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The cross section for the resonance charge exchange of an ion on an excited atom is calculated for 
the case when the charge exchange is determined by the barrierless transition of an electron from 
the field of one ion into the field of another one. An estimate is made of the range of applicability 
of the classical theory. 

1. The resonance charge exchange of an ion on an atom 
associated with the transition of a valence electron from 
one atomic core to another one plays an important role 
in different phenomena which occur in a plasma. For 
atoms existing in the ground state the resonance charge 
exchange at not very high energies of collision is as
sociated with the tunnelling transition of an electron 
from one atomic core to another one. In this case as 
the ionization potential I of the atom decreases the cross 
section for the resonance charge exchange increases as 
1/I and it is this case that is discussed in detail in the 
literature. But as the binding energy of the electron 
decreases the barrierless transition of an electron 
from one atomic core to another one plays an ever in
creasing role since in this case the cross section for 
resonance charge exchange is proportional to 1/I2l1 •2J. 

Therefore, in order to obtain the cross section for the 
resonance charge exchange of an ion on an excited atom 
it is necessary to utilize the theory of the barrier-less 
transition of an electron. All the more so since the 
classical theory enables one to make an estimate of the 
cross section for resonance charge exchange for atoms 
of an alkali metal which are in the ground stateL3 J. 

A calculation of the cross section for the resonance 
charge exchange on an excited hydrogen-like atom was 
carried out by Bates and collaborators both in the 
quantum mechanical casel4 J and also in the classical 
casels,sl. In both these cases it was assumed that in 
the process of transition the state of the electron des
cribed by the quantum numbers n, n1 , m is not changed. 
We regard such an approach to be incorrect. Simple 
estimates made on the basis of perturbation theory show 
that in such a system quite intense transitions take 
place between states with nearly the same energy. 
These transitions are due to the motion of the nuclei. 
As regards the energy of the electron, it practically is 
not transferred to the nuclei due to the difference in the 
masses of the electron and the nuclei. 

2. Thus, in calculating the probability of transition 
of a classical electron from the field of influence of one 
ion into the field of influence of another one for not very 
high velocities of the nuclei one can assume that the 
energy of the electron is not changed in the process of 
collision. It is equal to- I, where I is the ionization 
potential of the excited atom prior to collision. In this 
case a barrierless transition of an electron from one 
ion to another one is possible if the potential for the 
interaction between electrons and nuclei at the midpoint 
of the axis joining them exceeds the ionization potential 
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of the atom. From this it follows that the classical 
transition of an electron from one nucleus to another 
one is possible when the distance between the nuclei is 
R < Ro, where Ro = 4e2/I. From this the maximum 
cross section for classical charge exchange (the proba
bility of transition of an electron is less than or equal 
to '!2) is equal tol1 ' 2J 

ao = 'f,nRo' = B:n:e' I P. (1) 

This takes place at very small velocities of collision. 
For arbitrary velocities of collision from considerations 
of dimensionality (we have at our disposal the param
eters I, e; m is the mass of the electron, v is the rela
tive velocity of collision of the nuclei) we represent the 
cross section for charge exchange in the form 

0" = O"o/(z), 
B:n:e' 

O"o=-p• 
1) 

z=---
}21/m · 

(2) 

Here f(O) = 1. Our problem is to evaluate the function 
f(z) for arbitrary z. 

3. We consider charge exchange for a given impact 
parameter in a nuclear collision. Let w1 be the proba
bility of finding the electron in the field of the first ion, 
w2 be the probability of finding it in the field of another 
ion, h2 be the probability of transition of the electron 
per unit time from the field of the first ion into the field 
of the second ion and h 1 be the frequency of the inverse 
transition. From considerations of symmetry j 12 = h1 

= j, so that for the probabilities w1 and w2 we have the 
system of balance equations: 

dw, dw, . . 
--=---. = -]Wt + ]Wz. 

dt dt 

Solving this equation with the initial conditions w1 = 1 
and w2 = 0 for t = _..,, we obtain for t = +co 

1-e-• 
w,=--2-, 

+• 
s= J2jdt. 

From this, introducing x = p/Ro (P is the impact param
eter for the collision), we obtain for the cross section 
for resonance charge exchange 

1tR.. t 

a=--i: (1- J2zdze-• ). 
0 

i.e., 

S• [ s· 4Roi ydy l /(z)= 1- 2zdzexp - ---= . 
o • v Jy'-z' (3) 

Here we have utilized the law of free relative motion: 
R2 = p 2 + v2e; we have taken into account the fact that 
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as the barrier appears (R > Ro) classical transition 
ceases ( j = 0) and we have introduced y = R/Ro. 

4. In finding the frequency of transition of the elec
tron j from the field of influence of one ion into the field 
of influence of another one we utilize the laws of statis
tical mechanics. In this case in accordance with the 
physical conditions of the process we assume that the 
transitions between states of the electron with different 
angular momenta and components of angular momentum 
occur sufficiently rapidly so that the frequency of tran
sition is determined by the binding energy of the elec
tron I. This frequency of transition is equal to 

S Nv 
j=. t;dS· 

• 
Here S is the part of the plane drawn through the mid
point of the axis joining the nuclei and perpendicular to 
it, where the classical electrons can be found, v is the 
electron velocity and N is the electron density. 

From the law of conservation energy the velocity of 
the classical electron is equal to 

1/ 2 (e' e' ) v= v- --~---r . 
m rt Tz 

(4) 

where r 1 and r2 are the distances of the electron from 
the corresponding nuclei. In this case in accordance 
with the laws of statistical mechanics the probability of 
finding an electron with the given total energy I in the 
neighborhood of a given point is proportional to the num
ber of states of the electron, i.e., 

S dpdr ( p' e' e' ) 
Ndr= --~ --1+-+- - vdr. 

(2n/i) 2m r, r 1 

Normalizing the electron density by the condition that it 
is concentrated in the field of one of the nuclei we obtain 
from this for the frequency of transition of the electron: 

j= ~ (JY~+~-/dr f' s v~ (3!:..-r)2npdp. 
g rs ra T<'e'JI m r 

Here 0 is the coordinate region where in accordance 
with the laws of classical mechanics the electron can be 
found with energy- I, p is the distance from the axis 
joining the nuclei, r = ../p 2 + R2/4. Introducing elliptic 
coordinates we obtain from this 

where 
R 

y=R.~1. 

j= 1 (1-y)' 

l'2m Ro''•l(y) 

t 

l(y)=y''· JdTJ sd~l'(6'-TJ')[6-y(6'-TJ')]. 
0 I 

1 -v-i-a=-+ -+TJ". 
2y 4y1 

(5) 

Values of the function I(y) for a number of values y are 
given below: 

y: 0 0.2 0.4 0.6 0.8 i.O 
I (y): 0.196 0.194 0.185 0.185 0.136 0,104 

Calculated with the aid of formula (5) and of the data 
quoted above the values of the function f(z) have the 
asymptotic form: 

{ 0.38z-•, z-+ oo 
f(z)= 1-0.8z'l', z-+0. (6) 

Correspondingly the classical cross section for reson-

ance charge exchange in these limiting cases is equal to 

{
13,5e•J'1•m-•!,v-1, v> Y 2/fm 

(] cl = Bne< [1 - 0 8 ( v vm )''• ~ j2T (7) 
I' . fU , v<v m· 

The function f(z) for intermediate values of z can be well 
approximated by the formula 

f(z) = [1 + 0.8z'l• + 2.6z]-•. 

5. We determine the domain of applicability of the 
classical theory and its connection with the quantum 
theory of resonance charge exchange. The result ob
tained above is violated at very high velocities of colli
sion, where the inelastic cross sections of collision with 
an appreciable change in the binding energy of the elec
tron turn out to be comparable with the charge exchange 
cross section. At very low velocities of collision the 
sub- barrier transitions of an electron become important 
which are not taken into account by the classical theory. 
Therefore, the domain of applicability of the classical 
theory of resonance charge exchange is restricted both 
from the side of high velocities as well as the side of 
low velocities of collision. 

we estimate the domain of applicability of the class
ical theory from the side of low velocities on the basis 
of the results of quantum theory for a sub- barrier tran
sition. Thus, if the electron is in an s- state, then the 
quantum theory of a sub- barrier transition ~ives for the 
cross section of resonance charge exchange 71 : 

a = ~··, 0,28v = Y ~~ ~ ( ~) •tr ~· ( R; ) . 

Here IP(Ro) is the radial wave function for an electron 
in an isolated atom normalized to unity, y = v'2f, and 
the system of atomic units has been utilized. Utilizing 
the asymptotic expression for the wave function of an 
s- electron situated in the field of a Coulomb center[sl , 
and introducing the effective principal quantum number 
n = 1/ r we obtain from this 

nR," 
CJ=-2-. 

1 1/ n ( 4) • ( R ) ••-'I• 
V = 0.28 f 2 e ---; e-RI•(n!)-'. (8) 

We establish the boundary of the classical theory at 
the point where the cross section for resonance charge 
exchange obtained by means of formula (8) exceeds the 
maximum classical cross section of charge exchange 
(1) (Ro :::: 8a0n2 , ao is the Bohr radius). This gives for 

IDfl • 

fd . f8 ,, 
v, em/sec 

The resonance charge exchange for a Cesium ion on Cesium. Solid 
line-quantum theory,--- classical theory; experiment: •-[9 ], 0-[ 101, 
'V-[11], ·-[12], <J-[13], ®-[14], (i-[15], +-[16]. 
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the limiting velocity for which the classical theory is 
applicable expressed in atomic units: 

v lim= 0.7 ·0.23"n-'1•. 

In obtaining this formula we have replaced n! by its 
asymptotic expression. 

(9) 

For v > vlim the quantum theory of resonance charge 
exchange ceases to be applicable since in utilizing it we 
choose the asymptotic expression for the atomic wave 
function. As follows from formula (9), the limiting 
velocity is the smaller, the greater is n, i.e., as could 
be expected, the applicability of classical theory is the 
broader the smaller is the ionization potential of the 
atom I. 

The figure shows a comparison between the quantum 
and the classical theories for the charge exchange of 
an ion on an atom of Cesium within the domain of appli
cability of the classical theory. Here are also given re
sults of experiments[g-1sJ. 

The author expresses his deep gratitude to L. A. 
Sena for discussions which have resulted in the present 
paper. 
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