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We analyze the effect of the fluctuating conductivity in superconducting tunnel junctions at tempera­
tures above Tc· We show that the fluctuation component of the tunnel current reveals quantum inter­
ference effects in a high-frequency field, namely: 1) generation of radiation at the Josephson fre­
quency with a spectral width determined by the reciprocal relaxation time of the Cooper pairs r; 
2) appearance of singularities on the current-voltage characteristic when the junction is exposed to 
high-frequency power radiation; the position of the singularity is determined by the formula Vn 
= ntm/2e (0-irradiation frequency, n » r); 3) an oscillating dependence of the slope of the 
current-voltage characteristic at zero on the amplitude of the high-frequency signal. 

IN an earlier paper[ 1l, the author pointed out the 
existence of an oscillating current of fluctuation origin 
in the junction between two superconductors at a tem­
perature exceeding the critical temperature of the 
superconducting transition Tc. The present paper con­
tains a more detailed theory of this phenomenon and an 
analysis of the form of the current-voltage character­
istic of the junction in a circuit with a given current. 
In the latter case, a change takes place in the effective 
resistance as a result of the "fluctuation pairing," in 
analogy with the Aslamazov-Larkin effect (fluctuation 
conductivity of films at temperatures T > TcPJ. 

The behavior of a Josephson tunnel junction differs 
in a circuit with a given current from that with a given 
voltage. According to the well known relations, the 
Josephson current is equal to 

2 ' q>=-i Jv(t)dt. .. (1) 

where V(t) is the voltage across the barrier, a= a 1 

- a 2 is the relative phase shift of the ordering parame­
ters of the two superconductors. 

In the case of a given current J, the coherent phase 
a is determined by the current in accordance with (1 ), 
and the potential difference across the barrier is V = 0 
(if J < J 0 ). At a fixed voltage, to the contrary, 
cp = 2eVt/fi, and the thermodynamic averaging over the 
phase a gives ( J( t)) = 0 at any instant of time. How­
ever, the current correlator ( J(t)J(t')) no longer 
vanishes after averaging with respect to a: 

(l(t)l(t')) =/,'(sin( a+ {l),t)sin(a + ro,t')) = 1M,' cos oo,(t -t'). (2) 

Its value oscillates as a function of the time with fre­
quency wo = 2eV/ti, and this is a reflection of the co­
herence of the phase in the Josephson junction at non­
zero voltage V across the barrier. Thus, setting the 
current I or the junction voltage V corresponds to 
different physical situations. A similar situation ob­
tains also at temperatures exceeding Tc. 

As shown in[ll, the fluctuation ("Josephson") com­
ponent of the tunnel junction near Tc is given by 
(eV « Tc) 

510 

Oq> 2e ) 
I= AIm [IJl,(t)IJla'(t)e'"], at= h V, (3 

where 1/li(t) are the ordering parameters of the super­
conductors 1 and 2 at T > Tc, and A is a constant 
equal to 

2n' T, 
A=----

7~(3) NeR 
(4) 

( N is the electron density and R the resistance of the 
junction in the normal state). 

Formula (3) pertains to the case of a "point" junc­
tion, whose characteristic dimensions are small com­
pared with the coherence length HT) ~ v0 /.J(T- Tc)Tc. 
For a junction of arbitrary geometry it is necessary to 
take into account the spatial dependence of 1/1. In this 
the current is obtained by integrating (3) over the cross 
section of the contact (S is the cross area): 

(5) 

The constant A is determined as before by expres­
sion (4), in which R has the meaning of the total re­
sistance of the normal state. We note that the phase cp 
in (5) is independent of the coordinates, since the bar­
rier voltage V = ticp / 2e cannot vary over distances on 
the order of ~ ~ 10-4 em. 

The equations satisfied by the ordering parameters 
of the superconductors 1/li(x, t) are the Langevin equa­
tions[3J 

&II>•+ f(1- s'V')IIl• = S,(x, t), 
{)t 

where r is the reciprocal relaxation time of the 
Cooper pair[4l, and the random "forces" Si(x, t) 
satisfy the correlation properties: 

(S,) = 0, (S,S;) = 0, 

(S,(z.t)St(x',t'))= 4~~2' 6'(z-x')6(t-t')6,1• 

(6) 

(7) 

The thicknesses of the films forming the tunnel 
junction (Fig. 1) will be denoted di, and will be as­
sumed to be small compared with the coherence length 
HT): d1,2 « ~. This makes it possible to disregard 
the dependence of 1/li on the coordinate normal to the 
junction plane. 
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FIG. I. Diagram of tunnnel junction. 

1. We consider first the case when the voltage V 
across the barrier is specified. We have in the k­
representation 

/(t) =A .E Im[IJl,1 (t)1JJ;'(t)e'-.'], 00, = 2~V. 
• 

The quantities 1/J~(t) are obtained by directly integrat­
ing (6): 

' 
'l'•'(t) = e-r.• J er•'S.'(-r)d-r, (8) 

where rk = r ( 1 + k2; 2 ), and the Bk satisfied by virtue 
of (7) the relations 

<s '( ) 8 , .( ') > 4mTs'r ') • t •• 't = ---ll .. ·ll(t- t ll;j 
li'Sd; . 

(9) 

It is seen from (8) that ( 1/Jk:(t)) = ( 1/Jk:(t)) = 0, from 
which it follows that the mean value of the Josephson 
current J( t) also vanishes: ( J( t)) = 0. The current 
correlator is equal to 

(/(t)/(t1)) = ~ A'Re~ {(¢.1 (t)'IJ; 1 (t'))(¢;'(t).p.'(t'))e'"~'-''>}. 
• (10) 

On the basis of (8) and (9) we obtain for the correla­
tion function of the ordering parameter 

(•'••'(t) ,,, ''(t') )- 2mTs' e-r,u-•·•. 
, ,. - sa,(1 + k's')n' 

(11) 

Substituting (11) in (1 0) we get 

(l(t)J(t'))=_!_l,~ exp{-2f(i+k's')lt-t'i} cosoo (t-t') (12) 
2 I ,i..~ (1 + k's'l' ' • 

A 

where 
2mTS' 

J~=A . 
1i'Syd1d, (13) 

If the characteristic dimensions of the junction are 
small compared with ; , we can retain in the sum (12) 
only the term with k = 0: 

(/(t)/(t')) ~ 1M.' exp {-2flt- t'l} cos·oo,(t- t'), (14) 

corresponding to the following radiation spectrum[ 1J 

K(oo)-1'[ r + r ] (15) 
-

1 (oo- oo,)'+ 4f' (w + oo,)' + 4f' 

(K(w) is the Fourier component of the function 
( J(t)J (t')) ). 

We see therefore that the spectrum has a Lorentz 
form with a width determined by the reciprocal pair 
relaxation timer, where r = 8(T- Tc)/1Tfi[4 J. The 
quantity J 1 plays the role of the amplitude of the 
Josephson current at temperatures exceeding Tc. 

For a junction of large area, to the contrary, we can 
replace the summation with respect to k in (12) by 
integration(~ = ( 21rt2 S J d~), which yields 

k 

SJ~ kdk 
(J(t)J(t'))= 1.'- exp{-2f(1 + k's') 1 t- t'i}cos oo,(t-t'). 

4n, (i+k's')' 

(16) 

From this we obtain for the form of the spectrum at 
s » e 

K _ 1 , S [ (oo-ooo) (oo+oo')] 
(oo)- I f6ns'r f ----zr- +I ~ I 

(17) 

where 
1 

f(x)= 2x,ln(1+x'). (18) 

The role of the "amplitude" of the Josephson current 
in wide junctions is played by the quantity Jm 
= lj4 J 1 ;-1 ..fST1f, which now is much larger than J 1 • The 
value of J 1 does not dePend on the junction area (since 
the product RS is constant), and therefore Jm is pro­
portional to sl/2, 

2. We now proceed to consider the situation with a 
given current J through the junction. In this case the 
barrier voltage is not constant and is determined from 
the equation for the conservation of the total current, 
which consists of the "superconducting" current (5) 
and the normal current Jn = V/R = titp/2eR. We write 
this equation in the form 

S d'x 1i 
A Sim[1Jll(x,t)ljl.' (x, t)e"'] + 2eR cp + i(t) = l +/~sin Qt, (19) 

where the right-hand side represents the given current 
J( t), equal to the sum of the de component J and the 
alternating part J~ sinnt, corresponding to oscilla­
tions with amplitude J~ and frequency n. In addition, 
the fluctuation current i(t) has been added to the right 
side of (19); this current is connected with the thermal 
noise of the resistance R. In accordance with the · 
Nyquist theorem we have 

(i(t)) = 0, (i(t)i(t')) = 2Til(t- t') I R. (20) 

Solving (19), we get the dependence of the phase of 
the time, tp = tp{t), and with it the junction voltage 
V = ti tp / 2e. It is then necessary to find the mean value 
of the voltage ( V ) as a function of the current J, i.e., 
the current-voltage characteristic of the tunnel junc­
tion. J~ is regarded in this l!ase as a parameter on 
which the form of the current-voltage characteristic 
depends. Introduction of the term J~ sinnt character­
izes the action of the HF irradiation on the tunnel 
current. 

Proceeding to the solution of (19), we note that 
above Tc the Josephson current represents a small 
correction, and therefore can be sought in the form of 
an expansion in powers of its amplitude: tp = tp 0(t) 
+ tp 1( t) + ... The first term tp 0 ( t) of the expansion 
satisfies equation (19) with A =0, tp 1 ~ A, etc. 

The zeroth approximation to the solution of the 
equation can be found in trivial manner: 

) oo~ 2e s' cp,(t =oot--cosQt--R i(t}dt. 
Q 1i '• 

Here 
oo =3;,Rl 

1i ' 

Similarly, for tp 1( t) we obtain 
2 • 

cp1(t) =- : RA_I Im[Z(-r)e"'o('>]d-r. 

Z(t) stands here for the quantity 

(21) 

(22) 

(23) 
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t t 

Z(t)= .L,'l'•'(t).p;'(t)= .L,e-2r,t J dt,J dt2 er,(t,+t,>S,'(t,)S;'tt,). 

• (24) 

The average (statistical) value of the voltage is deter­
mined on the basis of (19) by means of the formula 

(V(t)) = Rl + Rl~ sin Qt- AR Re (Z(t)e;•~'>rp, (t)), (25) 

in which we have retained only the lowest-order term 
of the expansion in the amplitude of the Josephson 
current and have discarded terms at higher order. 
Substituting (25) in (23), we obtain 

(w(t))= 2e(V(t))/li = w + w~sinr.!t· 

2 2 t -+ ( : RA) J ddm{(Z(t)Z' 1;) )(e;,o<'>e-;,•<'l)}. 

(26) 

We have taken into account here the fact that the fluc­
tuations of Z ( t) and i ( t) are statistically independent. 

All the correlators in (26) can be easily calculated. 
Omitting the simple intermediate steps, we present the 
final expression for the average voltage across the 
barrier at the instant of time t. For the quantity 

(w(t))= 2e(V(t))/li 

we have 
1 t 1 

(w(t))= w + w~sin Qt- -zw.' Im J d; .L, r;:zexp{-(2r, + y) (t- •)} 

• 
X exp iw (t- ;) exp {- i~~ (cos Qt- cos Q;) }. (27) 

where w 1 = 2eRJ Jn, and y = ( 2e/n)2 RT is the line 
width of the Josephson radiation and is connected with 
the thermal fluctuations of the voltage[ 5 l. 

Calculating the integral with respect to T in (27) 
and averaging ( w(t)) over the time, we obtain for the 
average junction voltage V = .tiw/2e = .11( w(t) )/2e 
(Jn(x) are Bessel functions) 

1 , 1 ~ 1 '6 ln'(w~/Q) 
oo =w--zw, m "-..l (1+k's')' .i...J 2r.+y-i(w-nQ). (28) 

k n=-oo 

Formula (28) solves our problem completely. It 
determines the form of the current-voltage character­
istic of the tunnel junction when account is taken of the 
fluctuation current J h and also the character of the 
variation of the current-voltage curve under the influ­
ence of the HF voltage v(t) = v~ sinm, with amplitude 
v~ = RJ~. 

3. Proceeding to analyze expression (28), let us 
consider first the case when there is no external radi­
ation: w~ = 2 eV~/.11 = 0. The current-voltage charac­
teristic is in this case the form (we recall that w is 
proportional to the average voltage V, and w is pro­
portional to the current J through the junction: 
w = 2eV/.ti and w = 2eRJ/.ti) 

w,'SJ kdk w (29) 
00 = w -~ 0 (1 + k's')' W2 +[2f(1 + k's') + y]'. 

The integral can be evaluated, but the corresponding 
expression is quite cumbersome. We therefore con­
sider separately cases when the principal role is 
played by pair relaxation ( r » y) or by thermal fluc­
tuations in the junction ( y » r ). 

In the case y » r we obtain 
Sw,' w 2e 

ffi =w---- w,=-fiRJ,. (30) 
8ns' w' + y'' 

FIG. 2. Current-voltage curve of tun­
nel junction with account taken of the 
fluctuation pairing effects (the dashed 
line shows the current-voltage character­
istic of the normal state). 
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To the contrary, when r << y, the corresponding rela­
tion is 

Sw,' 1 ( 2f w ) 
00 =w---- 1--arctg- . 

Sns' w w 2r 
(31) 

In both cases, the current-voltage characteristic of 
the tunnel current is nonlinear (Fig. 2), and the transi­
tion to the nonlinear region corresponds to voltages 
2eV/.ti of the order of y or r, respectively. 

At low voltages, the action of the fluctuations on the 
tunnel current reduces to a change (decrease) of the 
resultant junction resistance, and is analogous to the 
influence of the fluctuation pairing on the conductivity 
of thin films[ 2l. On the basis of (29) we obtain in the 
linear region 

( ~~ ) J~;= R { 1 - :n~~~ ?-- [ 1 + 1 + ~/2r - ~r In ( 1 + ;r ) ]} . 

(32) 
When y » r (not too close to Tc) the fluctuation 

increment to the conductivity is proportional to 1/r 
~ 1/ ( T - Tc) ( ~ 2 = D/r, where D is the diffusion co­
efficient), i.e., the fluctuation conductivity varies with 
the temperature in exactly the same manner as in the 
Aslamazov-Larkin theory[ 2 l. Not too close to Tc, 
when r becomes larger than 'i'' the fluctuation part of 
the conductivity begins to decrease much more rapidly, 
like 1jr 3 ~ 1/ ( T - Tc)3.ll We note by way of an ex­
ample that when R = 1 ohm the temperature region in 
which r becomes comparable with y is T - Tc 
~ 10-3 °K. 

4. We now analyze the case when the contact is ex­
posed to a HF field with amplitude v~. We consider 
by way of an illustration the case of small dimensions 
( S « ~ 2 ). Then, according to (28) we obtain, retaining 
only the term with k = 0, 

1 '6 ( w~ ) w - nQ ( ) 
&=w-2w,'n~ooln' Q (w-nQ)'+(2f+y)'' 33 

As seen from this expression, the current-voltage 
curve has a number of singularities that are equidis­
tantly distributed along the voltage axis 2', and have the 
form shown in Fig. 3 (we assume that n » r, y ). The 
values of these values Vn = n.tin/2e correspond to the 
position of the so-called "Shapiro steps" in Josephson 
tunnel junctions exposed to external monochromatic 

l) All the foregoing conclusions pertain to the case of superconductors 
with identical T c· It is easy to use the same method to analyze a situation 
in which only one of the metals is normal (T c1 < T), and the other is 
superconducting (T c2 > T). 

2lSince the second term in the right side of (33) constitutes a small 
increment proportional to the square of the amplitude of the fluctuation 
current, we need not differentiate between w and win the resonant de­
nominators of formula (33). 
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FIG. 3. Form of singularity of the current-voltage characteristic of 
the fluctuation current when the junction is exposed to monochromatic 
radiation of frequency n ~ r' 'Y· 

fields of frequency .nrsJ. In the case considered by us, 
owing to the presence of strong fluctuations, these 
singularities have the form not of steps but of smoother 
curves with a Lorentz line shape 3>. 

Equation (33) reveals also another feature of the 
influence of irradiation on the form of the J-V curve 
of the fluctuation current, namely oscillations with 
amplitude of the microwave signal v~ in the slope of 
the current-voltage characteristic at zero, and also in 
the slopes of the "steplike" singularities that take 
place at voltages Vn = nlin/2e. For the singularity 
numered n, these oscillations are described by the 
square of the Bessel function Jn(2ev~/tin). Obviously, 
the latter phenomenon is analogous to the oscillations 
of the height of the Shapiro steps with the amplitude of 
the alternating field in the Josephson effect below 
TcrsJ. 

In the case of ''broad" tunnel junctions (S >>e) 
we obtain for the form of the current-voltage charac­
teristic the following expression (we invert the w ( w) 
relation with account taken of the remark made in 
footnote 2>) 

Sro/· ~ , ( ro~) J~ dx 1ii - nQ . 
ro = 1ii + Sns\~~ 1• Q , x' (6) -nQ)' +(2fx+y)' (34) 

If n >> 2r + y, the slope at the center of the n-th 
"step," w = nn, is equal to 

( dV) =R{1-8Sro::,[1+(1+'2~)-' (35) 
d/ V=V n lt'o '\' 

- 4; ln ( 1 + 2~ ) ] 1.' ( ~)}. 
It oscillates as a function of the intensity of the HF 
radiation (in particular, the slope of the current­
voltage characteristic at zero changes in oscillatory 
fashion, compare (35) at n = 0 with (32)). 

Thus, summarizing our results, we can state that 
the effects of the fluctuation conductivity ("paracon­
ductivity" in accordance with the terminology used in 

3>we note that these singularities should have the same form also in 
Josephson tunnel junctions at a temperature below T c• provided the 
microwave field amplitude satisfies the inequality J0 V _-< T n, where 
J 0 is the value of the Josephson critical current. This was observed ex­
perimentally by Y anson [']. 

the American literature) in tunnel junctions have a 
highly distinct behavior, and reveal quantum interfer­
ence effects in a high-frequency field, namely, genera­
tion of radiation at the Josephson frequency w0 

= 2eV/ti (Sec. 1), the appearance of singularities of 
the current-voltage curve when exposed to microwave 
r, an oscillatory dependence of the slope of the dynamic 
conductivity dV/dJ as a function of the amplitude of the 
HF field. A study of these effects can be of definite in­
terest as part of the investigation of the fluctuation 
superconductivity at temperatures above Tc. 

In conclusion we note that we have calculated only a 
part of the change of the current of the tunnel junction 
at a temperature above Tc, that connected with the 
fluctuation pairing. Besides the fluctuation component 
of the Josephson current obtained above, there should 
exist also a correction due to the difference between 
the normal current and the quantity V/R, this being 
connected with disturbance of the density of states 
above TcrsJ. Both corrections, if small, make an addi­
tive contribution to the total current and can be calcu­
lated independently. A similar situation obtains also 
for the fluctuation conductivity of films. The correc­
tions to the expression of Aslamazov and Larkin[21, 
obtained recently by Maki[ 91 and by Thompsonr1o], can 
be interpreted as being due to the contribution of the 
normal component of the current, the magnitude of 
which changes as a result of the fluctuation pairs4 >. 
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