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The Dyson statistical theory of energy levels is used to calculate the frequency dependence of the 
real part of the electric conductivity, connected with the electronic transitions between discrete 
local levels in a disordered system. The region considered is that of "extremely low" frequencies, 
satisfying the condition fiw « E, where E ( ~ 10-2 eV) is the characteristic energy in which the 
density of state changes noticeably. In particular, the static electric conductivity of such a system 
is calculated and is found to differ from zero only when account is taken of the lattice deformation 
occurring during the electronic transition. 

1. INTRODUCTION 

BY now it has apparently been established[t-sJt> that 
the "forbidden band" 2> of a disordered semiconductor 
is actually completely filled with "tails" of the density 
of states produced by a random field caused by one 
factor or another. Near the boundaries of the allowed 
bands, the states on the tail of the density of states be
long to the continuous spectrum, and the electrons 
(holes) occupying these states take part in the trans
port of the direct current. Somewhere deep in the for
bidden band, however, these states apparently give way 
to localized ones. Each of the latter, of course, should 
belong to a discrete spectrum; in their aggregate, how
ever, these levels (connected with sufficiently deep 
potential wells of random origin) form an almost con
tinuous sequence. The question of the contribution of 
these states to the trans port of the direct current is 
still not fully clear (see the discussion in[ 5l). 

In this paper we investigate the real part of the 
electric conductivity at low frequencies w, correspond
ing to transitions between closely-lying discrete 
levels. The exact meaning of this expression is deter
mined by the inequality 

liw~E, (1) 

where E is the characteristic energy over which the 
density of state changes noticeably. Obviously, such a 
formulation of the problem is meaningful precisely for 
an aggregate of closely-lying discrete levels, the aver
age distance D between them (in the energy region 
under consideration) satisfies an inequality of the type 
(1): D « E. 3> By virtue of the random character of the 
forced field in the system in question and the relative 
moments of D, the true distances between the levels, 
of course, fluctuate strongly and they can be regarded 

1lThe author is grateful to Professor I. Stuke for his preprint. 
2lThe concepts of allowed and forbidden bands in such a system can 

be correctly determined without resorting to any model representation 
[1]. 

3>we note, however, that by the very definition of the concept "dis
crete level" the quantity D cannot be arbitrarily small: it should exceed 
at least the sum of the proper widths of two neighboring levels. 

as perfectly random numbers. In other words, we are 
under conditions of applicability of the statistical 
theory of Dyson and Mehta[8• 9 l, the results of which we 
shall use from now on4 >. 

In the analysis of the behavior of electrons and 
holes in the systems (and problems) of interest to us, 
it suffices to use the single-particle approximation, 
with collective effects taken into account (if necessary) 
only via a screened potential. Accordingly, we can 
introduce a representation in which the single-particle 
Green's function (not yet averaged over the random 
field) is diagonal: 

G,(A, A'; E)=- ~..------==:1-,--
2n E- W,+ie 

(2) 

Here Gr is the retarded anticommutator Green's func
tion, E is the real energy variable, and E: - +0, A 
and A' are sets of quantum numbers characterizing 
the states with energies WA and WA'· Inasmuch as in 
a random field there is hardly any probability of finding 
spatial symmetry, A contains, generally speaking, 
only the energy itself and also the triplet of coordinates 
R, indicating the position of the given potential well. 
In a macroscopically homogeneous system, W does not 
depend on R5>. 

It is convenient to calculate first the density of 
states p(E), defined by the standard formula 

2 
p(E) = g-(SplmG,(E)). (3) 

Here n is the volume of the system, and the angle 
brackets denote averaging over the random field. We 
denote by Pw(R) the density of the probability that 
near R there is formed a potential well containing a 
level W. Noting that in a macroscopically homogeneous 
system Pw it is practically independent of R, we 
have, using (2) and (3): 

4lThe results of [8 •9 ] were used also in [ 10 ] in a similar problem (but 
having a different formulation) in solid-state theory. 

5lThe spin variables in our problem need not be indicated explicitly: 
in the case of a sufficiently strong spin-orbit interaction, different values 
of the spin variables correspond to different values of the energy, and in 
the absence of the aforementioned interaction the electrons can be re
garded simply as having no spin. 
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p(E)= _EPwll(E-W)~ J dWP~) ll(E-W)==P~). (4) 
w 

Here D is the average distance between two successive 
levels in the given energy region; the transition from 
summation to integration in (4) is meaningful if the 
function P(E) (and by the same token p(E)) changes 
only slowly over the "distance" D. 

As seen from (4) the density of states, strictly 
speaking, is a "palisade" of 0 functions; under the 
conditions indicated above, however, it is approxi
mated by continuous "envelope" P( E). 

2. LOW-FREQUENCY ELECTRIC CONDUCTIVITY IN 
A "RIGID" MATERIAL 

In the study of the electronic transitions between 
discrete levels, allowance for the possible deforma
tions of the lattice, and particularly multi-phonon 
transitions, may turn out to be very important. It is 
convenient methodologically, however, to consider first 
the simple problem of the electric conductivity of a 
"rigid" material, in which the positions of equilibrium 
and the oscillation frequencies of the heavy particles 
do not change during the course of the electronic 
transition. Within the framework of the model em
ployed above, we have (omitting the constant factors 
which are immaterial in what follows) 

Rea(w)~: E JaR'dR"P(R',R")I (W',R'IiiW",R")I' 
W•, Wu (5) 

X {nF(W')-nF(W")} ll(W'- W" +liw). 

Here nF is the Fermi function, ( w'' R' l j I w"' R") is 
the matrix element of the current density, and 
P(R', R") is the density of the probability that poten
tial wells containing the levels W' and W" respec
tively will appear near the points R' and R". In a 
macroscopically homogeneous and isotropic medium, 
obviously, 

P(R',R") =Q-'<P(R), 

where R' - R" = R, and the function cl> describes the 
spatial correlation in the positions of the wells; 
neglecting the latter, we have cl> = 1/ n. 

Averaging the expressions (5) over the distribution 
of the levels reduces to a replacement of the sum over 
w' and w" by the integral 

J dW' dW" p(W')p(W")Q'[1- Y,(W'- W")] ( ... ), (6) 

where the dots stand for the expression under the 
summation sign in (5), and Yw(W' - W") is the corre
lation function calculated in [ 8• 91, 

To calculate the current-density matrix element, 
we use the asymptotic form of the wave functions of 
the discrete spectrum 

'llw, a~ y'1•(W) exp {-y(W) lr- Rl}, (7) 

where y = ti.-1 -./ 2m*I, I is the ionization energy of the 
given level (I = const - W), and m* is a quantity with 
the dimension of mass (generally speaking, it does not 
coincide with either the effective mass as usually de
fined or the free-electron mass; the exact value of m* 
does not matter in this case )61 • 

6lWe do not use the effective-mass method. It is easy to verify that 
formula (7) remains valid also in the case when the random potential 
wells occur against a background of a periodic field. 

Using formulas (7), we obtain (again omitting ines
sential factors): 

I (W',R'IiiW",R") I'~ (W'- W")'y'(W')R'· 

X e-'• ( 2 sh b _ 6 ch b 6 sh b ) 2 

a' b' b' + b' ' 

(8) 

where 
W'-W" 

a= y(W')R, b = 41 y(W')R. 

In the derivation of (8) we used the inequalities 71 

liw~l, a~1. 

When b « 1 (the case of greatest interest) Eq. (8) 
takes the form 

I (W', R'liiW", R") I'~ (W'- W")'R'y'(W') exp {-2Ry(W')}. (9) 

We note that the vanishing of the right side of (8) (or 
(9)) at w" = w' is not connected with the choice of the 
wave functions in the form (7). Indeed, the factor 
(W' - W")2 in (8) comes from the relation between the 
matrix elements of the current density and the coordi
nate (the second factor in (8)). The latter should also 
vanish in the system under consideration when W" =W', 
by virtue of the obvious symmetry considerations and 
by virtue of the absence of any quantum numbers 
other than the energy itself and the coordinates of the 
center of the well. Moreover, even if some additional 
accidental symmetry does occur (or if the model is 
made complicated in any other manner), the matrix 
element of the coordinate will be inevitably bounded 
at W' = W", so long as it is calculated with the aid of 
the wave functions of the discrete spectrum. Accord
ingly, when W" - W' the square of the matrix ele
ment of the current density vanishes not slower than 
(W'- W')2 • 

Substituting (9) and (5) and using inequality (1), we 
obtain, taking (6) into account: 

Rea~ w'[1- Y,(liw)]A, (10) 

where 

~ 

X J dRR"<ll(R)exp[-2Ry(W')]. 
(11) 

' 
In accordance with the previously adopted formulation 
of the problem, we confine ourselves to the case when 

liw~ 1.1 or liw~ kT (12) 

(JJ. is the Fermi level; the first inequality is for a 
degenerate system and the second for a nondegenerate 
one). Then the integral A ceases to depend on w, and 
its value at T = 0 is determined, as expected, only by 
the situation at W' = JJ., and the entire frequency de
pendence of Re a is given by an expression which is 
explicitly written out in (10 ). The first factor ( w4 ) is 
due here to the matrix element of the current density 
and is connected with the inequality (tiw/4I)Ry(W') 
« 1 (see also the remark made in front of formula 
(10)). The second factor describes the statistical 

7l Actually it will be shown below that an important role is played 
by the values a- 5; allowance for terms of order 1/a, however, would 
be an exaggeration of the accuracy, so long as the function (7) is.em-
ployed. . 
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correlation between the levels. As is well knownra,sJ it 
has a different form for the orthogonal, symplectic, 
and unitary ensembles, namely: 

Y orth~ ( sin t ) 2 + Joo sin ty d ( sin t ) ' - -- ---dy- --
t ,Y dtt' 

Y sympl_ (sin t) 2 s' sin ty d (sin t) 2 
2 - -- + --dy- --

t 0 y dt t • 

y 2 unit= ci: t )' 

Here (in our notation) t = 1rfiw/D. 

(13a) 

(13b) 

(13c) 

An orthogonal ensemble is realized in the absence 
of a magnetic field if the system as a whole is invari
ant against the spatial rotations (for example, the 
material in question is not ferroelectric) or has an 
integer spin. The symplectic ensemble is realized 
(also in the absence of a magnetic field) if there is no 
invariance against the spatial rotation, and the total 
spin is half-integer. Finally, the unitary ensemble 
corresponds to the case of the system in a magnetic 
field whose intensity satisfies the inequality {3H » D 
({3 is the Bohr magneton). As seen from formulas (10) 
and (13a)-(13c), inclusion of such a magnetic field 
should noticeably alter the frequency dependence of the 
absorption coefficient of the low-frequency electro
magnetic waves. We note also the difference in the 
frequency dependence of the absorption coefficient for 
systems with integer and half-integer spin at suffic
iently large spin-orbit coupling or in the case of 
ferroelectrics (transition from the orthogonal to the 
symplectic ensemble). 

When fiw « D we have 

1 - y2ortho = n2fiw/D, 

sympl 
1- Y2 = 'f,(nfiw/D) 2, 

1- Y,unit = 2/,(nfiw/D) 2• 

From this, taking (10) into account, we see that 
under the conditions in question (for any ensemble) 

Recr(ill) -+0 as w-+0. 

(14a) 

(14b) 

(14c) 

(15) 

The form of the matrix element influences here 
only the law according to which Re a tends to zero as 
w - 0; the very fact of the vanishing of the static 
electric conductivity is already imposed by formulas 
(14a) and (14b), i.e., the effect of "level repulsion" 8>. 
We note, however, that this result is essentially con
nected with the approximation of the "rigid" material; 
when account is taken of the interaction with the pho
nons, the situation is different (Sec. 3). 

At first glance it might appear that the result (15) 
contradicts the general theorem[ 7 ' 11l concerning the 
finite value of Re a(O) at T = 0, so long as the density 
of states p (E) is finite and continuous at E = J.l. 
Actually, however, there is no such contradiction, for 
in proving the theorem we used explicitly the assump
tion that the spectrum is continuous (in the exact 
mathematical sense of the word); on the other hand, in 
the case considered now the density of states only 

8>1n fact, these considerations do not differ from those discussed in 
(2b]; the quantitative results, however, are somewhat different. 

seems to be continuous (see the discussion following 
formula (4)). 

3. CASE OF DEFORMABLE MATERIAL 

The possible role of phonons in the system under 
consideration is obvious: because of their emission or 
absorption, electronic transitions become possible, for 
example, between the unequal-energy levels, and this, 
as we shall show, leads in particular to a finite value 
of a(O). 

For our purposes, the Condon approximation is suf
ficient and the frequency effect can be neglected. We 
can then readily obtain for the electric conductivity 
aph• calculated with allowan_ce fort~~ deformation of 
the material in the electromc trans1tlons, the expres
sion (seer 121 ) 

+oo 
cr.,(w)= J dvK(v)cr(w-v), (16) 

where a is the electric conductivity calculated for a 
non-deformable material (see the preceding section) 
and K(v) is a function defined by the well known for
mulas of the theory of multiphonon transitions (see, 
for example, [131 ): 

1 +oo 
K(v)=-J dtexp{ivt-rp(t)}, (17) 

2n_oo 

<p=<poo + 1jJ(t), 

~ 2N,+ 1 2 

'i'oo =-~ 2fi2Wk2 IB(k) I ' 
• 

1jJ(t)=·~ l~(k)l 2 {e'"•'+2N,cosill.t}. 
~ 2(1)"'2 

• 

(18) 

(19) 

(20) 

Here k are the quantum numbers determining the state 
of the phonon, wk are the corresponding frequency, 
Nk is the Planck function, B(k) the mean value of the 
energy of interaction of the electron with the phonons 
in the state (W", R"). The explicit form of B(k) can
not yet be readily established with complete assurance, 
if for no other reason than that the very form of the 
electron-phonon interaction energy operator calls for 
a special investigation for the systems under consider
ation. For our purposes, however, it suffices to re
mark that the functions 1/Jw" R" correspond to a suf
ficiently deep (and therefore' strongly localized) state. 
For this reason, we can assume for most phonons that 
B(k)2 is practically independent of the form of 
l/Jw" R"· 

Noting that lji(t)- 0 as t - oo and l/J( -t) = l/J*(t), 
we can rewrite formula (16) in the form 

Recr •• (w)= Recr(w)e•oo+e•oo J dvF(v)[Recr(v-w)+Recr(v+oo)]. 

Here 

and l/J 1 and 
function 1/J. 

0 (21) 
1 00 

F(v) =-J dt{e•• cos(vt + .P2)- cos vt}, 
n o 

(22) 

l/J 2 are the real and imaginary parts of the 

The first term in (21) describes the "phononless 
line," and the second describes transitions with pho
nons taking part. As expected, the statistical electric 
conductivity is now different from zero even at zero 
temperature. 
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