ja)'l•. (4.2) 

Substituting in these formulas the values for the sur­
face energy a of the 90° DB, we obtain 

D ~ 2[a~aMo']>I•Z,'1•(~ /d)'", n ~ 1/2Z,'I•(d / 6)'1•[a~,M,']-'1•. 

Analogously, for the 180° DB of the phase <I> 1 we have 

[ ( d' 1 ) ] '1• ' ( 6 ) '1• D ~ 2 a ~'- 46 +z-~aMo' Z/' d 

n ~ --}z,'" ( ~ )"'[ a(~'-:; ++~,Mo') r'·. 
Let us estimate the dimensions of the domains near 

TM. Assuming, in accordance with[ 2l, !3sMg = 0.9, 
o ~ 10\ d ~ 10 2 , 2M0 R~ 9 ·102 G, and l 1 = 1 mm, we 
obtain for domains separated by 90° DB n R~ 1 and 
DR~ 0.1 em. 

5>Farztdinov [41 investigated 180° DB located in the basal plane, 
and the subdivision of AFM with weak ferromagnetism into thermody­
namic-equilibrium domains separated by such boundaries. Although the 
surface energy of such domains, generally speaking, is smaller than the 
surface energy of the domains considered by us in the phase il> l• the 
situation may change near T = TM, when a 180 o(i1>1) is greatly. decreased, 
In this case, competition between the DB, considered in [41, and the 
DB considered in the present paper, is possible. 

6>we note that in our earlier paper [ 11 the work of emergence of the 
magnetic moments to the surface of the sample was estimated incorrectly. 
The last term in formula (5) of[' 1 should be replace by m2 / 2 (D2 /n)(/3 /D), 
so that Xl in Eq. (6) of that paper should be replaced by xl, 
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