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The two-dimensional model of a ferroelectric, considered by Wu in l 6 1, and the more general model 
with partial violation of the electroneutrality condition, are calculated with the aid of the technique 
developed for the Ising model. It is shown that arbitrarily small violations of the electroneutrality 
condition alter the values of the critical indices (the singularity of the thermodynamic quantities 
near the phase-transition point). The same example is used to discuss the contradiction between the 
Wu model (and the Slater model) and certain principles of statistical physics. A formulation that 
eliminates this contradiction is proposed. 

THE electroneutrality condition or the "ice rule," 
namely that the total charge of a lattice site is equal to 
zero (see below for details) is usually satisfied in mod
els of ferroelectrics with hydrogen bonding. It is as
sumed[ 11 that the energy of a charged site is lower by 
one order of magnitude than the energy of a neutral 
site. 

Takagi has observed, l 21 however (within the frame
work of the self-consistent field method), that in the 
Slater model [ 31 (see below) allowance for the violation 
of electroneutrality transforms a first order transition 
(which is the usual one for the Slater model) into a 
second-order transition. Using exact methods developed 
for two-dimensional Ising lattices, Wu[ 41 has shown 
that even small violations of electroneutrality change 
the character of the transition in the F-model consid
ered by Rys. l 51 We shall show below, by means of an 
exact calculation, that the same situation obtains in the 
model proposed by Wu,l 61 Since the Wu model is a 
modification of the Slater model, and since the prob
lems discussed below are common to both models, it is 
meaningful to start with the description of the Slater 
model. Figure 1 shows a two-dimensional variant of 
the Slater model [ 31 of the ferroelectric KH2P04 (KDP). 
The lattice sites are P~ tetrahedra, and the lines join
ing them are the hydrogen bonds. The protons H+, one 
per bond, are near one of the ends of the bond. For 
each site there are 16 possible configurations, 8 of 
which are shown in Fig. 2a. Each configuration n is 
ascribed an energy En• The problem consists of cal
culating the partition function 

1 ~en l Z=n exp -kT . (1) 
{n} 

The energy levels of the neutral configurations (1-6 in 
Fig. 2) are much lower, according to Slater, than the 
energy levels of the charged configurations (7 -8 in 
Fig. 2). The electroneutrality conditions makes it pos
sible to confine oneself in the partition function (1) to 
summation over the six neutral configurations 1-6 of 
Fig. 2. In the ferroelectric KH2P04 the P04 tetrahedra 
are not equilateral, viz., if the energies of configura-

544 

tions 1-2 are taken as the origin, then the remaining 
four configurations 3-6 must be assigned an energy E. 
The statistical weights of the sites in the Slater model 
are shown in Fig. 2c [x = exp -E/kT)]. In the three
dimensional variant, this model has been constructed on 
the basis of x-ray structure data and adopted by most 
investigators. It has, however, a strange property, in 
that it has no partition function. To establish this cir
cumstance, let us set in correspondence, following 
Wu,l 41 each bond with an arrow going from the end of 
the bond occupied by the proton to the end free of the 
proton. We then assign to each upward arrow a line 
joining the sites, and do not show the downward arrows. 
We obtain the configurations shown in Fig. 2b. 

For sites 1-6 (Slater model), the paths go in a verti
cal direction without breaks and without turning back. 
This means that the number of paths in any arbitrary 
horizontal cross section is constant and the proton con
figurations on the boundaries, in the first place, cannot 
be chosen arbitrarily, and in the second, they determine 
the number of paths in any cross section of the crystal. 
In this case the partition function depends on the bound
ary conditions and does not exist in the usual sense. 

FIG. 1. Two-dimensional 
KH2 P04 crystal with hydrogen 
bonding: O-P04 , e-H+ (the po
t3ssium ions are not shown). 
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FIG. 2. Statistical weights of the configurations: a-possible proton 
configurations; b-corresponding path configurations; c-statistical 
weights in the Slater model; d-statistical weights in the model with 
symmetric violations of electroneutrality. 
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The same property is possessed by the Wu model, c 6 J 

which differs from the Slater model in that the configu
ration 1 is forbidden (see Fig. 2). The Wu model is 
even more artificial (there are no physical reasons why 
configuration 1 should be forbidden), but it is more in
teresting than the Slater model, since it contains a 
second-roder transition, l 6 J whereas exact calculation 
of the two-dimensional Slater model (Sutherland c 7 l and 
Liebl SJ) revealed a first-order transition, although with 
complicated singularities of the thermodynamic quanti
ties. 

The transition in the Wu model turned out to be un
usual. The critical indices (exponents) defining the sin
gularity of the thermodynamic quantities are different 
above and below the transition point. This contradicts 
the similarity hypothesis c 9 J assumed in the theory of 
second-order phase transitions) and the general transi
tion picture described, for example, in l 10 J. 

The purpose of the present investigation is to explain 
these contradictions and to determine the partition func
tion for the aforementioned models. This will be done 
with the Wu model as an example, for it will be shown 
below that not only the Wu model, but also the more 
general model with violation of electroneutrality admit 
of an exact solution within the framework of the devices 
employed to calculate the Ising model. It will be shown 
that the Wu model cannot determine the character of the 
singularities near the transition point, for the form of 
the singularity is altered by an arbitrarily small admix
ture of sites violating the electroneutrality condition. 
In a sufficiently small vicinity of the transition point the 
critical indices are the same, in full agreement with the 
requirements of similarity theory. 

Let us proceed to the calculation. Violations of elec
troneutrality can be of two types, symmetrical (configu
rations 7 and 8 in Fig. 2) and asymmetrical (the remain
ing 8 configurations, which are not shown in Fig. 2). Let 
us consider first the case of symmetrical violations, as
signing to each symmetrical violation a weight z 
(z = exp ( -E'/kT), where E' is the energy of the site), 
and to each asymmetrical violation a weight 0. In order 
not to go outside the framework of the solved model, we 
assign the configuration 1 a weight z2 • In Slater's model 
this configuration enters the weight 1, and in Wu's mod
el, without any reason, it is forbidden with weight 0. 
The weights of the remaining configurations are indi
cated in Fig. 2d. 

All these configurations (1-8) have one common 
property on going over to summations over the paths 
(Fig. 2b}, viz., not one of the paths is broken. As are
sult we obtain the sum over paths customarily obtained 
in the Ising model. l 11 l To be sure, unlike in the Ising 
model, the statistical weights are assigned not to the 
bonds but to the transitions, but in Vdovichenko's meth
od, l 11 l which will be used below, the problem of calcu
lating the partition function of the Ising model reduces 
to the random-walk problem, and the statistical weights 
are assigned during the course of the solution indeed to 
the transitions. In l 11 J these weights are chosen such 
as to obtain just Ising's model, whereas in our paper 
the weights are specified by the model itself. 

To exclude paths passing twice through the same 
bond, an additional factor was assigned in l 11 J to each 
transition, namely exp icp/2, where cp is the angle of 

rotation of the tangential vector after passage through 
the given path. For a closed loop these multipliers re
sult in an additional factor ( -1), which is cancelled in 
the sum over the paths by the special multiplier ( -1}n, 
where n is the number of loops. The weight of the con
figuration 1 ("cross") is uniquely given in this case, 
and is equal to the product of the weights of configura
tions 5 and 6 (x2 ) plus the product of the weights of con
figurations 7 and 8 (z2) minus the product of the weights 
of the configurations 3 and 4 (x2}. The minus in the lat
ter case is connected with the change of the number of 
loops (two loops in the first two cases, and one figure-8 
loop in the second}, and was chosen to compensate for 
the aforementioned factor ( -l}n in the sum over the 
paths. The weight of configuration 1 was therefore 
chosen to be z 2• 

Just as in ( 11 J we calculate the partition function by 
setting up the transition matrix 

/ 

> 
/ 

< 

v 

and calculate the matrix A produced when each transi
tion shown above is replaced by the number resulting 
from multiplying the statistical weight of the transition 
(according to Fig. 2d}, the angle factor exp icp/2, and 
the Fourier-transformation multiplier exp {21TiL -l 

x (p~x + q~y)}, where ~x is the displacement along the 
x axis, ~y the displacement along the y axis, L the 
lattice dimension, and p and q the numbers of the 
Fourier components. 

Introducing the notation a = exp iiT/4 and 
E = exp 2rri/L, we obtain 

[

ep+qx aePx 0 a-1e qzj 
a-1ePx eP-qx ae-qz 0 

0 a-1e-qz e-P-qx ae-Px 
ae qz 0 a-1e-vx eq-px · 

A= 

The partition function l 11 J is 

Z = det (I- A), (2) 

where I is a unit matrix. By calculating this determi
nant we obtain for the free energy F per site (for an 
infinite lattice): 

F 1 '" '" 
- =--. Jaa J d~ ln {1 + 2(2x' cos'~- z' cos 2~) 
kT 8n' 0 0 

+ z'- 4x(1- z')cos a cos M. (3) 

In differentiating the free energy, the curly bracket 
is under the integration sign in the denominator, and 
therefore the transition point is determined by the con
dition that this bracket vanish: 

1-2x-z'=O. (4) 
This equation determines the temperature of the transi
tion. 

Let us determine the behavior of the thermodynamic 
quantities near the transition point at small values of z. 
In place of z we introduce the variable T = 1- 2x- z2, 

which vanishes at the transition point. It is more eon-
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venient to calculate the entropy S, and therefore we dif
ferentiate (3) with respect to the temperature and obtain 
under the integral sign a fraction with the curly bracket 
of (3) in the denominator. After integrating with re
spect to a we obtain under the integral sign a fraction 
with a denominator 

[(1- 2xcos ~- z')' + 2z'(1- cos 2~) ]'I• 1':::: [(-r- ~')' + 4z'~']'h, (5) 

and the entire entropy takes the form (x = exp -E/kT} 

e ~ ( ,; - ~· ) S=- 1+ d~ nT,~ f(-r- ~')'+4z'~' . 
(6) 

The specific heat near the transition point ( ITI << 1) 
is 

, {trv-r if -r > 4z', 
C = nkeT 2 (2zt'ln(4z'/1-rl> if l•l<4z2 , 

c 0 if -r<-4z2 • 

(7) 

When IT I >> 4zll the specific heat behaves just as in the 
Wu model, and when IT I << 4z2 it behaves just as in the 
Ising model, although in both cases we have IT I << 1, 
i.e., the system is in the vicinity of the transition point. 
The requirements of the similarity theory are always 
satisfied in a sufficiently narrow region near T c• but 
when z - 0 this region, as can be seen from (7), tends 
to zero. 

The determination of the Wu-model partition function 
(the choice of the conditions on the boundary) is now 
clear, viz., it is necessary to determine the partition 
function of the model described above, find the limiting 
value of the specific free energy as N - oo, and then 
put z = 0. 

If we assume asymmetrical violations of the electro
neutralit~· (such sites are not shown in Fig. 2) with 
identical weight y for each site, then the resultant par
tition function reduces, as can be easily shown, to the 
partition function of the Ising model in an external field 
JlH/kT = tanh-1 y. In this case the phase transition van
ishes. 
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