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A theory of spontaneous parametric fluorescence induced by a powerful light wave propagating in a 
gaseous medium is considered. The frequency of the incident radiation is assumed to be close to 
that of an atomic transition. The fluorescence spectrum shape is calculated by perturbation theory. 
It is shown that spontaneous fluorescence produces broadening of the spectrum of radiation traveling 
through a resonant medium. 

THE parametric amplification of radiation in a satu­
rated resonant nonlinear medium has been investigated 
both theoretically and experimentally y-41 The investi­
gated material is situated in an electromagnetic field 
whose frequency spectrum includes both a strong pump 
component w0 that saturates the resonant absorber and 
at least one weak field (signal) component of frequency 
w1 close to w0 • The applied fields cause beats, having 
the difference frequency 11 = w0 - w 1J in the populations 
of the combining levels. These beats modulate the 
dipole moment, with the result that harmonics with the 
frequencies w0 ± 11 appear in the nonlinear polarization. 
If the saturation parameter K for pumping exceeds 
unity ( K > 1) the phase relations between the nonlinear 
polarization and the signal lead to amplification of the 
weak fieldY-41 When K < 1 absorption occurs. 

In addition to the discussed induced process in the 
nonlinear medium the pump quanta can decay spon­
taneously to weak field quanta; this process is called 
spontaneous parametric fluorescenceYl A str-ong 
monochromatic wave traveling through the resonant 
medium will then amplify the zero-point oscillations 
of the electromagnetic field, playing the role of a 
"signal," and the medium will begin to fluoresce. The 
theoretical task of determining the frequency distribu­
tion of the fluorescent enerp and its angular proper­
ties was not investigated in 1-4] and is our present sub­
ject. 

When the mean free path l of a gas molecule greatly 
exceeds the wavelength X of a strong field ( l >> X) in­
dependent scattering occurs on each molecule.r6J In 
this case a qualitative picture of the four-photon scat­
tering spectrum can be derived from the following in­
tuitive considerations. The largest population-beat 
amplitude of the combining levels will correspond to 
the frequency 11 that accompanies the resonance w 1 

= Wms (where Wms is the transition frequency). There­
fore the continuous spectrum emitted by the atomic 
system possesses maximal intensity at the frequencies 
w 0 ± 11, where 11 = w 0 - wms. A quantitative descrip­
tion of the shape of the spontaneous fluorescence spec­
trum necessitates the quantization of the radiation 
field[ 7J and a solution of the Schrodinger equation for 
the closed atom-plus-field system: 

{} 
i-<1> = {Ha + V(t)} lll, 

iit 
(1) 

where Ha is the Hamiltonian of the atom, V = -D · E( t). 

D is the atomic dipole moment, and E( t) is the elec­
tric field operator in the interaction representation. 
We have used a resonance approximation, assuming 
that the incident wavelength greatly exceeds atomic 
size. 

In the study of scattering processes, including spon­
taneous parametric fluorescence, it is convenient to 
start with the integral form of the Schibdinger equation 
(1): 

--G(t,to)=Ga(t-to)--Yi- J dt'Ga(t-t')V(t')G(t',to), (2) 

where G(t, t 0 ) is the Green operator of the atom+field 
system and Ga(t - t 0 ) is the Green operator of an 
atomic electron. The solution of (2) in the form of a 
perturbation series is well known. raJ The n-th order 
term is a functional of the product of the field strengths 
and can be expanded in normal products by means of 
Wick's theorem.rsJ After expanding each term of the 
series in this way we obtain a solution of (2) as a func­
tional of the normal products of the electromagnetic 
field operators. The term not containing field operators 
will obviously coincide with the electronic Green's 
function after radiation corrections. We furthermore 
assume the existence of different frequencies for all 
the atomic transitions. In this case the radiation cor­
rections of the electronic Green's function in the reso­
nance approximation are taken into account by summing 
a chain of diagrams that consist of the simplest self­
energy diagram. [sJ We thus obtain the following equa­
tion giving the Fourier transform of the Green's func­
tion for an atomic electron with self-energy correc­
tions taken into account: 

- 1 I: 1 Ga(w)= --2 . In) +. 12 \nl. 
nz n w - ron tyn 

(3) 

Here I n) represents the set of stationary states of 
an undisturbed atom, wn is the unperturbed energy of 
one of these states (in units of ti) plus the radiative 
level shift, and Yn is the sum of the Einstein coeffi­
cients for transitions from level n to lower-lying 
levels. 

Equation (3) can be used to allow for the self-energy 
corrections ih the formulas for the transition probabili­
ties. For this purpose we must exclude terms contain­
ing self-energy insertions into the electron line and 
then describe the latter by means of (3). It is also 
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easily verified that in the resonance approximation we 
have 

.oo • n+ao +og 
G(t, to)= Ga(t- to)+ .E ( T} J dt, ... J dtnGa(t- t,)D;, 

n=l 

X G It,- t2)D;, ... D;,Ga (tn- to)N{E;,(t1)E;,(t2) ... E;, (tn) }, (4) 

where in calculating the N-products we must drop non­
resonance terms making contributions that are of the 
order of the ratio of the line width to the transition 
frequency. Duplication of indices will here and here­
after denote summation. The operator Ga(t- to) is 
related to the operator (3) by the Fourier transform 

-too 
Ga(t- to)= J e-iw(t-to)Ga(CiJ)dCiJ, 

and E(tj) is the electromagnetic field operator in the 
interaction representation: 

(5) 

For transitions in the case where an atom is in its 
ground state at both the beginning and end of the pro­
cess, the operator describing the field change (the S 
matrix) is obtained from (4) by averaging over the 
ground state 'Ps(x) of the system. We can also select 
the phase factor of the wave function[s) so that 

~ ~ +Qg 

S = 1 + .E ( ~ } n J dt, ... J dt.(qJ.(x,t,) ID,,G,(t,- t,) 
n=2 

X D;, ... G,(tn-1- tn)D;.IqJs(x, tn)>N {E;,(t,)E;,(t2)· . . E;. (tn)}. (6) 

The energy in the frequency interval aw that is 
scattered by the atomic system into a solid angle ele­
ment a 0 oriented in the direction of the wave vector k 
can be obtained from the equation 

L'i~ = ( ll(iJ) 2 ( ll;; - k~:i) 

(~ o/lR )k2 dk do. 
X llE1+(k) llE;-(k) 

(7) 

Here averaging is performed over the initial state, and 
the R matrix and S matrix are related by S = 1 
- 21TR. 

The calculations are considerably simplified by us­
ing Eq. (5) and a Fourier expansion of the electron 
Green's function (3). The expression for the S matrix 
can then be written explicitly as a functional of the op­
erator functions Ei(k) and Ej(k). The coefficient func­
tions of this functional can be associated with Feynman 
diagrams_tB-IoJ The factor (21Ti/1i}Djk(nlk is the 
dipole matrix element moment between the l and k 
states) will correspond to a vertex, and a solid line 
segment will correspond to the Green's function (3). 
Energy is conserved at each vertex, and integration is 
performed over all intermediate frequencies. 

If we are interested only in the spectral composition 
of four-photon scattering that occurs in the field of a 
monochromatic wave of frequency w0 close to the 
transition frequency Wms between the ground (s) state 
and excited (m) state, it is sufficient to consider only 
the contribution to the R matrix from the diagram in 
Fig. 1. Equation (7} then represents the scattered en­
ergy only for frequencies w ~ w0 • A standard calcula­
tion[lo) then gives 

w4D2 sin2 'ljJ Vms ( CiJ } L'iit= F2 -
c3 [(w-Wms) 2+Vm2/4J2ym CiJo 

1 +~ 
X-;-s dt[DE(t)/2n]•dCiJ do, 

-~ 

where Yms is the Einstein coefficient of the m-s 
transition, 1/J is the angle between the wave vector k 
and the dipole moment D, and F 2(w/w 0 ) is given by 

F2 (~}= 'Yml 1 + 1 12 
Wo 411 W- {i)m~ + iym/2 2CiJo- CiJ- CiJms + iym/2 ' 

(8) 

When 0 = Wms - w0 = 0 the intensity distribution of 
spontaneous fluorescence is determined by the square 
of a Lorentzian profile with the width Ym/2. As the 
ratio O/ym increases the spectrum is deformed in 
such a way that for 0/ym >> 1 it consists, in accord­
ance with the foregoing discussion, of two Lorentzian 
lines each having the width rm/2, and with their 
maxima at w = Wms and w = 2w 0 - Wms· The integral 
intensity of scattered energy is proportional to the 
incident radiation flux multiplied by the resonance 
scattering cross section and the saturation factor. 

k~,w~ 

FIG. 1. A diagram describing the two-photon scattering. kj, Wj, kj, 
wj (j = I, 2) are the wave vectors and frequencies of the absorbed and 
emitted quanta; Wj (j = I, 2, 3) represents the energies of intermediate 
states. 

In the other limiting case l « .X there is interfer­
ence between the radiation from different dipoles, and 
light scattering can be observed only in directions 
obeying the "synchronism" condition 2k0 = k1 + k2.[u] 
This condition together with energy conservation 
( 2wo = w 1 + w2) determines the dependence of the 
scattered light frequency on the observation direction 
or the tuning characteristic ~(w),rsJ where ~ is the 
angle between the observation direction n and the wave 
vector k0 of the strong field. The tuning-characteristic 
distribution of the radiation intensity can be derived 
from the radiation emitted by an ensemble of dipoles 
occupying a finite volume V. [u] Light absorption near 
the resonance frequency is taken into account by intro­
ducing the dielectric constant € ( w) = €' ( w) - i€ " ( w) 
into the Heisenberg equation of motion for the field 
operators. We must also know the mean value of the 
field commutator in a dispersive medium; this can be 
obtained from the relation with a retarded Green's 
function [ 12l: 

( [ 1 1 l > 1l 2 ( k;k; ) E 1+(k,CiJ),E;-(.k ,CiJ) = 2,. e" 61; -F 

Xll(k-,k1 )1l(w-w1 ) 
1 ----1-----==--­
tt 1 + (k- CiJC- 1 'fe1)2/o.2(k) 

a(k)= ke"/2e1• 

We now easily obtain an expression for the power 
emitted by a volume V into a unit of solid angle 
oriented in the direction n, per unit frequency 

flw4 1 X 1 2~4 sin2 II 1 ) 
w(n,w)= V . (9 

2ne" (CiJ 1 ) 1 + (k1 - CiJ 1c-1 'fe1 ( w 1 )) 2/ a2 (k') 



440 R.I. SOKOLOVSKII 

Here 8 is the amplitude of the strong field with the 
frequency w0 ; k' = 2ko- k, k = wc-~~~n; w' = 2wo 
- w; {3 is the angle between the vectors k and x, and 
x is defined by 

where e is the polarization vector of the scattered 
radiation and e0 is the polarization vector of the inci­
dent radiation; n0 is the atomic density. The bar de­
notes averaging over the orientations of the dipole 
moment. 

The last factor in (9) determines the tuning charac­
teristic J ( w) and its width. It is reasonable to define 
this curve as the geometric locus of points in the 
(J, w) plane for which k' = w'c-1R. If t!.(w) = ~'(w) 
- 1 « 1 we have approximately J = .J (t!. + l!.' )/ 2, 
where ~ = l!. ( 2w - w0 ). The intensity distribution along 
the curve is determined by the factor F2(w/wo)/~"(w' ). 

With increasing strength of the field impinging on 
the atomic system the saturation factor also increases, 
and processes come into play that are associated with 
the conversion of three strong-field quanta into spon­
taneous parametric fluorescence energy. The frequen­
cies of the emitted quanta obey the energy conservation 
law: 3w 0 = w1 + w2 + w 3• This is a sixth-order pertur­
bation-theoretical process that is described by the dia­
gram in Fig. 2. When l » .\ it is in principle impossi­
ble to distinguish spectroscopically between the con­
tributions of the four-photon and six-photon processes 
to the fluorescence spectrum. Nevertheless, for large 
values of "detuning" ( U/ym » 1: Rayleigh scattering) 
the six-photon processes lead to spectral broadening of 
the radiation traveling through the medium. To calcu­
late the "halo" appearing about the incident frequency 
w 0 we can replace the R matrix in Eq. {7) with a term 
corresponding to the diagram in Fig. 2. By a standard 
calculation in which terms of the order rm/G are 
dropped we obtain the power scattered in a unit solid 
angle around the direction of the wave vector k within 
a frequency interval l!.w: 

w=w4D2sin211J . ~[ (DE/2fi)2 ]3 
c3 n (wo-wm,) 2+Vm2/4 

X 2 ("~'=)2 1 Vm (10) 
y;;;-" n ( w - wo) 2+ Vm2 

which is valid in the vicinity of the frequency Wo. Thus 
the "halo" around the scattered line ( n >> ym) is of 
Lorentz ian form and of width ym. 

In the opposite limiting case .\ » l there is inter­
ference between the radiation from different sources, 
and light can be scattered only in directions satisfying 
the synchronism condition 3ko = k 1 + k2 + k3.[ll] This 

w 

k;,w; k;,w; 
FIG. 2. A diagram describing the three-photon scattering. kj, Wj; 

k: w:U = I 2 3) are the wave vectors and frequencies of the absorbed 
]' J ' ' . . 

and emitted quanta; Wj (j = I, 2, 3, 4, 5) represents the energies of mter-
mediate states. 

equation in conjunction with energy conservation deter­
mines in the ( w, J) plane a region I 3ko - k1l « I k1l 
+ I k2l of high scattered light intensity; this can be 
called the tuning region. For l!. ( w) « 1 the tuning 
curve lies inside the tuning region. Thus the six-photon 
processes appear as a background when four-photon 
fluorescence is observed. 
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