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The thermal equation of state of n-pentane near the critical liquid-vapor point are investigated by 
experimentally studying the gravitational effect. The form of the top of the coexistence curve, the law 
governing the variation of the isothermal compressibility, and the shape of the critical isotherm are 
analyzed. The exponents {3 = 0.35 and y = 1.25 are determined directly from the experimental data, 
and the exponent o = 5 is calculated. It is shown that measurements of the gravitational effect yield 
the three ''critical exponents'' needed for the verification of the new theories of the critical state of 
matter. 

THE ideas concerning the nature of the critical state 
of matter and the behavior of thermodynamic functions 
in the vicinity of the critical point have recently been 
greatly altered. A number of investigators believe that 
the classical theory of critical phenomena is incapable 
of explaining all the available experimental data[1 ' 2 J. 

In the proposed new phenomenological theories, it is as­
sumed that essential singularities exist in the thermo­
dynamic quantities at the critical point. The character 
of these singularities should be established experimen­
tally by determining the thermal and caloric equations 
of state of matter in the immediate vicinity of the criti­
cal point[3 J. Such data are necessary also for the veri­
fication of the new statistical model of the theory of 
critical phenomena. 

In practice, the form of the equations of state is es­
tablished by using experimentally investigated sections 
(T = const, p = const, etc.) and the characteristic lines 
on surfaces corresponding to the equations of state. To 
this end it is possible to use precision data on the tem­
perature dependence of the specific heat, on the shape 
of the top of the coexistence curve, on the temperature 
variation of the isothermal compressibility, on the shape 
of the critical isotherm, etc. 

In the aforementioned phenomenological and statisti­
cal theories it is customary to describe the behavior of 
the thermodynamic quantities along characteristic lines 
on surfaces corresponding to the equations of state, and 
along their most characteristic sections near the criti­
cal point with the aid of power-law equations. The sta­
tistical theory gives numerical values for the ''critical 
exponents," and the new phenomenological theory only 
establishes the connections between them. The presently 
developed theory of scale transformations proves that 
there exist only two independent "critical exponents" [4 J. 

Thus, to verify any new theory of critical phenomena it 
is necessary to have experimental data on the behavior 
of at least two thermodynamic quantities along two cross 
sections or characteristic lines as the critical point is 
approached. The availability of precision data on three 
or more thermodynamic properties, naturally, makes it 
possible to carry out not only a more detailed verifica-
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tion of the theory, but to establish the internal consis­
tency of such data. 

An analysis of the published experimental data ob­
tained by various authors indicates that each investiga­
tion is devoted to some one particular property. Owing 
to the use of different experimental procedures, these 
data are not very suitable for our problem. In our 
opinion, to verify new theories of the critical state of 
matter it is necessary to have precision investigations 
of the behavior of at least two or three thermodynamic 
quantities, carried out in the immediate vicinity of the 
critical point with the aid of the same experimental 
apparatus. In our earlier papers we have pointed out 
that for a simultaneous study of the shape of the binodal, 
the law governing the isothermal compressibility, and 
the shape of the critical isotherm, it is convenient to 
use measurements of the gravitational effect. In gen­
eral, on the other hand, data on the gravitational effect 
make it possible to carry out a more complete verifica­
tion of new theories, since they can be used to establish 
the entire thermal equation of state of matter near the 
critical point. 

We have previously investigated the form of the 
binodal and the behavior of the isothermal compressi­
bility of benzene near the critical point[sJ. In the pres­
ent paper we present the results of a study of pentane, 
obtained with the aid of the same procedure. In the ex­
periments with the pentane we succeeded in coming 
closer to the temperature of the critical point. In addi­
tion, we have extended the number of investigated limit­
ing laws governing the behavior of the thermodynamic 
functions. Investigations were carried out with normal 
pentane of brand KhC h (chemically pure). 

The procedure consists of three independent but 
simultaneously employed measurement methods: 

1) The Toepler method, which makes it possible to 
determine the distribution of the gradient of the refrac­
tive index along the height of a vessel at each given 
temperature. 

2) The reference-prism method, which gives the ab­
solute value of the refractive index of a substance at 
two points of a chamber. 
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3) The method of free microscopic floats, which 
makes it possible to measure the local values of the 
density at several points of the vessel. 

The foregoing three methods, which supplement one 
another, ensure elimination of systematic errors and, 
what is particularly important, make it possible to 
measure simultaneously and independently both the den­
sity of the medium itself and the derivative of the den­
sity with respect to the height of the vessel. 

To eliminate systematic errors of the measurement 
of the gravitational effect in pentane we first measured, 
just as in the case of benzene, the refractive index of 
pentane in a wide interval of temperatures, including a 
detailed determination of n in the region of the critical 
point. Figure 1 shows the results of the measurement 
of the refractive index of pentane along the coexistence 
curve. The data near the vertex of the binodal, i.e., 
under conditions when a noticeable gravitational effect 
exists in the medium, correspond to layers of the med­
ium locating directly at the meniscus. The numerical 
values of n at the meniscus were obtained by reconciling 
the measurements made by the Toepler method with the 
measurements of the refractive index, performed with 
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FIG. I. Temperature dependence of the refractive index of coex­
isting liquid and vapor n-pentane. 

the aid of reference prismsl6 J. It is interesting to note 
that the linear-diameter rule holds for the refractive 
indices of the liquid and vapor pentane actually holds 
near the critical point, up to the very temperature at 
which the meniscus vanishes. This fact facilitates the 
determination of the refractive index in the critical 
state. The refractive index of pentane in the critical 
state turned out to be ncr = 1.1275 ± 0.005. 

Data on the temperature dependence of the refractive 
index together with the corresponding tabulated values 
of the density show that the Lorentz- Lorenz refraction 
increases monotonically with temperature. The values 
of the refraction of pentane in states close to critical 
were determined from simultaneous measurements of 
the height distribution of the refractive index, carried 
out by the Toepler method and by the method of refer­
ence prisms, and the local values of the density, deter­
mined by the microfloat method. In a narrow tempera­
ture interval, where an appreciable gravitational effect 
is observed, the specific Lorentz-Lorenz refraction of 
pentane turned out to be practically constant at r cr 
= 0.357 cm3/ g, whereas for liquid pentane at room 
temperature its value is r = 0.350 cm3/g. 

Under conditions close to critical, using the obtained 
value of the refraction and the refractive index measured 
directly at the meniscus, we calculated the top of the 
phase equilibrium curve in terms of the coordinates p 
and t (see the table). It is of interest to note that for 
the densities of the truly coexisting layers of liquid and 
gas, the rule of linear diameter turns out to be valid up 
to the very critical point. The use of this rule together 
with direct measurements of the density of the investi­
gated substance at different heights and different tem­
perature has made it possible to determine the coordin­
ates of the top of the binodal of pentane: r cr = 0.232 
± 0.001 g/ cm3 and tcr = 196.46 ± 0.01 o C. 

The vertex of the binodal, constructed in a double­
logarithmic scale (Fig. 2), makes it possible to estab­
lish its exponent. As can be seen directly from the 
figure, in a temperature interval 2.0 
< -log(IT- Tcri/Tcr) < 4.0, all 25 experimental points 
fit well a straight line with a slope {3 = 0.35 ± 0.02. The 

Temperature dependence of the refractive indices at 
densities of the corresponding liquid and gas at the 

meniscus near the critical point of n-pentane 

t, 'c Pg• g/cm' 

I94.82 -I.64 I. I645 I .09I3 0,2972 0. I676 
194,9I -I.55 1.1643 I.09I4 0,2968 0. I678 
I95,43 -I.03 I. I594 1,0958 0.2883 0.1757 
195.51 -1).95 1' 1576 1.0977 0,2852 0,179I 
195.76 -Q.7o 1,1545 1,1009 0,2798 o, I849 
195.88 -o.58 1,1533 1.1016 0.2777 0 .. 1861 
195,97 -0.49 1.1518 1.1030 0,2750 0.1886 
195,99 -0.47 I.I5I5 1' 1036 0,2745 0.1897 
I96.03 --0.43 1,1499 1 '1043 0.2717 0,1909 
196,04 -0.42 1,1498 1.1047 0.2715 0.1917 
196,05 -Q.41 1,1496 1.1049 0.2712 0.1920 
196.06 -0.40 1,1495 1.1053 0.2710 0.1927 
I96.10 -0.36 1.1489 1.1060 0,2700 0.1940 
196.12 --0.34 1. I487 1.1062 0.2696 0,1943 
I96,16 --0.30 1.1481 1,1064 0.2686 0.1947 
196.18 -0.28 1,1472 1.1076 0.2670 O.I969 
196.25 --0.21 1.1454 1 '1093 0,2638 0.1999 
196.26 --0.20 1.1450 1.1096 0.2631 0.2004 
196.33 --0.13 1.1419 1.1122 0.2577 0.2051 
196.35 --0.11 1,1415 1.1138 0,2570 0.2079 
196.38 --0.08 1 ,I402 1,1159 0,2547 0,2117 
I96.41 --0.05 1,1380 1.1173 0.2508 0.2142 
196,44 --0.02 1,1366 1' 1184 0.2483 0.2161 
196,46 0 1.1275 1.1275 0.2320 0.2320 
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FIG. 2. Top of the coexistence curve of n-pentane, plotted in a log­
log scale. 

experimental points obtained closer to the critical 
point are subject to much larger errors in the deter­
mination of (Tcr- T)/Tcr; these errors are directly 
reflected in the plot of Fig. 2. However, even when 
these errors are taken into account, the obtained ex­
perimental points cannot lead to an increase of the slope 
of the straight line, as would be necessary to obtain 
agreement with the classical theoryl7 J. To discuss the 
remaining results it is therefore logical to use the 
thermal equations of state, which follow from the new 
phenomenological theories. 

The most perfect is the Widom-Griffiths equationl3 J, 

which can be written in the form 

~'f-1t16-lth(-"t-) 
C!'er- ~ ~ lsi''~ ' ( 1) 

where t.cp is the difference between the specific Gibbs 
potential at the arbitrary point cp( p, T) and its value on 
the critical isochore cp( p cr, T), cp cr is the value of the 
specific Gibbs potential at the critical point, 
~ = (P- Per)! Per is the relative change of the density, 
and T = (T- Tcr)/T cr is the relative change of the ab­
solute temperature. 

This thermal equation makes it possible, in accord­
ance with the experimental data, to vary somewhat the 
character of the singularities of the thermodynamic 
quantities at the critical point and to modify the des­
cription of the behavior of these quantities in its vicin­
ity. However, a comparison of the Widom- Griffiths 
equation with the entire aggregate of experimental data 
on the thermal equation of state is made difficult by the 
uncertainty of the function h( T/ I~ 11/ t1). 

It seems to us that the following equation 

(2) 

where the notation is the same as in (1), and in addition 
a> 0, b > 0, y ~ 1, and o > 1 (y and o need not neces­
sarily be integers), while allowing sufficient freedom in 
the choice of the character of the singularities of the 
thermodynamic quantities and having sufficient certainty 
of the functional relations, is the most suitable for the 
discussion of the experimental data on the thermal equa-

tion of state in the region of the critical poine>. A short­
coming of this equation is the postulate that the singu­
larities occurring in the sections p = p cr and T = T cr 
are additive. In this sense, Eq. (2) is a generalization 
of the equation of Landau and Lifshitzl7l. 

Equation (2) with T < T cr has an analytic continua­
tion in the metastable and unstable regions. Therefore 
to find the densities of the coexisting phases at a speci­
fied temperature it is necessary to use the conditions 
that the specific Gibbs potentials and the pressures be 
equal. The coexistence curve is obtained in the form 

(3) 

hence the "critical exponent" of the phase-equilibrium 
curve turns out to be f3 = y / ( o - 1), in agreement with 
the conclusions of the theory of Widom and Griffithsl3 J 

From (2) we can obtain an equation for the isothermal 
compressibility of the medium KT, in the form: 

~=(~) ='l'cr{!...[ ~q>]} =(jlcr{ai,;I?-Lt+bl£16-1}. (4) 
p Kr 8p r Per 8s <fer T Per 

At a fixed temperature, when T > T cr• the quantity p 2KT 
reaches its maximum value on the critical isochore, but 
if T < T r the maximum is reached on the coexistence 
curve. ffor T > T cr we obtain the following equation for 
p 2KT along the critical isochore: 

1 'l'crll <Per -,-=a- ' 7- 1(-r)=a-r?. 
Per K,. Per p cr 

(4a) 

Along the coexistence curve at T < T cr• the relation 
for p 2KT is of similar form: 

1 ({ler 1)( )' --=a~(ll- -r . 
p2Kr Per 

(4b) 

We emphasize that the obtained form of the laws for the 
coexistence curve (3) and for the isothermal compressi­
bility ( 4) is overdefined by the assumption of additivity 
of the singularities over the cross sections p = Per and 
T = T cr• an assumption used in writing down Eq. ( 2). 
From the assumption that Eq. (2) is valid, it follows 
also that the exponents y and the coefficients a in the 
equations governing the isothermal compressibility, 
( 4a) and ( 4b) are equal. 

The ''critical exponent'' y can be determined from 
simultaneous measurements of the local values of the 
density and of the refractive- index- gradient distribution 
curves. According to the theory of the gravitational 
effect, p 2KTg = -(Bp/Bz)T. The density gradient is de­
termined directly by the Toepler method from the in­
clination of the rays t.a in the focal planel9 J: 

6n 
-:-..,-..,:-;:-,-=~ I'> a. 
r(n2 + 2)'Wf ' 

(5) 

here n is the refractive index, r the specific refraction, 
f the focal length of the objective of the Toepler optical 
system, W the horizontal thickness of the investigated 
layer, and z the vertical coordinate of the layer. The 
factor 6n/r(n2 + 2) 2 varies only 3-4% in a temperature 
interval on the order of 200°, and in the vicinity of the 
critical point, where the gravitational effect is ob-

llEq. (2) is similar to the equation proposed by Alekhin and 
Chalyi [8 ]. 
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FIG. 3. Temperature dependence of the quantity (maxlllalr1 , 

which is proportional to the reciprocal of the isothermal derivative 
p 2 KT of the thermal equation of state. 
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FIG. 4. Temperature depend­
ence of (maxlllalr1 co p 2 KT in a 
log-log scale. 

served, it can be regarded as a constant coefficient. 
Thus, the quantity p 2KT, which is a derivative of the 
thermal equation of state, turns out to be proportional 
to the directly measured inclination ~a in the region of 
the critical point. 

For an experimental determination of the exponent y• 
in the equation for (p 2KTf1 in the high-temperature 
region along the critical isochore, it suffices to estab­
lish the law governing the variation of the inverse quan­
tity, max /~a/, on approaching the critical temperature. 
The determination of the analogous exponent yi reduces 
to an analysis of the change of (max J~al)- 1 in any of the 
phases, at temperatures below critical. Figure 3 shows 
the experimental temperature dependence of the reci­
procal quantity max J~aJ for a liquid at T < T cr• in the 
analogous relation for the high-temperature region. 
The nonlinearity of the discussed laws contradicts the 
predictions of the classical theory. 

To find the exponent in the equations for the tem­
perature dependence of p 2KT, just as in the analysis of 
the coexistence curve, it is convenient to use a log-log 
scale. It is seen from Fig. 4 that in the temperature 
interval2.5 < -log(J~Ti/Tcr) < 4.0, all the experimen­
tal points lie, within the limits of measurement accur­
acy, on two parallel straight lines with slope y• ~ y-
= 1.25 ± 0.10, which is in fair agreement with the pre­
dictions of the new statistical theories. 

We were unable to measure directly the critical 
isothermal with the required accuracy, even using our 
own method, owing to the difficulties in measuring large 
deflections of the optical rays near the critical point. 
Therefore, to find the exponent of the critical isotherm 

we have employed a somewhat indirect method, based 
on the use of Eq. (2) or, more accurately, of Eqs. (4a) 
and (4b) that follow from (2). Dividing the second of 
these equations by the first, we obtain for equal values 
ofiT-Tcrl 

(6) 

The exponent of the critical isotherm, calculated on the 
basis of (6), turned out to be close to o = 5, which dif­
fers appreciably from the classical value o = 3 and 
coincides with the results of the analysis of the experi­
mental data of some other workerslloJ. The error in 
our method of the determination of the exponent o was 
much larger than in the case of the determination of {3 
and y. Taking into account the average error, we should 
assume o = 5.0 ± 0.5. 

Thus, from experimental data on the gravitational 
effect in pentane, we have obtained the exponents of the 
coexistence curve and of the isothermal compressibility, 
and also the exponent of the critical isotherm. This 
raises the question whether these exponents can be re­
garded as ''critical exponents'' of the limiting laws. In 
other words, we can expect changes in the numerical 
values of these exponents on coming closer to the criti­
cal point and when the latter is determined more accur­
ately. 

In our opinion, a comparison of the plots of the 
properties measured at T < T cr with those measured at 
T > T cr indicates that an increase in the accuracy 
with which the critical temperature is measured will 
have no significant influence on the exponents of the in­
vestigated laws in the investigated temperature inter­
vals. At the very most, the width of the absolute error 
may slightly increase. As to the influence of a closer 
approach to the critical point, we can advance the fol­
lowing argument. In the investigations of pentane we 
have succeeded in coming closer to the critical tem­
perature point by approximately one order of magnitude 
than in the case of the investigation of benzenel5 J. This 
had no noticeable effect on the form of the discussed 
laws. Within the limits of errors, the measured numer­
ical values of the exponents {3 and y were the same for 
both substances. This gives grounds for expecting the 
obtained exponents to retain the same value also closer 
to the critical point. 

By determining with the aid of identical measure­
ments the two critical exponents f3 and y and by calcu­
lating the third critical exponent o, we can verify the 
relations between them, proposed by Widom, and to 
calculate the two fundamental critical exponents of the 
theory of scale transformationu-4J. Widom' s relations 

(7) 

are satisfied in the best manner if, within the limits of 
errors of our measurements of both pentane and ben­
zene, we assume the following critical exponents: 
f3 = 0.33, y = 1.3, and o = 5. From the Pokrovski1 re­
lationl4J 

3-x 
!3=-­

y 
2x-3 

y=---, 11=--x-
Y 3-x 

we get x = 2.49 andy = 1.53. 

( 8) 

Using the formulas from Pokrovski1' s table, we can 
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calculate the remaining critical exponents. All are close 
to the results of calculations of the three- dimensional 
Ising model. It seems to us, however, that there are 
still no grounds for assuming that the Ising model is 
fully representative of reality. At the same time, we 
wish to emphasize that further precision investigations 
of the gravitational effect can contribute to a solution of 
this problem. 
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