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The low-temperature state of two-dimensional classical systems, which in the three-dimensional 
case have an ordered phase with a spontaneous violation of a continuous symmetry (magnetic sub
stances, crystals), is considered. It is shown that for arbitrary dimension the long-range correla
tions are determined by an expression for the energy of the long wavelength fluctuations, which is 
quadratic with respect to the gradients. The distinctive feature of the one- and two-dimensional 
cases is that the fluctuation deflections grow with distance and at sufficiently large distances may 
reach a finite value, which leads to the necessity to take account of the effects associated with these. 
Thus, for a lattice of plane classical spins (Sec. 1) the contribution from configurations, where the 
spin vector on a path between sufficiently distant points is turned through an angle containing several 
complete revolutions, becomes essential. 

The following new results are contained in this article: A complete description of the low-tem
perature state is obtained for a lattice of plane classical spins (Sec. 1) and two-dimensional crystals 
(Sec. 3 ), i.e., all of the n-point distribution functions are found, and the method is generalized to an 
arbitrary lattice system with a commutative continuous group; the two-point distribution function and 
the transformation law for the n-point functions associated with the homogeneous dilatation of all 
distances are found for a classical Heisenberg ferromagnetic substance (Sec. 2); also expressions 
are found for the free energy of magnetic substances (Sees. 1 and 2) in a weak external field, from 
which the necessity of a phase transition in these two-dimensional systems follows. 

IT is known that in two-dimensional systems there 
cannot be a spontaneous violation of continuous sym
metry even if this occurs in the analogous three
dimensional system. The following are examples of 
such systems: crystals (violation of translational in
variance), isotropic magnetic substances (violation of 
rotational symmetry), and systems possessing super
fluidity or superconductivity (violation of gauge invari
ance). The impossibility of long-range order in such 
two-dimensional systems follows from a simple calcu
lation that goes back to Peierlsf 1l and Landau,r 2J from 
which it is clear that in a two-dimensional ordered 
state (if it were to exist) the fluctuations of the order
ing parameter would increase without any limit with 
increasing size of the system (see alsor 3l). Recently 
the vanishing of long-range order upon going to the 
thermodynamic limit has been rigorously proved for 
all such two-dimensional systems on the basis of 
Bogolyubov's inequality (seef4 l). On the other hand, 
since the ground state of the system is ordered, the 
ordering must be preserved over all larger distances 
as T - 0, and a question arises concerning the de
scription of the state of the system at sufficiently low 
temperatures when the destruction of long-range order 
occurs over macroscopic distances. Such a descrip
tion is also obtained in the present article for classical 
systems. Although real systems at low temperatures 
are essentially quantum systems, a consideration of 
classical systems is justified for the following reasons: 
In them it is easier to clarify the fundamental side of 
the situation, which should not change substantially 
upon taking account of quantum effects, since the ques
tion is the behavior over macroscopic distances. It is 
proposed to examine quantum systems, and also other 

systems for which the extension of the obtained results 
does not appear to be completely trivial (we mention 
systems having a long-range interaction and systems 
with randomly distributed magnetic moments) in a 
subsequent article. 

1. LATTICE SYSTEMS WITH A COMMUTATIVE 
SYMMETRY GROUP 

Let us consider this question, using as an example 
a model consisting of a simple lattice, at each site of 
which there is a plane classical spin-a vector s of 
fixed (unit) length which can rotate only in the one 
plane. Let us denote the positions of the lattice sites 
by r = ~niai, where the ni are integers and the ai are 
the basis vectors of the lattice; their length (the lattice 
constant) is denoted by a. One can specify the state of 
each spin sr by a single quantity-the angle 'Pr, 
namely, 

s, = {cos (jl,; sin 1Jl,}. (1) 

The configuration of the lattice is given by the set of 
angles 'Pr for all sites r. In this connection the 
Hamiltonian is expressed in the following way (J > 0 ): 
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H =- ~ ~~ (s,s,) = - ~ ~~ cos(<p,- rp,). (2) 
lr-r'l=:::a lr-r'lo=:il 

The minimum of (2) is reached when all of the angles 
'Pr are the same, but as T - 0 the probability of 
finite deflections of neighboring spins tends to zero, 
so that it is natural to use the quadratic expansion of 
(2) near the minimum: 

I 1 J 
H-E,~ 2~~2(rp,-rp,•)' = -2 ~~ 1Jl,l'!,.rp,., (3) 

!r-r'lo=:il r r' 
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where Eo denotes the energy of the ground state, and 
arr 1 is a matrix operator representing the difference 
analog of the Laplacian operator and is defined by the 
equation ( 1/Jr is an arbitrary function) 

~ dn·'i'r· = ~ ('\'r,a; + 'i'r-a; -· 2'1',). (4) 
r' (i) 

It is easy to construct a low-temperature expansion 
for the statistical sum, in which the major term corre
sponds to (3), and the subsequent terms represent cor
rections to (3) (of the order of ( rp r - rp r 1 ) 4 and higher). 
From this expansion it is clear that (3) can be used in 
order to calculate the free energy at low temperatures. 
However, in other problems there may be doubt con
cerning the applicability of (3). In fact (3) leads to a 
Gaussian distribution for rpr with a correlation matrix 
( rp r(/1r 1 ) = JITGrr 1 , where Grr 1 = -(a -l )rr 1 denotes 
the Green's function for the operator (4). In the two
dimensional case Grr 1 increases logarithmically with 
distance whereas (rpr(/1r 1 ) obviously cannot increase 
without limit. If one calculates the free energy in the 
presence of an external field, by having added the en
ergy of the spins in this field to (3), expanded up to 
terms of order rp~, then one finds 1> 

F-E, T 2n T I 
--=-ln--h+- (dk)ln(/~(k)+h) 

N 2 T 2 ' 

which corresponds to an average moment per site 
given by 

(5) 

1 i)F T I ( dk) ( ) 
(m)=-Nfih= 1 ·--z /~(k)+h' 6 

Here a(k) denotes the Fourier representation of the 
operator (4): 

~ (k) = 4 ,Esin' ( ~:' ) . (7) 
(i) 

It is clear that in the two-dimensional case expression 
(6) for h = 0 (i.e., the spontaneous moment) diverges 
like ln R where R denotes the size of the system 
(kmin ~ 1IR). 

In order to clarify just what the situation is here, it 
is useful to consider the one-dimensional case where 
the analogous divergences are even stronger ( ~ R) and, 
on the other hand, the problem can be solved exactly. 
Namely, for a chain consisting of N + 1 spins, in 
which the angles rp 0 and rp N of the boundary spins are 
fixed, the density of the probability distribution for l 
isolated spins at the sites r 1 = n1 a, r2 = n2a, ... , rz 
= nz a has the form 

P (cp,, nl> . .. ; cp,,n,) ~ P,., ('Po- <p,) Pn.-n,('f 1 - cp,) ... PN-nz ('Pz- 'PN ), ,(8) 

where Pn ( rp - rp 1
) is a function of the angle ( rp - rp 1 ) 

whose Fourier components are equal to (em I c 0)n 
while the em are the Fourier coefficients of the func
tion exp{ -JT- 1 cos (rp - rp 1

)}. As T- 0 the limit 
Pn(rp - rp') is proportional to 6(rp - rp 1

). However if 
one considers the asymptotic behavior over distances 
of the order of JIT, i.e., the limit when T - 0, 
n - oo, but nT I J tends to a finite lim it which is equal 
tot, then (cmlcof- exp{ -(}'2)m2t} and 

P,(<Jl-'P');::::;tl(cp-cp'ln;) for ~~1,n~1, n; =0(1),(9) 

OJn this and similar formulas, the integration over k is carried out 
over a cell of the reciprocal lattice, lkil.;;; 1r; (dk) denotes IIi (dki/27T). 

where the customary notation is used for the function 

tl(<pjt)= 1+2 ,Ee-'h'"''cosmq;. 

This function is a solution of the equation 
i)t) 1 i)'tl 

a;:=-z i)(j)' 

under the following conditions: e ( rp 1 0) = 6 ( rp ); 

(10) 

e(rp + 21rl) = e(rp 1 ), i.e., it is the transition probabil
ity for a random walk (diffusion) around the circum
ference. It may be obtained from the corresponding 
function for diffusion along a straight line - oo < rp 
< + oo if the sources are located at the points rpn 
= 27Tn, n = 0, ±1, ±2, ... 

1 +w 1 
ti(<Jlit)=--:=- .E exp{ --(cp-2nn)'}· (11) 

'j'2:-rt n~-oo 2 

For small values of t one can keep only the term with 
n = 0, and for t » 1 the function (10) rapidly ap
proaches an equilibrium distribution along the circum
ference. 

From the derivation it is evident that the asymptotic 
form (9) is determined by the second derivatives of H 
at the minimum point, that is, by expression (3). Its 
form is associated with taking account of the following 
properties: (a) the probability of finite deflections for 
nearest neighbors is small, and in the limit T - 0 the 
angle rpr changes continuously; (b) the angular devia
tion of spins which are sufficiently far apart may have 
a finite value (because the dispersion ((rpr - rpr 1 ) 2) 
increases linearly with the distance). On the strength 
of (a), for any arbitrarily distant spins one can deter
mine the total change of angle, which is equal to the 
angle between the spins plus 27Tn, where n denotes the 
number of rotations of the spin through 27T associated 
with a continuous transition from one site to the other; 
in virtue of (b), the contribution from the configurations 
with several revolutions is essential for the correla
tions at large distances. It is easy to see that a 
Gaussian distribution corresponding to (3) holds for 
the total angle, and (9) is obtained from it by reduction 
to the interval of periodicity (i.e., taking into consider
ation the fact that total angles which differ by 27Tn cor
respond to one and the same mutual alignment of the 
spins). For other dimensions the differences will be 
associated only with (b): in the two-dimensional case 
the dispersion of the angular deflection increases 
logarithmically with distance and finite deflections ac
cumulate slowly; in the three-dimensional case the 
dispersion remains bounded and finite deflections are 
generally not important. 

Thus, in the two-dimensional case of interest to us 
one can use the Gaussian distribution corresponding to 
(3) (below this will be denoted by GDC (3)) provided it 
is.applied to the total angles rpr with intervals of vari
ation - oo < rpr < oo. 2> It is most convenient of all to 
accomplish the reduction of a distribution by having 

2lwe define the difference of the total angles at distant points as the 
total change of the angle along any arbitrary path connecting these points. 
The fact that the result is independent of the path follows from the fact 
that going around a closed contour gives zero: for a small contour this 
follows from a), and one can construct a circuit around a large contour 
out of circuits around small contours. 
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noted that such a reduction is carried out automatically 
if the averages of periodic functions of the angles f/Jr 
are calculated according to the GDC (3). It is sufficient 
for an arbitrary set of points I'k ( k = 1, 2, ... , n ) to 
evaluate the average of the Fourier exponential func
tions: 

Here the mk are arbitrary integers, and Grr' is the 
matrix which is the inverse of the matrix t:..rr', i.e., 
the Green's function of the operator (4). Actually, for 
averages over the total angles Eq. (12) is valid for 
arbitrary mk (the characteristic function for the GDC 
(3) stands on the right, seef5l), but according to what 
has been said above, in that case when the mk are in
tegers and hence the averaged function is periodic, its 
average with respect to the GDC (3) agrees with the 
Gibbs average (for T/ J « 1 ). 

Certain asymptotic forms of the two-dimensional 
Grr' are needed for a consideration of the conse
quences of (12). Namely, when the size of the lattice 
R >>a, the points r and r' are far away from the 
boundaries, and I r - r' I « R, the quantity Grr' can 
be represented in the form 

( r-r') 1 1 G,.,;:::; g -- --lnro+-ln(AR). 
a 2n 2n 

(13) 

Here g(r/a) is the Green's function of an infinite lat
tice such that g( 0) = 0: 

g (_I'_) = J (dk) (e'"'i'- 1). 
a ~ (k) ' 

(14) 

r 0 ~ 0.2 a is the length entering into the asymptotic be
havior of g(r/a) for I r I >> a: 31 

(r) 1 1•1 g - = --ln-+(term-+0 as lrl-+oo); 
a 2n_ r, 

(15) 

r 0 is determined from the equation (y = 0.5772 ... is 
Euler's constant): 

r0 n { J (dk) } 3 ln-=-y-ln--lim --+lnll =-y--ln2; (16) 
a 2 ,..., 1'1>• ~(k) 2 

finally, the last term in (13 ), strictly speaking, must 
be the "regular part" of the Green's function of the 
usual (differential) Laplacian operator Green's func
tion minus ( ?'21T) ln I r- r'l-1 ); since it has the form 
(7121T) ln (AR) where A= A(r/R, r'/R) ~ A(O, 0) (for 
I r I, I r' I, I r - r' I « R), we obtain (13). 

Now, using Eqs. (12)-(16), let us consider certain 
properties of a two-dimensional lattice. For conven
ience of notation we introduce the dimensionless 
parameter 

a =T (2nJ. 

a) Influence of the boundaries. The density of the 
distribution4> of the angle f/Jr = q; is given by 

(17) 

P(<p,r)~- ~ e-(T/zl)G"m'eim•=i}(<p\ ~ G,,). (1B) 
m=---oo 

3l See [ 6]. The connection between the notations is as follows: the 
"potential kernel" a(x) from [6 ] is equal to -4g(x). 

4lReferred to d'{)/27r, but in Eqs. (19)-(21) referred to the product 
n (d<Pk/27r). 
k 

For (T/J)Grr ~a ln (AR/r 0 ) » 1 only the term with 
m = 0 remains, i.e., the angle f/Jr is uniformly distri
buted, and there is no spontaneous violation of sym
metry. 

b) Two-point distribution. Formula (12) gives the 
Fourier coefficients for the density of the distribution 
of the angles q; = f/Jr and q;' = f/Jr'; the last two terms 
of (13) give a factor 

{ 1 AR} exp --a(m+m')'ln-.- .' 
2 r, 

in these coefficients so that for a ln (AR/r 0 ) » 1 only 
the terms with m + m' = 0 remain, and we obtain 

( T (r-r')) =ll <p-<p'l-2/g -a- . (19) 

By virtue of Eq. (15) over distances I r - r' I »a this 
gives 

P(<p, r; <p', r') = fi (<r- 'P'I2a In lr- r'l ) 
r, 

(20) 

c) Many-point distributions. In analogy to (20) we 
obtain the distribution for the angles f/Jk describing the 
spins at the points rk (k = 1, 2, ... , n) when the points 
I'k are far away from the boundary and Irk - rk' I 
»a: 

P(<p,,rl; ... ;<pn,rn)= ~ ... L exp{il:mk'Pk} 
mt+- .. +mn=O k 

X n ITI rk- fk' 1-'.', amkmk" • (21) 
ko;t=k' ro 

d) Homogeneous transformation of the distributions. 
In connection with a homogeneous dilation of all dis
tances: rk - rk' = Ark, each term in (21) is multi
plied by I A I as, where the fact that ~mk = 0, 
s ;, -( ?'2 )~mk = -(% )(m~ + ... +m~) in all terms has 
been taken into account. Thus 

(22) 

where rk, = AI'k· Having taken an infinitesimal trans
formation A = 1 + OA, we obtain the equivalent rela
tions: 

e) Correlation of the spins. For I r - r' I »a we 
have: 

(s,s,,) = (cos({)J,- <p,)) =I r ~or' ~-·, (24) 

f) Weak external field. Let us consider the change 
of the free energy in the presence of a weak external 
field, where (5) is not applicable (it is impossible to 
expand cos f/Jr because only the differences between 
neighboring or close angles are small, but not the 
angles themselves). In a weak field it is necessary to 
take the expression 

(25) 
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for the free energy. A formal expansion in powers of 
h would give AF/N = (Yz)xh2 , where x = f{dr)(so·sr), 
but in virtue of Eq. (24) this integral diverges. There
fore F has a singularity for small values of h. In 
order to clarify its form, let us consider the case when 
the field is enclosed in a finite region of dimension R, 
where R is large but still finite. Let us denote by 
A F( R, h) the change of the free energy in the presence 
of such a field. A general term of the series for 
exp{ -T-IAF(R, h)} is proportional to the integral 

~. · . ~ (dr1) ... (drn) ((cos 'Fr,)P• ... (cos 'Fr)P") (hfT)n. 
I 'k I <;;R 

First let us consider the terms where PI = Pz 
= ... = Pn = 1. Having carried out the substitution rk 
= R rk' and taking (22) into consideration we see that 
the general term ~ R2n+o:s, where s = -(Y2)~mk 
= -(Y2 )n (because all mk = ± 1). For the sum of the 
terms of the indicated form we obtain the series 

oo h n .L. C,(a)R(2-af2)n ( T) = f(a, x), X = R'-a/2 }!_ • 
T 

(26) 

The remaining terms (where just one Pk 2:: 2) have a 
higher power of h at the same power of R; thus the 
contributions of the terms with PI = 2, P2 = ... = Pn = 1 
have the form R-2+G:fi(a, x) and R-2-o:f2(a, x). A 
representation of the following form is obtained for 
AF(R, h): 

~ /:lF(R, h)= fo (a, hTR'-"12 ) + R-'+a f 1 (a,~ R'-"1') + ... {27) 

Now let us take into consideration that as R - oo 

the limit 

lim t:.F(R, h) = ~ fi.F(!!]_ 
R-.. = R 2 a2 iV ' 

(28) 

should exist, which is proportional to the specific free 
energy. From here and from (27) it follows, as one 
can easily see, that the functions entering into (27) 
must be power-law functions for x >> 1: 

fo( a, x) = C,(a)x'", f 1(a, .r) = C't (a)x\ .. , 

where bo = 4/(4- o:), b1 = 1 + 4/(4- a), .... Com
paring with the expansion (5) {applicable for 
a ln (h/T) << 1, whereas the expansions obtained be
low are valid for a « 1, h/T « 1), we find that 
Co(a) = -1 + o(a). Thus, the principal terms of the 
expansions as h - 0 will be 

fi..F ( h ) '1('-•J 
N=-T r + ... (29) 

and for the specific moment 

_ 1 aF _ 4 ( h ) afc•-•> 
<m>--!iah:- 4-a r + ... (30) 

g) Existence of a phase transition. Since the usual 
dependences AF ~ h2 and ( m) ~ h hold at high tem
peratures, a comparison with (29) and (30) shows that 
a break in the analyticity must occur between high and 
low temperatures, i.e., a certain phase transition. 
Such a conclusion was reached in articlesf 7 l on the 
basis of a numerical analysis of the high-temperature 
expansions. 

2. LATTICE SYSTEMS THAT ARE INVARIANT UNDER 
THE ROTATION GROUP 

Let us again consider the question for the case of a 
model, taking the model to be a classical Heisenberg 
ferromagnetic substance. In this model a three-dimen
sional unit vector nr is located at each site r. In the 
system of spherical coordinates e and lj! its compon
ents and the volume element are given by 

n,= {sinfJo,cosljl,;sintl,sinljJ,;cos-&,}, (dn,)= 4~sin-&,d-&,d1jJ,. {31) 

The Hamiltonian of the system has the following form 
(J > 0, Yrr' denotes the angle between nr and nr'): 

H =- 1M L, .L. (n,n,,) = - ';,/ .L. .L. cos v.... {32) 
lr-r'l=ll lr-r'l~ 

For T = 0 all the nr are directed in the same direction, 
but as T - 0 for neighboring spins yrr' << 1, and 
one can write (still using sin Br sin Br' R; sin2 Br 
R; sin2 Br'): 

The Gibbs distribution corresponding to (33) is not 
Gaussian and in the general case does not reduce to 
such a distribution (this is associated with the noncom
mutative nature of the rotation group. see Sec. 3). One 
can explicitly evaluate the n-point distributions only in 
the one-dimensional case where they, in analogy to (8), 
are expressed in terms of the two-point distribution 
which has the form 

P(n r· n' r') = Q ( n n'l !_ lr- r'l ) 
' ' ' ' T a · 

{34) 

Here n(n, n' It) denotes the transition probability for 
rotational Brownian motion (seef 8 l); it is given by a 
series in terms of the spherical harmonics 

00 

Q(n,n'lt)= .L.(Zl+ 1)P,(nn')e-'h'(h!J' 

00 

= L .L. Y,"' (n) y,· m (n') e-'M'"J' 
/=0 lml~l 

and is a fundamental solution of the equation anjat 
= -<Y2) x2 n, where 

(35) 

-9:2 =(sin-&)-'!-(sinfJo~) +(sin-&)-'~ {36) 
at~ a-& oiJJ' · 

A comparison of (34) with {9) and (20) leads to the 
natural supposition that in the two-dimensional case 
for I r - r' I » a we will have 

P(n,r;n',r')=Q(n,n'l2alnlr~r'l). {37) 

And in fact {37) turns out to be a consequence of rela
tions (42) which are proved below. One can arrive at 
these relations by considering the structure of the n
point distributions over distances much larger than the 
lattice constant a. The form of the corresponding 
asymptotes should primarily be determined by the 
energy of the long wavelength fluctuations; this can be 
verified directly for the system of Section 1. In fact 
(21) follows from (15), and the form of (15) is deter
mined by only the quadratic term in the long wave-



DESTRUCTION OF LONG-RANGE ORDER 497 

length expansion of .6.(k), which corresponds to the 
expression (Y2)J(dr)(Vcp)2 for the energy; only the 
coefficient of proportionality between r 0 and a (see 
Eq. (16)) depends on the short wavelength behavior of 
.6. (k). In the case under consideration one can also 
confirm that the overwhelming contribution to the 
statistical sum comes from the configurations in which 
8r and 1/Jr vary slowly and smoothly; for such configu
rations one can regard 8r and 1/Jr as the values of 
continuous and differentiable functions at the lattice 
points; the energy (33) for such configurations is trans
formed into the form 

H-E,>::: ~ J JS (dr){(V'fr) 2 +(V¢)'sin2 tt}. (38) 

In order to evaluate the n-point functions of the dis
tribution P( ni, ri) it is necessary to fix the values of 
the spins at the points ri to be equal to ni and to inte
grate over the remaining spins; in this connection 
expression (38) will not be applicable near each fixed 
spin. Therefore we surround each point ri by a circle 
of radius p such that p » a, but p « min I ri - rk 1. 
Outside of the circles (38) is applicable, and inside the 
circles another approximation is valid: Here the 
dominant contribution comes from the configurations 
in which 8r and 1/Jr differ very little from the values 
which correspond to the spin fixed at the center of the 
circle. For such configurations the Gibbs distribution 
with an energy (33) reduces to a Gaussian distribution. 
In fact, let all the nr be close to one and the same 
value n, i.e., nr = n: + c::r, where 1 c::r I << 1 and 
(n · E:r) = 0. Then, having chosen n as the axis of the 
spherical coordinate system, we will have I Or I, 11/Jr I 
« 1, sin 8r R> Or, and the expression for the statistical 
weight takes the form 

dZ ~ exp{- 2~ .E E : [('fr,- '(},) 2 + tt.'(1Jl,- ljl,.)']} II ('fr,dtt,d¢,). 

lr-,l~a (') (39) 

If Br and 1/Jr are regarded as polar coordinates of a 
two-dimensional vector E:r = { £~11 , c::~f!l} = { 8r cos 1/Jr, 
8r sini/Jr }, then with reference to E:r the distribution 
(39) is Gaussian: 

{ 1 '\1 '\1 1 (1) (1) 2 (2) (2) 2 }II (1) (2) 
dZ ~exp -2f ~ LJ 2[(e, - e,) +(e, -e,. ) ] (de, de, ) 

1<-<•l:=a (•) (40) 

Expression (40) is applicable in the three-dimensional 
case for a system of arbitrary dimensions, and in the 
two-dimensional case-so long as (I E:r 12) « 1, which 
gives the condition ( T/ J) ln p/ a « 1 for the radius of 
the circle. It is essential that for T/ J « 1 one can 
select radii p which satisfy this condition and also 
such that p >> a; if we take two such radii, p and p ', 
then both (38) as well as (40) will be applicable inside 
the ring p' !5 I r - ri I !5 p; the statistical sum of such 
a ring gives a Gaussian functional integral (which is 
a completely definite mathematical concept, see[91): 

Z,,. ~f. .. Jexp{- :T JS (dr)[ (Ve<1l)' +(Ve<'l)']} II (de~1>de~2>). 
P'"'l•-•ll<p ' (41 ) 

From what has been said it is clear how distant 
correlations are determined by relation (38). In fact, 
let us discard the spins falling inside the circles, and 
let us consider the (normalized) statistical sum of the 
obtained "hole" system provided that all spins of the 

boundary of the i-th circle take one and the same value 
ni. Let us denote this quantity by Pp(ni> ri); it pos
sesses the following properties, of which (a) and (b) 
are proved in the Appendix: (a) the asymptotic behavior, 
which is of interest to us, of the n-point functions dis
tribution P( Di, ri) are obtained from Pp ( ni, ri) by the 
substitution p = r 0 (where r 0 is given by Eq. (16)); 
(b) from (41) one obtains the following equations (A.ll) 
for the dependence of Pp(ni, ri) on p: 

ij 1 ('\1-) papP"(n,.r,)=2'a ~P? P,(n,,r,); 

(c) the Pp(ni, ri) only depend on the ratios ri/p. In 
fact, (38) is applicable outside of the circles, and as is 
directly evident the energy (38) does not vary under 
the transformation r- xr, O(r), 1/J(r)- e(xr), 
1/J(Xr) (the factor I X r 2 coming from the square of the 
gradient is cancelled by the factor I X 12 coming from 
the volume element). By virtue of (c) one can replace 
pa jap in Eqs. (A.11) by -~ria ;a ri; then by using (a) 
we obtain the desired relations for the n-point distribu
tion functions : 

(1:•• :,,)P(n,r,; ... ;n,,r,)=- ~ a(E.Pr)P(n1,r1 ; ••• ;n,,r") 
i ' (42) 

(~i denotes the operator (36) which operates on the 
variables Oi and 1/Ji). For n = 2 from here we obtain 
(37) (taking into consideration that the two-point func
tions must depend only on ( n · n') and I r - r' I), and 
for arbitrary n we obtain formulas analogous to (22): 

/II m; "- -'/,a l: li (l;+l) / m "-
"-. Yz, (n,i')/=1'-1 i '-ITYz,'(n,)/, r;'=l.r,. (43) 

ru ru 

From (43), in the same way as in Sec. 1, expansions 
are obtained for the free energy and for the moment in 
a weak external field. Their dominant terms differ 
from (29) and (30) only by the replacement of at by 
2at, and these expansions lead to a similar conclusion, 
namely, that a phase transition must occur in a classi
cal two-dimensional Heisenberg ferromagnetic. This 
conclusion was also obtained earlier on the basis of 
machine calculations (see[71). 

3. GENERAL LATTICE SYSTEMS: TWO-DIMEN
SIONAL CRYSTALS 

The titles of Sees. 1 and 2 emphasize that although 
the investigation was carried out for specific models, 
it is actually applicable to an arbitrary lattice system. 
In fact, let the state of each site be described by the 
variables ~ = { ~ i} and the interaction (having a finite 
radius) is invariant under the group of transformations 
~- f = U~. It is easy to see that the expression for 
the energy density of the long wavelength fluctuations 
should have the following form: If ds 2 = gikd~ id~k is a 
distance invariant under group transformations in the 
space ~. then the energy density is proportional to 
gik(v~i) · (v~k). F_or commutative groups (and onlY, for 
them) instead of ~ 1 one can choose the variables 1/11 

such that ds 2 will have a Euclidean form in them, and 
the energy density will be proportional to the sum of 
the squares of the gradie.nts 1/Ji. Applying the discus
sions of Sec. 1 to each 1/11, we arrive at a Gaussian 
distribution over the space, associated with a universal 
covering group; then it is necessary to reduce to a dis-



498 V. L. BEREZINSKII 

tribution on the original space. If the group is noncom
mutative, gik depends on ~ (see (38)), but one can ob
tain formulas analogous to (42) and (43) for arbitrary 
groups. 

Let us still consider the case of two-dimensional 
crystals. Let the two-dimensional system in its 
ground state be a crystal with a lattice constant a (for 
simplicity we assume the lattice to be square). At low 
temperatures in the vicinity of each atom its neighbors 
are arranged near the lattice sites so that one can at
tribute each atom to a definite site. Moving along a 
continuous path, one can realize such a correspondence 
even for distant atoms; here in general different paths 
might lead to different correspondences for one and the 
same atom-this will happen in that case when there 
are dislocations located somewhere between these 
paths. However since each dislocation involves a finite 
energy, at sufficiently low temperatures it is possible 
to ignore the dislocations (compare with the similar 
considerations in Sec. 1). We arrive at the result that 
at sufficiently low temperatures one can refer each 
atom to a definite lattice site so that the coordinates of 
the atom attributed to the site r are represented in 
the form 5 > 

q,=r+u,. (44) 

In terms of the variables ur the long wavelength part 
of the energy is given by (seeP0l): 

[ J' ((au,)' (au,)') /" au, au, 
H-E- - - + - +---• - J J 2a2 ax, ax, a' ax, ax, (45) 

+_c (ou, + ou, )'] (dr) 
2a' ox, ox, 

(J', J", and J"' have the dimensions of energy). A 
Gaussian distribution exists for the quantities ur so 
that in analogy to (12) we obtain 

( exp { i ~k,u,}) = exp {- 2~ ~~k,g ( r-: r') k,, }• (46) 

where g(r/a) = gjj'(r/a) (j, j' = 1, 2) is the Green's 
function which is defined in analogy with (14) only in
stead of fl. - 1(k) it is necessary to take the matrix 
which is the inverse of the matrix l::..jj'(k); the long 
wavelength expansion of this last matrix (correct to 
terms of order k2) is determined by expression (45). 
The asymptotic expression for I r I >> a, which is 
analogous to (15), also has a logarithmic character but 
in the general case it still depends on the orientation 
of I r I relative to the crystalline axes; for systems 
with random isotropy (J' = J" = J; J'" = -J) 

g;;. ( ~) ~ 6;;• 2a' In fl; 
I! 2nl r, 

we do not write down the general expressions. 
In the case of a crystal, not the distributions for 

ur but the ordinary distribution functions fn ( q1, ... , qn) 
are of interest, where the latter are defined as the 
probabilities of finding n arbitrary particles near the 
points qu ... , qn, relative to N"n( dqJ ... ( dqn). One 
can represent the Fourier transforms of these func-

5>The displacements Dr are of the order of ay'lnN where N is the 
nom ber of particles; the differences Dr- Dr' should be small (in com
parison with (a)) for neighboring sites. 

tions as the averages of products of the quantity p(p) 
= N-1 ~ exp{ -ip · qz} (the summation goes over all of 
the particles); according to (44) one can also write 
p( p) = N-1 ~exp{ -ip · r - ip ·ur} (summation over the 
lattice sites), and from (46) we then obtain the follow
ing result for the distribution functions 

/.(q,, ... , q.) =a-' J. .. J (dp,) ... (dp.)6(p1 + ... + p.) 

X ~ ~ ... .E exp {i i>(q,- r,)- 2
1T ~~p,g( r, ~r,,) P•'} (47) 

'• 'n l=l l*l' 

(in formula (47) one can simultaneously omit the factor 
1/N and the summation over one of the rz since 
actually the expression being summed only depends on 
the differences rz - rz'). Thus, in the isotropic case 
we have 

a'f,(q,q') = JS ~~ i: ~exp{ ip(q-q'-r)- ~ p'g (: )}, (48) 

where g(r/a) is the function given in Eq. (14). For 
1 q - q' 1 » a the contributions from sites occurring 
for points q- q' at a distance $ aa ln (I q- q' 1/a) 
are essential; one can use (15) for all of these sites 
and, by integrating over p we obtain 

a'f,(q, q') = L (4na'alnl!l)-' exp {- (q- q'- r)'} 
, r, a'aln(JrJ/r,) 

~ F ( q:q'l2aln Jq-;,q'J). (49) 

The last equation is obtained by replacing 
a ln (I r 1/ro) by a ln (I q - q' l/r 0 ), which is valid 
for a = T/27TJ « 1. The solution of the two-dimen
sional diffusion equation a F/at = ( 7'2 )V 2F is denoted 
by F(x, t) with the following initial condition: at 
t = 0 the particles are concentrated at the lattice 
sites (i.e., F(xl 0) = ~15(x- r)). As t-"" they 

r 
spread out in the plane and F(x, t)- a-2 , which cor
responds to the expected behavior of f 2(q, q') in the 
absence of long-range order. 

In conclusion I express my gratitude to G. V. 
Ryazanov who pointed out an error in the initial proof 
of relations (42). 

APPENDIX 

PROPERTIES OF THE FUNCTIONS Pp(Di, ri) USED 
IN THE PROOF OF (42) 

Let us surround the point r 0 = 0 by a circle of 
radius p, as described in Sec. 2, we neglect the spins 
falling inside the circle, and we consider the (normal
ized) partition function of the resulting "perforated" 
system for a fixed configuration on the boundary of the 
circle. In virtue of the macroscopic nature of p, one 
can specify the boundary configuration by a continuous 
function n(cp) of the polar angle cp corresponding to 
points on the boundary of the circle. The introduced 
statistical sum will then be a functional of n(cp ), which 
we denote by Pp( n( · )). It is obvious that for a suffi
ciently small p the creation of configurations with 
large deflections along the boundary requires a very 
large energy, so that Pp(n ( ·)) will have an appreci
able value only for configurations in which all spins 
n(cp) are close to each other and to a certain average 



DESTRUCTION OF LONG-RANGE ORDER 499 

value ii so that n{cp) = n + € {cp) where € {cp) is small. 
It is most convenient to eliminate the ambiguity in the 
choice of n by imposing the condition 

Eo= J E(cp}dq>/2n = 0. (A.1) 

If £ (cp) is expanded in a Fourier series, then 
Pp(n( · )) will be a function Pp(ii, €m) of ii and of the 
Fourier coefficients £m(m ;o! 0). Now let p' < p be 
the radius of a smaller circle. It is obvious that 
Pp'(ii', £~) and Pp(n, £m) are connected by the follow
ing relation: 

where the kernel Zp'p is given by the functional inte
gral (41) with respect to the functions £ ( r, cp) defined 
in the ring p' s r s p and satisfying the following con
ditions on the boundaries of the ring: 

E(p,cp)= 1}me'm•, E(p',cp)=(~-;}+ I:Em'e'"'• {A,3) 
m*O m*O 

(the form of the conditions on the inner boundary fol
lows from Eq. (A.l)). By virtue of its Gaussian nature 
we have {correct to within a normalization factor) 

Z.·.(n', Em'ln, Em)~ exp {- ~ Emin(n', Em'; n, Em)}, (A.4) 

where Em in( ... ) denotes the minimum of the energy 
in the exponential of Eq. (41) for the boundary condi
tions {A.3). From the solution of Laplace's equation we 
obtain 

~E. ( )= (;;,-'-i)• +_!_~ m{ ch(m~t) (le 'l'+leml') 
T mon • • • 2a~t a .i....l sh(m~t) m 

m=l 

1 1 ° 0 1 } 
- -6h-~-m--cA-t)-(Em Em +Em Em) , (A.5) 

where the following notation is used: t = ln ( 1/ p ), 
t' = ln (1/p'), At= t'- t = ln (p'/p), and 0! = T/27TJ. 

Expression (A.4) is valid as long as (( n' - n )2 ) 

= aAt « 1; since a << 1 then one can choose At such 
that O!At « 1, but eAt» 1. Here tanh( mAt) R:: 1, 
1/sinh (mAt) R:: 0, and from Eqs. (A.4) and (A.5) we 
obtain 

z •.• (ii',Em'ln,Em) ~ exp{ _ _:.(ii-='--.,...n_,)_'} 
2a~t 

From Eqs. (A.2) and (A.6) it now follows that 
Pp(ii, €m) should have the form 

- - { 1~ } P0 (n,Em)=P0 (n)exp -~.t....JmiEml', 
m~l 

(A.6) 

{A.7) 

where the variation of the function Pp( n) with a change 
of p is given by the following relation: 

p (n')~Jexp{(Ii'-n)'}P,(-;;l(W.), t=ln 12 . (A.8) 
<+"' 2aAt ' 

Formula (A.8) indicates that Pp(ii) satisfies the 
Fokker-Planck equation for rotational Brownian motion 
(seer 8l) in which t = -ln p plays the role of the time, 
namely 

(A.9) 

where ?e2 is the operator (36). We note that the func
tion Pp(ii) is, obviously, the value of the initial func
tional Pp(n( · )) for the configuration n(cp) = n {i.e., 
when all the spins on the boundary are identical and 
equal to ii). 

Now let us consider the distribution of the probabil
ity P(n) for values of the spin located at the center of 
the circle. In analogy to Eq. (A.2) we have 

P(n) = J z,.(njn, Em)P.(n, Em) II (dEm) (d-;;), {A.10) 

where Zop is determined by the minimum of the en
ergy in the exponential of (40) under the following con
ditions: Er = n - ii at the center of the circle and 
(A.3) applies on its boundary. This minimum is ex
pressed in terms of the value G00 of the Green's func
tion at the center of the circle. Using (15) and (A.9) it 
is not difficult to show that P{ii ) is obtained from the 
analytic expression for Pp(ii) by substituting p = r 0, 

where ro is given by Eq. (16). 
Hence follows the validity of assertion {a) which 

was used in Sec. 2 in order to prove (42). In fact, let 
us take n points ri distributed over macroscopic 
distances, let us enclose each of these points by a 
circle of radius Pi, and having rejected the inner 
parts of the circles, let us consider the functional 
Pb(ni( · ), ri)-the probability of the configurations 
ni{cp) on the boundaries of the circles. Applying the 
arguments stated above to each circle, we see that 
Ppi(ni( · ), ri) is represented in the form of the product 
of certain function Pp(ni, ri) times a product of 
Gaussian exponentials from formula (A.7), referring 
to each point ri. When all Pi = p, the function 
Pp. ( ni, ri) coincides with the function Pp ( ni. ri) in
tro~uced in Sec. 2 and from the fact that the assertions 
proved above are valid for the dependence of each Pi, 
the validity of a) follows from Sec. 2 and the validity 
of b) follows from Eqs. (A.10) for each pair Pi, Iii, 
that is, the equation 

- p i)i) P0 (n,, r,) = - :· a (1: f£.') P0 (n1, r,). 
p ' 
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