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Normal incidence of sound waves from superfluid helium onto the surface of a porous body satura
ted with helium is considered. The porous body is assumed to consist of plane-parallel capillaries 
which are normal to the surface. The coefficient of transformation of first (second) sound into 
fourth sound, and also the reflection coefficient and the coefficient of transformation of the sounds 
at the surface are considered both for pure He4 and for He 3-He4 solutions. 

AS is well known, llJ two types of oscillations can 
propagate in superfluid helium: first and second sound. 
Moreover, near the walls, there exist rapidly decaying 
transverse waves that are characteristic for any viscous 
liquid (viscous waves). 

Pellam tzJ and Atkins l31 called attention to the fact 
that the wave motion in helium changes significantly 
upon retardation of the normal component. In suffi
ciently thin capillaries, in which the normal component 
is retarded by friction at the walls, oscillations called 
fourth sound can be propagated along the superfluid 
component. l3 J The velocity of fourth sound is equal to 

where u1 and u 2 are the velocities of first and second 
sounds, Pn the density of the normal component, Ps the 
density of the superfluid component, p = Pn + Ps· Meas
urements of the propagation velocity of fourth soundl4 J 
have shown excellent agreement between theory and ex
periment. 

The absorption of fourth sound is generally due to 
slippage of the normal componentl5 J (as a consequence 
of the finite viscosity). Sound propagation has also been 
studied in capillaries of finite width; lSJ it has been shown 
that the velocity of fourth sound can be regarded as the 
limiting value of the velocity of first sound as d/.\v- 0 
(here d is the width of the capillary and .\v is the length 
of the viscous wave). 

Although experiments on the study of fourth sound 
propagations are always carried out on capillaries in 
which the oscillations are excited from free helium, all 
the calculations have been made only for infinite capil
laries. In the present research we deal with the reflec
tion of waves of first and second sound of frequency w 
incident normally on a periodic system of plane-parallel 
capillaries filling a half space (see the drawing, which 
explains the choice of coordinate axes). Waves of fourth 
sound, the amplitudes of which are also computed here, 
are excited in the capillaries. In addition, the trans
formation of fourth sound into first and second upon 
emergence of the waves from the capillaries into free 
helium is investigated. 
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The problem is solved in the hydrodynamic approxi
mation, which can be used if the free path length l of the 
elementary excitations (phonons and rotons) is much 
smaller than the capillary width d (l « d). The width of 
the capillaries, according to the conditions of propaga
tion of fourth sound, should be much smaller than the 
viscous wavelength .\v = ..J2 TJ/WPn (TJ is the viscosity of 
the normal component, w the sound frequency): 

(1) 

Condition (1) limits our consideration to not too high 
frequencies and not too low temperatures (for more de
tail, seel71 ). 

The wave processes in helium are described by a 
linearized set of hydrodynamic equations which, in the 
transition to "normal coordinates" can be written in the 
form of three independent equations 

tJ.Q, + k,'Q, = 0, k,' = {il 2 I u,'; 

I:J.Q, + k,'Q, = 0, k,' = w' I u,'; 

,/j.u + k,'u = 0, div u = 0, k,' = iwpn IT], 

(2) 

and all the oscillating quantities (the velocities of the 
superfluid and normal components Vs and Vn, the devia
tion of the pressure P' and temperature T' from the 
equilibrium values) are described in the form of linear 
combinations of Q1, Qz, u and their derivatives: 

Vn=VQ,+VQ,+u, V,=VQ,+P,VQ,, P,=-rnlp,; 
P' = M,Q,, M, = iwp; 

T' = D,Q,, D, = iwp./ p,cr, 
(3) 
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whence it is seen that Q1 and Q2 are the velocity poten
tials in waves of first and second sound, and u is the 
velocity of the normal component in the viscous wave. 
In the definition of k1 and k2, we have neglected the dissi
pative components and in the definition of k3, only the 
first viscosity of the dissipative processes is kept, since 
the first viscosity is the principal reason for the re
tardation of the normal component in the capillary and, 
consequently, for the transition from first and second 
sound to fourth sound. 

Boundary conditions should be added to the set of 
equations (2)-(3), which are valid both in free helium 
and in capillaries. They are connected essentially with 
the properties of the solid from which the capillaries 
are made. We shall assume that the solid is an abso
lutely rigid, ideal heat insulator. Because of the great 
difference in the densities of the helium and the solid, 
the assumption of the absolute rigidity of the solid does 
not lead to additional restrictions, while the assumption 
of the absence of heat conduction in the solid is not too 
essential, since the heat effects play an insignificant 
role in the propagation of fourth sound (however, see (s J ) • 

The normal component of matter flux, the normal com
ponent of heat flux, and the tangential component of 
velocity of the normal (nonsuperfluid) component should 
vanish at an absolutely rigid, ideal heat insulator. From 
this follows the vanishing of all velocity components at 
the wall except the tangential component of the super
fluid velocity. 

The enumerated boundary conditions are of course 
sufficient for the exact solution of the problem. How
ever, in such a setup, the problem is not solvable ex
actly. We shall make use of the fact that in the case of 
interest to us, the period D of the system of capillaries 
is much smaller than the characteristic wavelengths 

k,D~1, k,D~1, Jk,JD~1, k,D~i. (4) 

At large enough distances from the boundary 
( Jx] ~ D), the structure of the solution is known to us. 
To the left, we have the incident and reflected waves of 
first and second sound: 

Qt = Cteiklx + Cte-iklx, 

Q, = C,e""' + C,e-"'", u = 0, (5) 

x <0, ]xJ~D, 

(here C1< 2> is the amplitude of the incidence wave of 
first (second) sound, and Cw> the amplitude of the re
flected wave). To the right is the wave of fourth sound1> 

(6) 

(C4 is the amplitude of fourth sound). 
Near the boundary (Jxl ~D) the distribution of all 

the quantities is very complicated; it changes mater
ially at distances of the order of d, D- d ("ripple"). 
This means that the spatial derivatives of Q1, Q2, and u 
are much larger than the corresponding values of 
k~QI, k~Q2 , and k~ (see Eq. (2) and the inequality (4)). 
In other words, the distribution of the velocities and 

!)The quantities Q 1 and Q2 , the superposition of which is fourth 
sound, generally depend on the coordinates in different fashion (owing 
to the different dependence on the coordinate y), but in the approxima
tion of interest to us (kid <1!: I) this difference disappears. 

other quantities near the boundary, after separation of 
the incident, transmitted, and reflected waves satisfies 
static equations. This statement requires explanation. 

The exact solution in the capillary can be constructed 
out of damped traveling waves, in which the dependence 
on the coordinates has the following form: 

{ sink.Jjy} ('k') . exp ! n'x , 
cos kj_;'Y 

k{~=k~-k~2 , i=1,2,3, j=1,2,3,4, ... , (7) 

and the permissible values of kj are found from the 
complex dispersion equation, w~ich is introduced by 
starting from the boundary conditions on the walls of 
the capillary (see£5 J, Eq. (48)). As kid- 1, (i = 1, 2, 3) 
one of the roots of this equation is the wave vector of 
fourth s.ound ~ = w/u4; for all the remaining wave vec
tors, Jkl I ~ ki and all the waves corresponding to the 

II · 
wave vectors kl "' ~ decay rapidly in the interior of the 

II 
capillary. This also means that the solution is a quasi-
particle one after the separation of the wave of fourth 
sound and can be constructed from the solutions of 
Laplace's equation. Thus the desired solution is first, 
second, fourth sound and the "ripple"-the superposi
tion of harmonics of the form 

_ {2nn/d 
q.- 2rr.n/D (8) 

(the upper line in the capillary, the lower in free 
helium), the amplitude of which is determined from the 
boundary conditions for x = 0. The conditions on the 
boundaries of the capillary are satisfied by choosing the 
qn. 

The significant consequence of the boundary condi
tions is the vanishing of the velocity of the normal com
ponent at x = 0 (in capillaries vn = 0, since !kid!« 1, 
and on the wall because of friction); this allows us to 
find the connection between the amplitudes of the inci
dent (CI, C2) and the reflected waves of first and second 
sound;2> 

(C,- C,)f u, + (C,- C,)fu, = 0. (9) 
Since the "quasi static ripple" does not take part in the 
transfer of matter, the continuity of the x component of 
the material flux density through the capillary is as
sured only by the wave of fourth sound: 

1 Pn d u,(u,2 - u,') 
-(C,-C,)--(C2-C2)=-C, 2 2 2 , (10) 

u, u,p, D u, (u, - u, ) 

The missing boundary condition (one must determine 
three quantities: C1, C2, C4) follows from the law of 
energy conservation. Equating the energy flux density 
in the incident waves to the flux density in the reflected 
and transmitted waves, we obtain the condition 

_;_(C,'- C,') + ~~(C,'- C,') = d P• u,3(u22- u,2)2 C.' (11) 
u, u2 p, D Pn u,• (u22- u,2) 2 ' 

which, after simple transformations with the use of 
Eqs. (9) and (10), can be written in the much simpler 
form 

C,+c,-E.::(C2+C2)=C• u~2(u22-u,2). (12) 
P• u,· ( u22 - u42 ) 

2) From the "viewpoint" of normal motion, a body with capillaries 
behaves like a continuous medium. 
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The possibility of using the law of energy conserva
tion is connected with the fact that the dissipative losses 
near the boundary are small; as kid- 0, they tend to 
zero. Actually, in accord withLaJ, the dissipative func
tion is, in order of magnitude, 

Vn' W(l 2 

11 -;F= (ksd) 2 Vn. 

But Vn in the boundary layer is a quantity 'proportional 
to (kid) 2, which is not difficult to establish by consider
ing the next approximation in kid. Consequently, the en
ergy density dissipated per unit time in the boundary 
layer is proportional to (kid) 2. 

The validity of Eqs. (9)-(12) can be proved by analy
sis of the exact boundary conditions. 

Solving Eqs. (10)-(12), we obtain the values for the 
amplitudes: 

C, [ u, d ( u, ) ] 2C, d C,=<l -p+-D p.--p, +-~--D p., 
- ~ ~ c 

2C, d u, C, [ u, d ( a, ) ] 
C,=-~--v-P•+-;:;- -p+-D p,--p. ' 

a=. Ut t!. Ut Ut 

C, = 2 pu1 ( u,2 - u42) C,p,- C2Pn , 

p,u4 ( u,' - u12) 8 (13) 

~ u, d ( u, ) C=-p+- p.-+p, ' 
u, D u, 

with the help of which we find the coefficients for the 
excitation of fourth sound from first sound A1 = dy4/Dy1 
and from second sound A2 = dy4/Dy2, the reflection co
efficients of first and second sound, Ru = Y"VY1 and R22 
= ?2/y2, and the coefficients of transformation of first 
sound into second and second into first, R12 = Y2/Y1 and 
R21 = fdr2 (yi is the energy flux density in i-th sound, 
i = 1, 2, 4). 

Taking it into account that u2 « u1 for not too low 
temperatures, we get 

A, =4~ l/ P• (1+~V P•)-', A,=f.':.~A., Ru = 1-A., 
D f p D p p. u, 

d p. Uz 1/Po ( 1 + .!:__ 1/ ~)-' Rzz=1-4---y- f , 
D p. u, p D p 

( d )' U2 {ln ( d 1/r:-)-2 

Rl2=R21 =4 D -;;;--;;- 1 +Dy p . (14) 

It is seen that fourth sound is better excited by first 
sound than by second. In the immediate neighborhood 
of the A. point, this is evidently not so: A1IT _ TA - 0, 

while A21T _ TA - A2 ..,. 0. However, A2 A « 1 

(A2 A ~ v'TA lufM, where M is the mass of the He4 atom). 

The sound transformation coefficients are small (they 
contain the factor u2/u1). 

In a similar fashion, we can study the reflection of 
second sound from the end of the capillary and the exci
tation by it of first and second sound in free helium. In 
this case one must assume as given the amplitude of 
fourth so~nd c4 and determine cl, c2, and c4, where c4 
is the amplitude of reflected fourth sound, C1 and C2 are 
the amplitudes of first and second sound: 

(15) 

Using these amplitudes, it is easy to find: R = Ru, F1 
= A1, and F2 = A2, where R is the reflection coefficient 
of fourth sound from the end of the capillary, and F1 
and F2 are the excitation coefficients of first and second 
sound from fourth sound. 3 > 

The study of the transformation of waves in He3-He4 

solutions is of interest. The velocity of fourth sound in 
He3-He4 solutions is the same as in pure He4, and is 
expressed in terms of the velocities of first and second 
sound. LYJ The square of the velocity of fourth sound is 
equal to 

u,' = ~u,'(1 + ~)' (1 +E..-_~·)-'+ ~uz'( 1 +~ ~·), (16) 
'P Pn P Pn 

where u1 and u2 are respectively the velocities of first 
and second sound in He3-He4 solutions, (3 = (c/p)apjac 
(c is the mass concentration of He 3). 

Measurements of the velocity of fourth sound in a 
• {10] wide range of temperatures and concentratwns are 

in excellent agreement with those calculated by Eq. (16). 
The wave processes in He 3-He4 solutions, just as in 

pure He 4 , are described by the linear set of equations 
(2). The velocities vn and vs, the departures of the 
pressure, temperature and concentration in the sound 
field from their equilibrium values can be expressed in 
terms of Q1, Q2 and u (see, for example, ll1J ). However, 
in view of the fact that the connection between these 
quantities in the He 3-He4 solution has a much more 
complicated form than in pure He4, it is convenient to 
write down the boundary conditions in the variables P 
and T. 

The condition (9) of the vanishing of the velocity of 
the normal component of the liquid on the boundary (in 
the variables P and T) for the He 3-He4 solution is 
written in the following form: 

1- p,~/Pn U2 acr 
---'---'-- (P,-PI)+-::--(1 + M (T,-T,)=O, (17) 

pu1 cr ar 

where P 1 and P1, T1 and i\ are the amplitudes of the 
oscillations of pressure and temperature in the incident 
and reflected waves of first and second sound, a is. the 
entropy per unit volume of the He3-He4 solution, and 
a=(]- caajac. 

The condition (10) of continuity on the boundary of 
the velocity of the superfluid component of the solution 
takes the form 

1 + ~ Pn au u, ( P• ) d 1 + ~ ( ) --(P1 -PI)----::- 1--~ (T,-T,)=-D --P., 18 
pu, p, aT cr Pn pu, 

where P4 is the amplitude of oscillation of the pressure 
in the wave of fourth sound. 

The continuity on the boundary of the energy flux in 
the sound wave is written down in the form 

1 a ' ) _1_(1+~~·) (P,'-P,')-PP•-:-(_..!!....) u,'(1+~~· (T,'-T,') 
2pu, p. 2p, cf aT P• 

=~~(1+WP.'. (19) 
D 2p'u, 

3>we note that the formulas obtained here explain the ineffective
ness of the excitation of second sound by forcing helium through a 
porous diaphragm. 
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By using Eqs. (17)-(19), we can compute the excitation 
coefficients of fourth sound by first and second (A1 and 
A2), the reflection coefficients of first and second sound 
(Ru, R22), the transformation coefficient of first sound 
into second (R12) and of second into first (R21), By 
taking it into account that u2 << u1 always in He 3-He4 

solutions, we get 

A,= 4~1/Ps 1+~ £2 
D y p N ' 

A2=4~E.r:_~vP•(1-~~)2 1 £2 
D p, u, p Pn (1+B)N ' 

R"=1-A 1, 

R22= 1-4__c!_~~ l/ p, (1-~~) 2 1 L, (20) 
D p, UJ V p Pn (1+~)N 

R,2=R21=4(~) 2 Pn~(1-~~) 2 L 2
; 

D p u, Pn N2 

N= v-:-1-+-p.-~-2. L= (1 +~VP· 1 +B )-1 
Pn D p N 

As follows from the formulas that have been given, 
fourth sound is better excited in He 3-He4 solution by 
first sound than by second, just as is the case for pure 
He4 • The coefficients of reflection and transformation of 
waves in He 3-He4 solutions depend on the parameter 
{3 = (cjp)apjac, which is not small for highly concentra
ted solutions ({3 ~ -0.3-0.4). 

The transformation coefficients of fourth sound into 
first and second sound, and the reflection coefficient of 
fourth sound can be computed in similar fashion. It 
turns out that for solutions, just as for pure He4 , R = R11 , 

F1 = Ab F2 = A2, where R is the reflection coefficient of 
fourth sound, and F1 and F2 are the coefficients of exci
tation of first and second sound by fourth. 

Although Eqs. (14) and (20) were introduced for very 
special assumptions on the form and location of the 
capillaries, it is evident from the conclusion that they 
are valid under much more general assumptions. In 
particular, if the boundary plane x = 0 is homogeneous 
in the mean, then the replacement of d/D by the ratio of 
the total area of the capillaries to the entire surface 
allows us to make use of the formulas introduced in the 
case of capillaries of arbitrary shape. Finally, the 
radius R of curvature of the capillaries here (for 
straight capillaries, R = "") should be greater than the 

wavelength of fourth sound. Equations (14) and (20) can 
be used for the study of fourth sound by measurement 
of the coefficients of reflection and transformation. 

The passage of sound through a set of capillaries of 
finite length can also be considered by the method sug
gested here; however, the formulas are somewhat more 
difficult to obtain. 

We take this occasion to thank I. N. Adamenko, with 
whom we frequently discussed problems touched on in 
this research. 
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