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We investigate the process of propagation of a quasimonochromatic pulse of light in a gas mixture 
in which chemical transformations are possible. The analysis is carried out for the case of chain 
reactions in a binary gas. We calculate the profile and velocity of the photodissociation wave. We 
show that allowance for the chain mechanism of chemical transformations leads to an increase of the 
velocity and to a broadening of the profile of the wave. 

1. INTRODUCTION 

PHOTODISSOCIATION waves[ 1' 21 are among the dis
turbances that can propagate in a gas with supersonic 
velocity. As follows from [ 21 , a particle-density dis
continuity is realized on the front of a photodissociation 
wave at a length l ~ 100 lo, where l0 is the particle 
mean free path in the unperturbed gas and determines 
the width of the shock-wave front. At the same time, 
the photodissociation-wave velocity, which is deter
mined by the pump radiation flux density Ia and by the 
absorbing-molecule density A~, can exceed the velocity 
of the shock wave with equivalent density discontinuity 
by several orders of magnitude. 

As a result of elementary photodissociation acts, the 
gas molecule A2 breaks up into two atoms A. Let us as
sume that a gas consisting of molecules B2 , which are 
chemically active with respect to the atoms A, are 
mixed together with the gas A2 (it is assumed that the 
absorption bands of the molecules A2 and B2 do not 
overlap). Then, if the products of the chemical interac
tion of the molecules B2 and of the atoms A influence 
effectively the rate of change of the density of the re
agent A2, then we can expect qualitative singularities to 
appear during the course of propagation of a quasimono
chromatic pulse of light in such a binary mixture. 

A typical example of a mixture with the indicated 
properties is a binary gas in which a chain reaction is 
possible. If a gas mixture A2-B2 having a chain trans
formation mechanism is exposed to light whose fre
quency corresponds to the spectral absorption band of 
the molecules A2, then a simplified scheme of the re
actions in the mixture can be represented in the form 

A, 
B+A2--+AB+A, 

A,B~ breaking of chain. 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

Unlike the case when a light pulse propagates in a 
pure absorbing gas A2 , the presence of the molecules 
B2 causes the photon mean free path to increase, i.e., 
X> Xo = 1/a(Ag), where a is the photoionization cross 
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section and (Ag) is the density of the gas A2 • This cir
cumstance can be understood by taking into account the 
fact that as the light pulse propagates in the two-com
ponent medium, the density of the reagent A2 decreases 
not only because of photodissociation, but also because 
of the chemical reaction (1.3) in the presence of the ac
tive center B. For this reason, some of the photons of 
the beam, which would be completely absorbed in a lay
er of thickness ax Rl X0 of the pure gas A2 , will not 
find absorbing partners in the same layer, and will 
penetrate in the next layer, where it is consumed in 
photodissociation. Thus, a layer whose longitudinal di
mension is .\ > Xo becomes translucent. The radiation 
ensures in this case a displacement of a translucent 
layer in the gas; the thickness of this layer, and conse
quenUy its velocity, exceed the corresponding values 
for the ordinary photodissociation wave and depend on 
the radiation flux density, on the densities of the initial 
reagents, and on the characteristic constants of the 
chemical reactions. 

APPROXIMATE RELATIONS FOR THE WAVE 
VELOCITY 

It is easy to obtain an approximate relation for the 
photodissociation wave velocity with account taken of 
chain-transformation chemical reactions such as (1.2) 
and (1.3). Let us consider a flat layer of the binary 
A2 -B2 gas of thickness ax = .\, on which a beam of low
density quanta Ia is incident. We separate in this layer 
a volume with unit cross section area, V =ax. Obvi
ously, the total number of active centers produced in 
this volume is equal to double the number of photons 
penetrating through the unit surface within the time in
terval at, i.e., 

[ (A)eff + (B) erf]~x = 2/,~t, (2.1) 

where (A)eff and (B)eff are the effective densities of 
the active centers A and B, and Aa is the radiation 
flux density. 

Further, if it is assumed that the rate constant for 
the production of active centers B (reaction (1.2)) is 
much smaller than the rate constant for their annihila
tion (reaction (1.3)), then the balance condition for the 
atoms B is written in the form 
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k,(A) (B,) = k,(B) (A,); (2.2) 

where A, B, A2 , and B2 are the densities of the parti
cles of the corresponding type. For the same reason, 
we can put (B)eff ~ 0 in (2.1), corresponding to a slow 
production and rapid annihilation of active centers B. 
We thus obtain from (2.1) 

(A)eff = 21, I D, (2.3) 

where D = ~x/~t is the wave velocity. 
Taking (2.2) into account, the equation for the rate of 

change of the density of the reagent A2 is 

~ a(A,) = -o(A,) [1, +~(A) (B,) ] . 
c at o (A,) 

By virtue of this, we can conceive of a situation in 
which the photodissociation of the molecules A2 in the 
volume B occurs, as it were, upon absorption of pho
tons whose flux density, with allowance for (2.3), is 

2.kl lo (B2°) 
loeff =lo+-~--

o D (A2°\ 

Equating the number of photons "entering" the volume 
V within a time ~t to the number of absorbing parti
cules in the given volume, we get 

(2.4) 

Putting, as before, D = ~x/ ~t, we obtain with the aid of 
(2.4) an equation connecting the velocity with the param
eters of the system. The solution of this equation takes 
the form 

DID,= 1/2 + (1/4 + 2k, (B,') I of,] '''• (2.5) 

where D0 = Io /(Ag) is the velocity of the usual dissocia
tion wave, (lo /(Ag) << c, and c is the speed of light). 
From (2.5) we can draw the physically understandable 
conclusion that an increase of the rate of the chain reac
tion increases the velocity of the photodissociation 
wave. In the limiting case when 2k1(Bg) >> <TI0 we get 

DID, :::::: [2k, (B,') I ol,] '"· (2.6) 

3. INITIAL EQUATIONS, CASE OF EQUAL BINARY 
MIXTURE COMPONENT DENSITIES 

Having made the preliminary estimate, let us pro
ceed directly to an investigation of the photodissociation 
wave with allowance for the chemical reactions (1.1)
(1.4). To describe such a wave, we start from a system 
of equations consisting of the one-dimensional radiation
transfer equation and the kinetic equations. Without al
lowance for the chain-breaking reactions (1.4), the sys
tem takes the form 

a(B) 
--= k,(A) (B,)- k,(B) (A,), 

at 
(3.1) 

where I is the radiation-flux density and A, B, A2, and 

B2 are the densities of the components. The initial and 
the boundary conditions of the system (3.1) are 

( D) dl 1---;;- dz' =-of (A2), 

D d(A 2 ) =ol(A2)+k2(B)(A2), 
dx' 

We seek a solution of the initial system in the form 
of a stationary wave with velocity D to be determined; 
this form of solution, if its existence is rigorously es
tablished, will be obviously valid for optically thick 
layers of a gas medium. Thus, by assumption, the par
ticle densities and the radiation flux density depend only 
on the argument x' = x- Dt. Then the system (3.1) 
takes the form 

D d(B2) = k1 (A) (B2), 
dx' 

D d(A) = -2ol(A,) + k,(A) (B,)- k,(B) (A,), 
dx' 

D dd:) =-k1(A)(B2)+k2(B)(A2). (3.2) 

It is easy to ascertain that the system (3.2) has the 
following two integrals: 

2(A,)- 2(B,) +(A)- (B)= C,, 

(A,)-(B,)+(A)- ID ( 1- ~) = C,, 
(3.3) 

where cl and c2 are constants determined from the 
condition for x'- + oo, with C1 = 2C2 = 2 [ (Ag) - (Bg)] . 
For the density of the product of the chain reaction, the 
particle-conservation conditions yield 

(AB) = 2(A,') - 2(A:)- (A)= 2(B,') - 2(B,) -(B). 

It follows from (3.3) that 

21 I D) 
(A)+(B)=D 1--;;- , 

(A,)=(A,')-(B,')+(B,)+(B)- ~ (1-~). (3.4) 

Using (3.4) and introducing the dimensionless quanti
ties 

b=(B,) b=J!!l... _ 1(1-Dic) _ _.,k,(B,') 
2 (B,')' (B,')' u- (B,')D ' TJ- "'-D--, 

o D ~ = (A2°) _ _ !:.:._ 
a =-;c; 1-Die' (B2°) 1• !1- k2 ~ 1• 

we obtain a system equivalent to (3.2): 

du 
-= -au(b2+ b- u+~) dT] • 

db2 
-= b2(2u-b) dTj • 

Inasmuch as iJ. is a small parameter, the phase vol
ume (u, b2 , b, u, ~' b) breaks up into regions of "slow" 
motions (the first two equations of the system (3.5)) and 
"fast" motions (the third equation). (31 Therefore, in 
accordance with the general procedure, we can pue> 

l) It is easy to show that the "fast" motions are always stable; natu
rally, it is necessary to take into account here the fact that in the labo
ratory system the events are observed in opposite sequence compared 
with an observer taht registers the events in a system connected with 
the wave. It is necessary to put formally 17 -+ -r( 
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J.lb 2 (2u- b)= b(b, + b- u + L\), (3.6) 

from which we obtain for the dimensionless density of 
the active centers B, which follows in a quasistationary 
manner the variation of the variables b2 and u, we ob
tain 

b = -lf2Lb,(1 +!A)- u + L\] + (l!.[b,(1 + 1-1)- u + L\]' + 2J.1b,u}'''· 
(3.7) 

For simplicity let us consider the case of equal con
centrations of the reagents A2 and B2, i.e., t::.. = 0. 

Introducing the substitution z = ~(1 + M)/u, we can 
obtain from (3.5) with the aid of (3.6) and (3.7) the fol
lowing equation: 

.!..:...= -z--1- (1- z+[(z-1)2+BI-I'z]'1•), (3.8) 
du 2a1-1' 

here Jl.' = jj./(1 + Jl.). Integration of (3.8) yields 

[ 1 + (2- a) (1- 2a1-1') ] ( 2- a ) 
a(1- a1-1') q2 ln z + a(1- a1-1') 

+ [41-1'- q,]ln(l'Z + z -1 + 4!-1') -In[ (z + 1)l'Z + 1 +z' + 41-L'z] 

+ q.In[l'Z+ q,+~(z + 2 - a )]+.!. (2- a)lnu = C1 
q, 'l(1- a1-1') a 

Z=(z-1)'+21-l'z, (3.9) 
2- aJ.I'(4+ a)+ 4a21''2 

qt=- a(1-a1-1') 1 q2=[qt2 +81''(1-J.~')J''•. 

Taking into account the smallness of the parameter Jl. 
and retaining in (3,9) terms up to first order inclusive, 
we obtain 

F[2/<&-1'(2"""l1 F221'(2-a.) F3- 1 u2(2-oo)f" = const1 ( 3.10) 

F, = )'Z[4 + a(z -1)]+a(z -1)' +4(z -1) (1 + J.la)+.!. (2 + J.la)'1 

- - a 
F,=)'Z+z-1 +41-11 Fa=l'Z(z + 1) + 1 +z'+41-LZ. 

The value of the constant in the integral (3,10) is de
termined from the conditions as 11 - ± oo. In the case 
11- oo we have b2 -1, u- 0, and z-oo, and in the 
case 71- -co we have b2 - 0, u- io(1 - D/c)/N0D 
(N0 = (Ag) = (Bg)), and z- 0. We thus have 

[22/a-1+~(2--«)a2/a-~(2-a)]- = [ 26/a-1+1'(2--<r.)a-2/a+~(2--<r.)J.I2~). 

X ( Io(1-Dic) )'fa-•] _ (3,11) 
NJJ -~- const. 

Relation (3.11) determines the implicit dependence of 
the wave velocity D on the system parameters. Let us 
establish this dependence for the limiting Jl. - 0. If we 
introduce the notation 

y= DNo s= 2ktNo 
Io(1- D/c) ' cri0 1 

then (3.11) takes the form 

Y = s•'<••-11• (3.12) 

The transcendental equation (3.12) was investigated 
graphically (see Figs. 1a and b). This equation admits 
of two roots corresponding to the intersection of the 
functions: f1(y) = y, f2(y) = ~ exp ~/(2~- y). Obviously, 
Eq. (3.12) is satisfied by the root y1 = ~. For the sec
ond root y0 it is easy to show that: (1) if ~ < 1, then 
Yo> 1; (2) if 1 < ~ < e, then~< Yo< 2~; (3) if ~>e, 
then {[<Yo<~. When ~ = 1 we have y0 = 2, when 
~ = e we obtain Yo = y1 = e, and when ~ >> 1 we have 
Yo =If. The latter agrees, when the inequality 

b 

f(fyJ 

J}=~ 2~ §,. § 

FIG. 1. Graphical determination of the roots ofEq. (3.12); f 1 (y) = 
y, [2 (y) = ~~/(2~-Y). 

.JN0 /Io >> c-1 .J2k1 /a is satisfied, with the approximate 
relation (2.6), which is valid when c- co. 

In the limiting case ~ - 0, when the chain reaction 
does not affect significantly the change of the density of 
the reagent A2 , we have y0 = 1, i.e., the wave velocity 
D tends to the velocity of the ordinary dissociation 
wave, D = D0 = cio /(lo + cN0 ). 

A numerical calculation yields the following values 
for the root Yo at fixed ~: 

l; : 0 015 I e 10 20 100 
yo: I 1,67 2 e 4,36 5,75 11,5 

From the obtained value of y we determine the wave 
velocity as follows: 

D cNo+Io 
n;=y cNo+Ylo · (3.13) 

It follows from (3.13) that large ~ correspond to large 
wave velocities. Let us investigate the possibility of 
realizing the roots y1 and Yo• Inasmuch as Y1 = ~ 
= 2k1 N0 /a Io, we have a = 2. It is easy to verify that 
as Jl. - 0 and at a = 2 the integral (3.10) becomes an 
identity. To find the solution in this case it is necessary 
to turn to Eq. (3.8), in which we must put a = 2. The 
solution takes the form ( Jl. - 0) 

( lz- 11 - 1) I z -ln{[lz- 11 (z + 1) + 1 + z']u'} = C±oo, (3,14) 

C±oo = 1-ln2 = -1-ln 2 + 2lny1• (3.15) 

Relation (3.15) allows us to conclude that the root y1 = ~ 
is realized only in the single case when ~ = e, but then, 
as follows from the foregoing, Yo = e. 

In accordance with (3.14) and (3.15), the solution of 
Eq. (3.8) with ~ = e for the regions z ~ 1 takes the 
form (Jl.- 0) 

U = { 
z-le-lfz1 ~ ;;> 1 
e-1 , z.;;;;t. (3.16) 

If we measure the dimensionless coordinate 11 from the 
point where z = b2 /u = 1, then we obtain from (3.5) in 
the zeroth approximation in Jl., taking (3.16) into ac
count, the following equation for the wave profile 

"Ei(1)- Ei(1 I z) = 2TJ1 b, = e-'1' 1 i =I I I,= z- 1e'-11', 1J;;;,. 0, 

(3.17) 
where Ei is the integral exponential function. Relations 
(3.17), together with (3.4) and (3.7), make it possible to 
construct the profiles of all the variables for the case 
~ = 2k1N0 /alo = e under consideration. For the wave 
velocity it is necessary to put y = e in ( 3.13). 

In the general case corresponding to the wave veloc
ity D determined by the root Yo# e, the zeroth approxi-
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mation in J.1. yields for the wave profile the following re
lations: 

a- 2 b,~"''{(.!!!) -·1~ (t, _a_; 2(a-1); b,'-"''} 
a b.. a-2 a- 2 

( a 2(a-1) •-•/')} - F 1, a _ 2; a_ ;;! ; b,. = afj, 

. _ .!_ _ ab2~ (b"'' b. ) (3 18) ,_ Io -2-a z- ,, b=O, fJ·;;;.o; • 

b2 =b20e"l>,,.,[2-eb.,"P, i=1, h=/0(~-;/:Jc) b2, fJ<O, 

where F is the Gauss hypergeometric function, 
a = oD/k1(1- D/c) = 2y0/~, b20 = y;1 (y0 * e and conse
quently a * 2), and the origin T/ = 0 corresponds to 
b2/u = 1. 

It follows therefore from the foregoing that at a fixed 
value of ~ there is realized in the system a wave whose 
velocity and profile are determined in a unique manner 
(it is necessary to put y =Yo in (3.13)). 

In the particular case when the rate of the chain re
action, which coincides with double the rate of its slow 
link (1.2) is equal to the photodissociation rate of the 
reagent A2, i.e., ~ = 2k1N0/alo = 1, the wave profile is 
described by the following analytic relations: 

_!.+ln(1 -b•)-2=-41'], i=4b2 (1-b,), 11?0, 
b, b, 

b,=•he"''(2-e"1')-', i=1, TJ<O. (3.19) 

Thus, the obtained velocity and profile describe the 
wave completely. It follows from the analysis that al
lowance for the chain transformations leads to an in
crease in the velocity and to a broadening of the profile 
of the photodissociation wave (see Fig. 2). 

4. CASE OF UNEQUAL BINARY -GAS COMPONENT 
DENSITIES, A"# 0 

In this case we choose the origin at the point T/ = 0, 
where the following equation is satisfied 

uJ,- Ll = b,J,. 
In the zeroth approximation in J.1. we then obtain from 
(9) for the density of the active centers B 

b = 0 if b, - u + Ll > 0, "I] ;;_;;, 0, 
b=-b,+u-A if b,-u+A<O, "1],.;;0. (4.1) 

FIG. 3. Graphical determina
tion of the root of Eq. (4.7): 
.,o1 (Y) = (1-Y). ln(l/~Y + 1-r), 
.,o2(Y) = ln(rY + 1-r), 1/J(Y) = 
(1-Y)ln(l-r), 1/~r< I, r< I. 

"Ln(l-r) 

For the region T/ ~ 0 the system (3.5) reduces to 

du -=- •lu(b2 - u + Ll) 
dfj ' 

from which we get 

db, 
--=2ub2 

d1] ' 

du a u all a 
db, =2t;;- 2b, -2. 

(4.2) 

(4.3) 

We write the solution of the linear equation (4.3) in 
the form 

b-"12 ( A)+ a b~12+1 C 2 u- 2 _a 2 = . (4.4) 

The constant C is determined from the conditions for 
T/- oo, where u = 0 and b = 1, and for TJ = 0, where 
u = Uo = Io(1- D)/c)/(Bg)D and b2 = b20 = Uo- A: 

a 2 
C=---il=--(uo-i\)<2-«)/a. 

2-a 2-a (4.5) 

Relation (4.5) is the equation for the wave velocity. It 
is convenient to rewrite this equation in the form 

( r ) 1-y/Or y 
y-+1-r =y+1-r, 

(A2") D(A2°) 2k1 (B,0 ) 

r= (B2°) ' Y= 10 (1-D/c) s= a/0 (4.6) 

It is easy to verify that Eq. (4.6) admits of the solu
tion y1 = ~r. If we introduce the substitution Y = y/~r 
and take logarithms at both sides of (4.6), then we ob
tain the equivalent equation: 

(1- Y) ln(1/ £Y + 1- r) = ln(rY + 1- r). (4.7) 

Equation (4.7) was investigated graphically. Figure 3 
shows plots of cp1(Y) = (1- Y) ln (1/~Y + 1- r) and 
cp2 (Y) = ln (rY + 1 - r). These curves intersect at the 
points Y1 = 1 and Y0 (Y1 = 1 corresponds obviously to 
the root y1 = ~r). The value of Y0 is determined nu
merically. In the case when the cp 1 and cp2 curves are 
tangent, the roots coincide, Y1 = Y0 = 1, and this case 
corresponds to the relation C1 = e-r + r -1; when r = 1 
this relation goes over in the previously obtained ~ = e. 
In analogy with the case of equal concentrations, it can 
be shown that the photodissociation wave corresponds 
only to the root Y0 , which determines the wave velocity 
in a unique manner. 

With the aid of (4.2), (4.4), and (4.5) we obtain for the 
wave profile 

2TJ = ~ b;' ( Ll + Ob~"- 2 ~a b,) -t db,, u = Ll + Cb~1'- 2 ~a b,, 11 ;;;.o, 
b~o 

Oo = (b20 + 2i\)e(l>,+2~)" [ 2 (b~o +f)- e(b.,+2~)•r1 , U = Uo, 1'] ,;;;0. 
(4.8) 

It must be emphasized that the form of the analysis 
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is valid, but not for any ratio of the component densities 
of the initial binary gas. The reason is that the condition 
for 7J --- oo and the conservation conditions (3.4) im
pose definite limitations on this relation. Since the rates 
of change of the dynamic variables vanish when 7J - - oo, 
it follows from physical considerations that the boundary 
conditions have the form I = Ao that the boundary condi
tions take the form I = Io and (A2)_oo = 0 and (1) either 
(A)_oo = 0 ((B2)-oo * 0), or else (2) (B2)-oo = 0 ((A)-oo* 0). 
Case (1) corresponds to an excess of B2 molecules, so 
that all the produced active centers A are consumed in 
the formation of the product; case (2) corresponds to an 
excess of the A2 molecules. The foregoing analysis cor
responds to case (2). It follows from (3.4) that the con
dition (A)_oo > 0 is equivalent to the inequality 

(B2°) Io ( D) 
(A,') .< 1 + (A,')D 1 - c . 

5. ALLOWANCE FOR THE CHAIN-BREAKING 
PROCESSES 

(4.9) 

The foregoing analysis was made under the assump
tion that the chain breaking has little influence on the 
photodissociation-wave propagation in the initial binary 
gas. At sufficiently high pressures, the breaking of the 
chain (1.4) is due mainly to recombination processes. 
The recombination of the active centers leads to a de
crease of the photon beam free path and consequently 
decreases the wave velocity. To eliminate the influence 
of this factor it is necessary to satisfy the condition [2 1 

l .$ D Trec/2, where l is the thickness of the gas layer 
( O"(Ag) l >> 1) and Tree is the recombination time. 

In the general case, it is rather difficult to take the 
chain-breaking processes into account. In a number of 
cases the molecules of the impurity gas, say oxygen, 
take part in the chain-breaking reaction. If one of the 
active centers is a hydrogen atom, then the chain
breaking reaction is of the form[ 41 H + 0 2 + M- H02 

+ M; the reaction produces the low-activity free radical 
H02 • Assuming a reaction of similar kind and that the 
process of chain breaking is sufficiently slow, and also 
that the molecules A2 are the most effective third par
ticles in the recombination of the active centers B and 
the impurity molecules, it is possible to take formal ac
count of the chain breaking by introducing in the right
hand side of the last equation of the system (3.2) the 
term +r(B)(A2). This equation then takes the form 

D(B)' = -k,(A) (B,) + k,(B) (Aa) + r(B) (Aa). (5.1) 

In real cases the inequality r/max(k10 k2) << 1 is 
usually satisfied. It is then easy to obtain in this case 
from the initial system of equations the two integrals 

21 r k2 
(A>=v+ (k2+r> [(B2)-(B2o)]- (ka+r> (B), 

(A )-(A')+ k, [ k, I • - , (k,+r) (B,)-(B,')]+ (k,+r) (B)-D. (5.2) 

Taking (5.2) into account and using the same dimension
less quantities as before, we transform the initial sys
tem into the following one: 

1 [· Y 1 b ] u =-au u+--+---b2-u+--
1+y (1+v> 1+v ' 

b2' = b2 [2u + __ v_ (b2 -1)--b-] 
(1+v> 1+v ' 

(5.3) 

where y = r/~ << 1. 
For simplicity, let us investigate the case of equal 

concentrations, fl. = (Ag)(Bg)- 1 = 0. Just as before, as
suming the variable b to follow in a quasistationary 
manner the variation of the variables u and b2, we get 
in the zeroth approximation in J.1. 

b=O, TJ ;;;;.o, 
b = u(l+y) -b,-y, 'I] ~o. 

where the origin ( 7J = 0) corresponds to the equations 

b2o = uo(1 + y)- y, (5.4) 

Neglecting the second term in the second equation of 
(5.3), we can obtain for the region 7J :::=: 0 the integral 

~;<>t2 ~u __ v_) +_a_ ~;<>t2+1 = C 
\' 1+v 2-a ' 

~2= ba/(1 + y). 
(5.5) 

The constant C in (5.5) is determined from the condi
tions at 11 -- +oo, where u = 0 and b2 = 1, and at 7J = 0, 
where (5.4) is satisfied: 

r a ] 2 [ y ] -<>/2+1 C=(i +v)"12- 1 ---y =-- uo--- . (56) 
2-a 2-a 1+v • 

The equation for the wave velocity (5.6) is conveni
ently written in the form 

[ 1 + y ] 1-yfi y 
-Y--v =y<t+v>-v. (5.7) 

Making the substitutions y-- r'- 1 and ~-- (1 + y)~' 
we can easily verify that the equation for the wave veloc
ity coincides fully with the equation (4.6) investigated 
above. Equation (5.7) is transcendental and its solution 
can be obtained by numerical methods. In the case 
when the rate of the chain reaction greatly exceeds the 
photodissociation rate, this equation admits of an ap
proximate analytic solution 

Yo ~li[ 1-: {~-v)In{ ~-y )] . (5.8) 

Relation (5.8) corresponds to the inequalities 

v< ;f~i. j1n( ~1 -v)l ~ft. (5.9) 

From (5.8) we get the physically understandable deduc
tion that the chain-breaking processes decrease the 
propagation velocity of the photodissociation wave. 

Taking the chain breaking into account we obtain in 
this case for the wave profile 

b, 

2'1]=fb2-1[ i~v +c( 1~vr'2- (2~a> <t~v>r db2, 
b, 

(5.10) 
y ( b2 )aJ2 a b2 

u=i+v+C 1+v -(2-a) (1+v>' b=O, TJ;;;;.O; 

b, = b,.e0"'[2- e•,•]-1, U= Uo, b = u(f + "\')- b,- y, 'I]~ 0. 

The obtained velocity and profile describe the wave 
completely. It follows from the analysis that allowance 
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for the chain transformations leads to an increase in the 
velocity and to a broadening of the profile of the photo
dissociation wave. 

Let us consider the particular case of the binary 
mixture H2-Cl2• The absorption cross section for Cl2 

is a (Amax = 3300 A) = 2.6 x 10-19 cm2 , and at T 
Rj 300° K we have k1 = 1.45 x 10-1$ cm3/sec and k 2 

= 3.1 x 10-11 cm3/sec (k1 << k2). At (Clg) = (Hg) = 2 
x 1018 cm-3 and Io = 1()24 cm-2 sec-1 we have ~ = 2.25, 
so that we obtain for the velocity D Rj 1.2 x 106 em/sec, 
and the front width at the e-1 level amounts to Ax 
Rj 3 em. 

6. CONCLUSION 

In conclusion let us determine the conditions for the 
applicability of the performed analysis. It is obvious 
that the pump radiation should be sufficiently monochro
matic, so as to neglect the effect of the "wings" of the 
absorption contour. 

In the investigation of the kinetics of the photodisso
ciation wave, with allowance for the chain transforma
tions, it was implicitly assumed that the reactions oc
cur under isothermal conditions, which in general is 
valid for "cold" chemical reactions. Yet for a number 
of binary mixtures the reactions (1.1) and (1.2) are ac
companied by release of heat. To eliminate the thermal 
effect in such cases it is necessary to employ rather in
tensive heat dissipation, which is perfectly feasible in 

practice (external cooling, addition of inert gas). The 
thermal effect can lead, in principle, to the formation 
of a detonation wave (the velocity of the latter at Q 
.$ 50 kcal/mole is of the order of Vdet .$ 105 em/sec); 
in order for the photodissociation wave profile not to be 
distorted when allowance is made for the chemical re
actions, it is necessary to satisfy the inequality D 
>> Vdet; estimates have shown that this condition is 
satisfied for a number of concrete cases. 

The limitations connected with the recombination and 
diffusion effects, and also those connected with the pos
sible formation of a weak shock wave due to the pres
sure drop on the photodissociation wave front, as was 
indicated in [ 21 , remain in force, naturally, also in the 
case under consideration. 
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