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We consider the uncertainty in the population and the ensuring uncertainty of the pseudospin projec
tions in a system described by a Bardeen-Cooper-Schrieffer (BCS) Hamiltonian. We show that the 
uncertainty of the population and of the energy gap associated with it is independent of the anomalous 
mean values. A method, based on allowance for the uncertainty of the total pseudospin with conser
vation of the total number of electrons in the system is considered. An exact solution is given for the 
case of one Cooper pair and two phase-space cells; this solution leads to an energy that does not de
pend on the sign of the parameter of the interelectron interaction and lies below the energy of the 
ground state calculated by the BCS method. It is shown that L. Cooper's problem admits of the exist
ence of a gap between the ground state of the system and the continuum not only in the case of attrac
tion but also in the case of sufficiently strong interelectron repulsion. Modifications of the trial wave 
function, which make it possible to include in the BCS method the case of interelectron repulsion, are 
considered. The role of large or small pseudospins is assessed in the case of interelectron attraction 
or repulsion. 

1. INTRODUCTION 

THE BCS method(ll, the importance of which to the 
development of superconductivity theory is well known, 
is equivalent to the pseudomagnetic field approxima
tion(2J. This method is connected with introduction of 
fictitious states and takes into account the possibility of 
superconductivity only in the case of interelectron at
traction. Yet it is known from quantum theory of mag
netism that a corresponding magnetic order can be 
obtained for any sign of the spin-interaction parameter. 
This gives grounds for expecting that in the case of the 
interelectron interaction described in the BCS theory 
by the parameter V, the corresponding ordering can 
occur at any sign of this parameter 1>. We show in this 
article that the expected analogy between magnetism 
and superconductivity can indeed be established. 

2. POPULATION UNCERTAINTY IN THE BCS THEORY 

The BCS theory(ll starts from the Hamiltonian 

H= .E e.n •• + .E le•l(f-n •• )- .E v ••. b • ."b,, (1) 
a, k>k I!' a, k<kp k, k' 

where CJ, k, and f:k are the spin projection, wave vec
tor, and kinetic energy of the conduction electron; kF 
is the Fermi wave vector; nkCJ is the operator of the 
number of electrons in the state (k, a); bk is the 
Cooper pair production operator; Vkk' is the matrix 
element, assumed equal to zero when 1 f:k 1 > nw and 
equal to a constant V when I f:k I < liw, where w is the 
average phonon frequency. The approximation used 
in(ll for the ground-state wave function is 

'l' =II r (1- k,)''· + k,.,. b,']ci> •• (2) 

where hk is the probability that the pair fills the state 
(k, a; -k, -a), and <I>o is the vacuum wave function. 

I) The need for developing a method different from that of [ 1) in 
order to take into account both signs of Vis noted in [ 3 •4 ]. 

In the approximation (2), the mean value of the 
Hamiltonian (1) is 

w = L, le•i (1-l'1-4(o.)')- v L, o.·li.. (3) . ,~ 

This expression has a minimum with respect to bk if 
the following equality is satisfied: 

li. = Bo(2}'s.• + 8o1)-1, 8o = V .E 0•'· .. 
From (3) and (4) follow the known results of the BCS 
theory(ll: 

(4) 

Bo = 1Im [ sh (N~V) r·. w. = -2N.(IIco)'[e'JNoV -1]-', 

where No is the density of states at the Fermi surface. 
It is easy to verify that the BCS variational problem 

was solved relative to the uncertainty of the population 
of the phase space, which is determined by the expres
sion 

(5) 

where it is recognized that n'a = nka for Fermi par
ticles and that according to (2) bk = ..J hk( 1 - hk). It 
follows from (5) that in the BCS method the difference 
between 6.nkCJ and zero is due to the inequality 

(6) 

which follows from (4) and is usually regarded as the 
"gist of the BCS theory"(sJ. We shall show that actually 
expression (5) does not hold, and that the existence of 
the uncertainty 6.nka is not connected with satisfaction 
of (6). 

The operators bk and NCJ = 2::; nka satisfy the com

mutation relation 
k 

(7) 

On the other hand, the operator Na commutes with the 
Hamiltonian (1). It follows therefore from (7) that in 
the stationary state, in which Na has a negative value, 
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li.= 0. {8) 

The discrepancy between {8) and {6) is a discrepancy 
between the BCS Hamiltonian and the BCS method. If 
we forego the approximation {2), then we can show that 
Anka is different from zero if {8) is satisfied. To this 
end, we recognize that according to {2.26) we have 
from[ 1l 

{9) 

where the index N indicates that the number of elec
trons is fixed. From {9) it follows that 

{10) 

Since the eigenfunction of {1) is {9) and not cpN{lk) and 
cpN{ Ott) separately, it follows that 0 < htN < 1. It 
follows in turn from {10) that % ~ Anka > 0. On the 
other hand, owing to the orthogonality of cpN{ 1k) and 
cpN{Ok), Eq. {9) leads to {8). Thus, the uncertainty of 
the population is independent of the introduction of non
zero anomalous mean values. 

In the case of the Hamiltonian {1), the population 
uncertainty is connected with an energy gap for the 
excitations. Indeed, from the Schrodinger equation, in 
which {9) is an eigenfunction of {1 ), it follows that the 
energy of the system and hkN are determined by the 
following equations : 

E± ='/,(H .. + H,,,) ± ")'6' +H.,', {11) 

where Haf3 = ( cp { ak) I H I cp { f3k)); a and {3 take on the 
values 0 and 1 , and l> = { H 11 - H 00 )/ 2. It follows from 
{11) that the function {9) corresponds to an orthogonal 
wave function 

'I'= h!cpN(O.)-(f- hu)'locpN(f.), {12) 

and the energies of the states (9) and {12) are separated 
by a gap 

{13) 

Substituting hkN from (11) in {10 ), we obtain a con
nection between the energy gap of pair excitation and 
Anka: 

{14) 

In the approximation {2) it follows from {14). {5), and 
{4) that AE = 2 v'c::k_ + c::~ - V, which coincides, accu
rate to within - V, with (2.54) of[ll. At a fixed number 
of particles, Eq. {14) establishes a connection between 
Anka and the finite pair-excitation energy at a zero 
anomalous mean value {8 ). This allows us to state that 
an essential property of the microscopic theory of 
superconductivity is not the deviation of the anomalous 
mean values from zero, but the population uncertainty, 
accompanied by an energy gap for the excitations. In 
this respect, the superconductor differs from a normal 
metal, in which the smoothing of the Fermi steps as a 
result of interelectron interaction is not accompanied 
by the appearance of an energy gap in the quasiparticle 
spectrum. In the case of a uniform displacement of the 
conduction electron distribution, the superconductor is 
stable against excitations, provided that the product of 
the mean velocity by the Fermi momentum does not 
exceed the energy gap {see[6 l). 

3. UNCERTAINTY OF THE PSEUDOSPIN OF A 
SUPERCONDUCTOR 

In the pseudospin method[ 2l the operators bt and 
nka are expressed in terms of Pauli operators by the 
equations bk = Sk and nka + n_k -a = 1 - 2s~. Ac
cordingly, we transform the Hamiltonian {1) into 

{15) 

The summation with respect to k ;o~ k' corresponds to 
{23) of[ 2l and agrees with the remark made by BCS[ll 
that the diagonal terms of the interaction are the same 
in the normal and superconducting phases. Introducing 
the total pseudospin operator S = E Sk, we obtain from 
{15) 

H='t.L,V+2 L, e,-2L,e.s,•-VS'+V(S,)'. {16) 
" bJ&, 

Under the conditions of[ll, where the numbers of elec
trons and holes in the region 2fiw are equal, we have 
Sz = 0 and therefore 

H='f,.E V+2 .E e,-2r,e,s,•-VS'. (17) 
l>kF It 

The presence of the non-commuting operators s~ and 
S2 in {17) shows that the superconductivity is connected 
with the uncertainty As~. On the other hand, it follows 
from the definition of sk that 

lln •• = As.•. {18) 

Consequently, the conclusions obtained above concern
ing Anku hold also for the uncertaintly of As,. 

It follows from {17) that the dependence of the Ham
iltonian on si vanishes if different states correspond 
to the same kinetic energy. Such a case, which admits 
of an exact solution, was cons ide red in[?]. However, 
this solution is limited to the case of strong coupling 
or to the interaction between nucleons belonging to a 
partly-filled shell. 

To analyze the conditions under which superconduc
tivity is realized, let us average {19) over a state with 
a definite value of S. According to Sec. 27 of[ 8l, the 
operator si changes the value of S by ± 1 if the con
dition Sz = 0 is satisfied. It therefore follows from 
{17) that in a state with definite S we have 

W='f,L,V+2 .E e,-VS(S+1). (19) 
1r. l>1r., 

Regarding the state with definite S as a trial state, we 
can state that the minimum of {19) gives the upper 
limit of the superconductor ground-state energy. In 
the case of attraction { V > 0), the minimum of {19) is 
reached when Smax = Noliw, and its value is 

W=No(ltro)'(f-N,V),, {20) 

and in the case of repulsion { V < 0) the minimum of 
{19) is reached at S = 0 and its value is 

W=N,Itro(hro-IVI). {21) 

It follows therefore that in the case of attraction the 
starting point for the construction of the wave function 
should be the state with Smax, and in the case of re
pulsion the state with S = 0 {which in conjunction with 
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the condition Sz = 0 corresponds to "pseudo-antiferro
magnetism "). 

Since S2 does not commute with s,, the total 
pseudospin of the superconductor is likewise indeter
minate. In this sense, (17) is analogous to the Hamil
tonian considered in£ 91 in connection with the antifer
romagnetism problem, where the terms containing the 
spins of individual sites lead to an indeterminate mul
tiplicity of the spin system as a whole. The uncertainty 
of the pseudospin multiplicity takes place also in the 
normal state, in which ~S2 = .J NeNg in the case of an 
unsmoothed Fermi step (Ne and Ng are the numbers 
of electrons and holes in the band). The presence in 
(17) of the term - VS 2 ' which is typical of superconduc
tors, shows that the role of states with large S in the 
superposition of states with different S increases in 
the case of attraction ( V > 0) and the role of states 
with small S increases in the case of repulsion 
(V < 0). This situation is illustrated below for the 
simplest case of one pair and two phase-space cells. 

4. COOPER PAIR IN TWO PHASE-SPACE CELLS 

In this problem, Eq. (17) takes the form 

H = 2e(1 +A,)+ V(1- S'), (22) 

where the antisymmetrical operator Az = st + s~ 
transforms the singlet +s and the triplet + 0 into each 
other(loJ. We therefore seek the solution in the form of 
the superposition 

'¥=a'¥'+~'¥,', a'+ W = 1. 

From (22) and (23) we obtain the energy spectrum 

E± = 2e ± l'(2e)' + V' 

and the coefficients 

(23) 

(24) 

a±= {'1,[1 ± V /"'((2e)' + V']}'i•, ~±=±a'>. (25) 

According to (24) and (25), the energy of the excited 
state of the pair is separated from the energy of the 
ground state by a gap ~ E = 2 .J ( 2*" )2 + V2 (for single 
excitation, the gap is equal to .J ( 2f;)2 + v2, as can 
readily seen, and the uncertainty of the population is 
determined by the expression ~nka = IV I 
( 2v' (2*" )2 + V2 r1 • Both quantities are connected by the 
relation (14). In our problem, the ground-state energy 
E _ is negative and does not depend on the sign of V. In 
accord with Sec. 3, the sign of V influences the value 
of the psuedospin of the ground state, viz., when V > 0 
(attraction) we get from (25) that I {j I> I a I and wt 
with Smax = 1 predominates in (23), whereas for 
V < 0 (repulsion) we have I a I > 113 I and >It's with 
S = 0 predominates in {23). 

The exact solution considered above can be obtained 
also by a variational method. Namely, it follows from 
(22) and (23) that 

W=2e-4ea}'1-a'- (1-2a')V. (26) 

Minimizing (26) with respect to a, we obtain (25). 
From {25) and (26) follows expression (24) for E -· 
Thus, the use of a trial wave function with a fixed num
ber of particles enables us to obtain in this case the 
exact solution by a variational method. 

Let us consider now, for comparison, the BCS vari-

ational method. This method yields, from (3) and (4), 

8o = }'(ll2 V)'- e', W,, scs = 2e- 1I2V- 2e' IV. (27) 

A comparison with (24) shows that when V > 2*" the 
energy Wo,BCS is negative, but is higher than the 
energy E_ from (24). In the BCS method we lose here 
the solution for the case V < 0 (repulsion), for when 
V < 0 it follows from (27) that Wo,BCS > 0. 

To include the case of repulsion in the BSC method, 
we take in lieu of (2) the following trial function: 

'I'= [ (1- h1)'i• + h1'io ba0 ] [- (1- hs)'io + h,'lo b,•]lllo. (28) 

We then get in place of (4) 

li, = -li, = e,l2ie' +eo' =8o I JVI, W,, BCS = 2e- 1/ 21 VI- 2e' 1 I Vj. 

(29) 
Thus, modification of the type of trial wave function 

makes it possible to include in the BCS method the 
case of interelectron repulsion and to obtain, for I V I 
> 2*", a solution with an energy lying below the energy 
of the normal state, and with a pair-excitation energy 
gap equal to 2-J*" 2 +*"~=I VI. 

5. L. COOPER'S PROBLEM 

The problem considered above is a particular case 
of K. Kuper's problem£ 111 for two groups of levels, 
when the state of one pair is connected by a constant 
matrix element with all the states of the other group. 
According to (3.24) of£ 111, the pair binding energy is 
likewise independent of the sign of V in this more 
general case. In the case of L. Cooper's problem£ 121 
it is necessary to take into account the possibility of 
a transition between all the states inside a layer of 
thickness ~. The equation for the pair energy has in 
this case the form 

(2e.-E)a..=V ,E a.•. (30) 
"'<,.., 

Unlike the usual expression (seer 12l), the summation in 
the right-hand side of (3) is only over k' (;r! k). This 
corresponds to allowance for the equality of the diago
nal interaction terms in the normal and superconduct
ing states (see (15)). From (30) we get the equation 

1 ~ 1 
v= .t..J 2e.-(E- V) ' 

• 
(31) 

which differs from the usual equation in that E is re
placed by E - V. In the case of two states only, Eq. 
(31) leads, with the indicated substitution, to the exact 
solution (24). In the case of a larger number of states 
lying inside ~ with a density g, it follows from (31) 
that 

E = V- A(e'''v -1)-•. 

When V > 0, the binding energy is negative if 

8,.,. = 1l2gll > 1/2gV(e'11V -1). 

(32) 

(33) 

Since in Cooper's problem Sz = g ~/ 2 - 1, it follows 
that S can assume only the values Smax and Smax - 1. 
Consequently, in the case of attraction the wave func
tion is a superposition of states with sufficiently close 
Smax and Smax - 1, which agrees with Sec. 3. 

When V <O, the binding energy is negative if 
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Smox= 1/,g!:J. < 'f,glVI (1- e-1/IIVI), (34) 

and consequently the total pseudospin is sufficiently 
small, which also agrees with Sec. 3. It follows from 
(34) that when g I VI « 1 the binding energy is nega
tive if 1 V 1 > t:., so that pair production is convenient 
only in the case of sufficiently strong repulsion. 

Thus, L. Cooper's problem, which is fundamental 
for the modern microscopic theory of superconductivity, 
admits of a state with negative pair-binding energy in 
the case of both attraction and sufficiently strong re
pulsion. 

6. ENERGY OF A SYSTEM OF ELECTRON PAIRS 

In the case of interelectron attraction, the BCS 
method leads to the results obtained in[l1• In order to 
include the case of repulsion in the BCS method, let us 
take, in analogy with (28 ), a trial wave function 

'¥ = rr[(1- h,)'h+ h:·b .. ] rr [-(1-h,)'l·+h1· b,.]<l>o. (35) 

The mean value of the Hamiltonian (1) has then the 
form 

W = Eze,h, + E21e•l (1- h,)+ 2V Eh,(1- h,). 
R>kF k<kF ' 

Minimizing (36) with V =-IV I with respect to hk, 
we obtain 

(36) 

h,='/,(1-2e,/IVI), W,=N,Iiw(liw-11'1). (37) 

The expression for W0 coincides with (21) and is nega
tive for 1 V 1 > liw. Just as in Sec. 4, the energy gap 
for the pair is ll.Ek =IV 1. 

The trial function (35), like (2), does not take into 
account the constancy of the number of electrons. To 
take into account the conservation of the number of 
electrons, it is possible to use the pseudospin method, 
putting Sz = 0. It should be borne in mind here that, 
in accord with Sec. 3, a major role is assumed in lJF by 
states with either large or small S depending on the 
sign of V. Therefore the simplest approximation is 
one in which only one of the indicated states is en
hanced. We take the trial wave function 

'¥ = a'Vn + ~('l's, 0 - a'Vn} / )'1- a', (38) 

where l!Fn is the normal state, l!Fs o the state with total 
' ) 2 2 pseudospin S and Sz = 0, a = ( l!Fs ,o I ;J'n , and a + {3 

= 1. Minimizing the mean value (17) m the state (38) 
with respect to a, we obtain 

W, = N'(liw)' + 1-2a' V[N,Iiw-S(S + 1)]+-21 [j,-)'f,'+ f,'], 
1-a' 1-a' (39) 

j, =-_i_ {N,(Iiw)' + (1- 2a') V[N,Iiw- S(S + 1) ]}, 
1-a' 

2a 
f, =-= V[S(S + 1)- N,liw]. 

)'1- a' 
(40) 

When f1 < 0, the vanishing of f2 leads to a normal
state energy W0 = 0. When f2 "'0 we have the inequality 
W0 < 0 and (39) turns out to be lower than the normal
state energy. In the case of one pair and two phase
space cells, the solution (39) and (40) coincides with 
the exact solution of Sec. 4. In the strong-coupling 
limit (NoV>> 1), Eq. (39) leads in the case of attrac
tion to the same result W0 = -N~(liw)2 V as in the BCS 
theory[ 11 • In the case of repulsion, in the strong
coupling limit (IV I» liw), Eq. (39) leads to the value 
W0 = -N0liw IV I, which agrees with the result (37) 
obtained above by including repulsion in the BCS 
method. 

The foregoing results are significant for both at
traction and interelectron repulsion. In either case, 
independently of the introduction of the anomalous 
means values, which is equivalent to the introduction 
of fictitious states, the BCS Hamiltonian leads to rela
tion (14) between the population uncertainty and the 
energy gap. The properties possessed by the system 
described by the BCS Hamiltonian in the case of at
traction are present also in the case of sufficiently 
strong repulsion: in both cases it is possible to have 
an ordering of the conduction electrons that is more 
favored energywise than the normal state, and with an 
energy gap for the excitations. This makes it possible 
to re-examine the influence of the Coulomb, spin-wave, 
and other types of interelectron repulsion on the 
superconductivity. 
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