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We consider the influence of relaxation processes on the coherent interaction between electrons of a 
semiconductor and a strong electromagnetic wave. The coherence parameter is assumed to be the 
gap in the energy spectrum of the electron excitation. As shown in c1J, this gap is due to the external 
field that causes transitions between the valence band and the conduction band. The Keldysh diagram 
technique for non-equilibrium processes C6 l is used to obtain a system of equations for the Green's 
functions and the particle distribution functions, with allowance for recombination, electron-phonon 
interaction, and T * 0. The Green's functions and the kinetic equations for the quasiparticles are 
obtained in the strong-field approximation. The damping and the spectrum of the excitations are cal­
culated. It is shown that in a definite temperature interval, the electron-phonon interaction has prac­
tically no influence on the gap, and the damping is small. Consequently, in order for a gap to exist in 
a pure semiconductor, it suffices to fulfill the regularly-satisfied condition that the frequency of the 
transition of the electrons between the bands exceed the recombination probability. The problem of 
absorption of a strong external field (the saturation effect) in semiconductors is solved. 

IT is known that the character of the interaction be­
tween a strong electromagnetic field and two-level 
systems depends on the ratio of the time required to 
destroy the coherence by the relaxation processes to 
the time of transition of the electrons between the lev­
els under the influence of the field. An estimate of this 
ratio in semiconductors entails great difficulties, in 
view of the complexity of the interaction between elec­
trons and crystals. At the same time, this problem must 
be solved for a better understanding of the operation of 
semiconductor quantum generators, amplifiers, and 
converters at high intensities of the electromagnetic 
field. 

The parameter of the coherence of the interaction 
with the field in the semiconductor is customarily 
chosen to be the gap in the spectra of the electronic 
excitations; this gap, as shown in c1 \ is a result of the 
action of the external field producing transitions between 
the valence band and the conduction band. Then the prob­
lem of the disruption of the coherent interaction with the 
field reduces to a calculation of the gap and of the damp­
ing of the electron excitations, and can be solved with the 
aid of the effective methods developed in superconductiv­
ity theory. C2-4l It was shown in this manner in csJ that at 
T = 0 and in the absence of recombination the electron­
pP,onon and the electron-electron interactions practically 
leave the gap unchanged, and the damping of the excita­
tions is small. The latter is connected with the fact that 
the electrons taking part in the interband transitions are 
near the Fermi quasilevel. 

The purpose of the present paper is to find the spec­
trum and the damping of the excitations at T * 0 and 
with allowance for recombination, which plays the prin­
cipal role. The main difficulty of the problem lies in the 
fact that the system is essentially not in equilibrium. 
The electron distribution function differs from the equi­
librium Gibbs distribution because of the action of the 

strong external field. By strong is meant a field in 
which the electron-hole pairs are produced more rapidly 
than they recombine. To describe such a state, it is 
necessary to solve a simultaneous system of equations 
for the Green's functions and for the distribution func­
tions; we obtain this system with the aid of the diagram 
technique developed in the well known paper of Keldysh. c6J 

The Keldysh method is very convenient for the problem. 
It makes it possible not only to find the spectrum and 
the damping of the excitations, but also to determine the 
saturation of the absorption in the semiconductors. The 
main result consists in the following. In a definite tem­
perature interval, for a gap to exist in a pure semicon­
ductor it suffices that the field be strong in the sense 
indicated above, i.e., that the frequency of the transi­
tions of the electrons between the bands exceed the re­
combination probability. 

We consider in the paper the model of two symmet­
rical bands with direct optical interband transitions and 
with a quadratic dispersion, and use the system of units 
in which fi = c = m = 1. 

1. FORMULATION OF PROBLEM. HAMILTONIAN OF 
THE SYSTEM 

We consider a semiconductor in the field of a strong 
electromagnetic wave 

E(t) =Eosin (Qt-kr), kEo=O, 

with frequency n exceeding the width of the forbidden 
band f5. The field is assumed to be turned on at t - - oo. 

Following the Keldysh method, c6J we determine the den­
sity matrix of the system p(t) from the equation 

i ~~ =[H;(t) p (t)] _ ""'H;(t) p(t)- p(t)H;(t) (1) 

with boundary conditions 

328 
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p(t= -oo) =Po= exp {'I'o- H,(-oo) IT}, (2) 

where 'I!F0 is the total free energy, H(t) =H0 + Hi(t) is the 
Hamiltonian of the system, and 

Ho= E n .• (a.+(t)a.(t)+ b.+(t)b.(t)) 

+"-.a.+(t)b.+(t)+t..'b.(t)a.(t)} +Hr. (3) 

In (1)-(3) we have performed the unitary transformation 

U(t)= exp{- i ~~ E (a.+a.+ b.+b.) }. (4) 

• 
which transfers the explicit time dependence from H0 to 
the interaction energy Hi(t). The first term in H0 is the 
energy of the noninteracting electrons and holes, the 
second describes the resonant interaction of the elec­
trons with the electromegnetic field, and the third the 
Hamiltonian of the thermostat with which the system 
in question is in contact. Here 

~. = p' I 2 - p.Z I 2, p,Z = Q - 8 (5a) 

is the dispersion law and 

(5b) 

is the matrix element of the transition between the va­
lence band (v) and the conduction band (c). The quantity 
Ap is henceforth assumed constant. This is valid near 
the edge of the band, inasmuch as for allowed transi­
tions the matrix element Vcv depends little on the quasi­
momentum p. In (3), we neglect the wave vector k com­
pared with p. 

The operators for the creation of electrons aJi(t} and 
holes bp(t) satisfy the free equations of motion 

oa +(t) ob +(t) 
i___..!__ot =[a,+(t)Ifo]-, i-0--=[b•"(t)Ifo] .. , (6} . at 

i.e., they are defined in the interaction representation. 
The interaction energy operator 

ll,(t) = H,, + H"(t) +lie.. 

includes the interaction of the electrons with the pho­
nons: 

•• 
(7) 

The interaction with thermal photons, producing radia­
tive recombination: 

•• 
and the interaction of the electrons with one another and 
with the holes Hee· Here cq(t) and di{(t) are the phonon 
and photon creation operators, 

2 ( ) • n2s 1/ 2;:( 
g q =~-v q, ilf.=e v-(ev,v), 

Po w. 

?;0 is the Frohlich parameter, s the speed of sound, V 
= 1 the normalization volume, and Wk the energy of a 
photon with polarization e. 

(9} 

The Hamiltonian H0 can be diagonalized by a canoni­
cal transformation: [11 

u.', vp' = 1l2(f ± s. I e.), e.= l'~•' +it. I', (10} 
Ifo= Ee.(a.+a. + ~.+~.), 

p 

where the quasiparticles a and (3 are superpositions of 
an electron and a hole. 

We are interested in the state assumed by the sys­
tem within a time larger than the relaxation time, when 
the system "forgets" the initial state. As shown in [SJ' 

the system is described by four Green's functions: elec­
tron Ga, hole G\) = Ga = G, and the Gor'kov function F + 
and F, which characterize the creation and annihilation 
of the electron-hole pair. In the presence of recombina­
tion, knowledge of only these functions is insufficient, 
since we need equations describing the distribution of 
the particles in the nonequilibrium state. To obtain the 
complete system of equations, we use the Keldysh 
method [61 in which, besides the causal function, there 
appear also three Green's functions defined in the fol­
lowing manner: 

G'{pl, p'l') = -i Sp {roTc[a.(t+)a,,.+(t. ')Sc)}, (11} 

li'(pt, p'l') '~~ -i Sp {ro1'cl17.(t. )a,,+(t_')Sc]}, 

G±(pt, p't') = -i Sp {r,Tc[a,(t±)a,.+(f/)Sc]}. 

(12} 

(13} 

Here Sc is the scattering matrix defined along the con­
tour C passing over the entire time axis from -oo to 
+ 00 (t+), and then back to +octo -oo (t_); Tc denotes or­
dering along the contour C. The functions a± repre­
sent the particle distribution function written in differ­
ent forms. We define the functions F + and F in the form 

F+'(pt, p't') = Sp {poTc[b0 +(t+)a0,+(t/)Sc]}, (14} 

F+±(pt, p't') = Sp {poTc[b0 + (t±)a.,+ (t'F')Sc]}, (15} 

F'(pt, p'l') = Sp {p,Tc[ap(t+)b •. (t+')Sc]}, (16} 

F±(pt, p't') = Sp {p,Tc[a.(t±) b0·(t'~'')Sc]} (17) 

and the remaining ones correspondingly. In similar 
fashion we define also the Green's function for the Bose 
particles, particularly the causal phonon Green's func­
tion 

Dt'(qt, q't') = -ig'(q) Sp {p,Tc[<p.(t+)cp •• (t+')Sc]} (18) 

and the causal photon Green's function 

(19} 

2. SYSTEM OF EQUATIONS FOR THE GREEN'S 
FUNCTIONS AND THE DISTRIBUTION FUNCTIONS 

Equations of the Dyson type were obtained for the 
saturation state in [sJ without allowance for recombina­
tion, and at T = 0, with the aid of a diagram technique 
used in the superconductivity theory. [2 • 31 In this section 
we present equations with allowance for recombination 
and T * 0, derived with the aid of the Keldysh diagram 
technique for non-equilibrium processes. We note that 
the applicability of the Wick theorem in the expansion 
of the T-products of the electron operators in the inter­
action representation can be demonstrated directly by 
changing over to the quasiparticle operators a and (3. [5• 11 

By replacing the vertex function with a simple vertex, 
which is valid for the electron-phonon interaction, by 
virtue of the smallness of the parameters sjp0 and the 
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condition A« p~ (see [5l}, and for the electron-photon 
interaction by virtue of the weakness of this interaction, 
we obtain the following system of equations: 

(w- s.- ~'(w))G'(pw) = 1- iF+'(pw) (f.+ F') 
-j-iF+-.F+-G-(pw)~+(w), {20} 

(w + s. + ~'(-,w))F+'(pw) = iG'(pw) (t.' + F+') 
-j-F+-~-(-(j))- iG-(pw).F+-, {21) 

(w- s. + L'(w))G-(pw) =-iF+ -(pro) (f. -Jh 
- iF+'.F- + G'(pw)~-(w), (22) 

(w -6,-~'(w))G+(pw) = -iF++(pw) (t.+ F') 
+ iF+'.F+- G'(pw)~+(w), (23) 

(w + s.- :fo(-w))F+-(Pw) = iG-(pw) (t.'- if..')- F+'~+(-(j)) 
+ iG'(p,w).F+-, (24a) 

(w- 6. + f'(w))F-(pw) = -iG+(p, -w) (t. -F') 
-j-F'~-(w) -iG'(p,-w).F-, {24b} 

where 

~'(w) = ~/((!))- ~,'(-w), ~-(w) = ~~-(w)- ~,+(-(!)), {25) 

~+(w) =~/(w) -~,-(-w), ~''(w) =-~'(w); 

, r, e- ( i J ,. d ~- +' c ± 't co)=--- a·•q 1 ·w·•__,--- 1 p--q~,c·J-c••:)D:' (CJt,C•li); 
~ (2rr} 4 ' 

. {26} 
~;-±(co)=-'-S d3ki dwi G'·"'(p- ki, w- Q-!- w,)D~·"' (kiwi). 

(2rr} 4 

-:-:;-~- 1 J d3 d F '· ± ( ) D 0 ' ± ( ) F1- (w)=--- qi -WI'+ p-q~,w-wi t q,mi. 
(2n) 4 

From {20} and {21) we see that they differ from the 
equations in [5J in the fact that to each integral term 
there is added, with the negative sign, a similar term 
made up of the functions G± and F±. It can be shown 
(see below) that these terms vanish when T = 0 and 
1/Tr = 0. Thus, the approach used in [5J is justified. 

We derive first equations for the distribution func­
tions. Adding Eq. {22) with its Hermitian conjugate, 
and taking into account the relations 

~'-!- ~· = ~+ + L;·-, iJ' + G' = G+ + G-, 

we obtain 
G-(pw)~+(w)- C+(pc·>)l.:-·(w) + i(F.,oP- + F'}\-) 

-- i(F-P +' + F+--P') = i(t.'F- -- /.F+-). {27) 

It is necessary to add to this equation the expressions 
for F~ and F-: 

(21;.- S'(-w) + ~·(w))F,-(p6l) =it.'(G-("l) -j-C+(--w)) 
- iG-(w)F,' -j- iG+(-w)F'+'- F+'l.:+(-co) + f.\'2:-(w) 

-j- i.F+-(G''(w) -j- C'(-o) ), {28} 

(2~, + ~'(--<o) -- 1'(cu}}F--(pcu) 
= i!.(G-(Ctl) -j- G+ ( -w)) + iG ·(w)F·- iG · (-u>)f'• f F'2.:+(-c·l) 

- F'L;- (c•l) - iJ!- (C' (w) -1- G• (-co)). {29} 

Equations {27)-{29) make it possible to obtain the ki­
netic equations under the assumptions that they exist, 
i.e., under the condition that the interaction be small. 

In accordance with the assumption that the interac­
tion is small, we should calculate the functions ~ and 
Fin first order in the interaction, i.e., substitute in 
{27)-{29) Green's functions satisfying the free equations 
but normalized to the still-unknown electron distribution 
function fp by the following conditions: [SJ 

= J (G+(pw) --- G- (P<tl)) dw ~-c 2rri, 

We write the zeroth Green's functions in the form 
(see [TJ) 

c.-(Jlcu) = -2rri[(1- n.)u.'li(w- e.)+ n.lJ.'Ii(w +e.)], {31} 

G,+(pw) = 2rri[n.u/1i(c•l- e.)+ (1- n.)P,'1i(c•J + r.)J; 

Gc(w)= w--i-£. 
0 p (c·,-~,-j-i(\)(c•J+~,-i6) 
+ 2nin.(u.21\(w- e.)- v/li(w +e.)), {32} 

( 6 - + 0) etc., and the functions F 0 are expressed in 
terms of G0 with the aid of the equations {20}-(24). We 
have introduced here a function np, having the meaning 
of the distribution function of the quasiparticles a and 
(3. It is connected with fp by the relation 

{33} 

To calculate~ and F, we should determine also Dfo 
and Dro· Assuming that the phonons are in thermody­
namic equilibrium, and that the number of photons is 
equal to zero, we get 

D1,±(qw) = -2nig'(q) {(1 + N.)6(w ± w.) + N.·6(w + (!).)}, 
{34) 

where Nq = [ exp (wq /kT} - 1 r 1 is the Planck distribu­
tion fullJ!tiOn. 

Let us substitute in {27} the difference A*F-- .\F:, 
determined from {28} and {29); we then obtain after cer­
tain calculations the kinetic equation for the quasipar­
ticles: 

(!!!:..) = 2n 
iJt f 

q; i, j=l, 2 

+ N.l\(e;. + eiP+• +w.) J <P(ip,jp + q), {35} 

( 8~) =n ~ M.2(-1)iu;/u~•+•n;.n;o~-•ll(w.-Q-e;p-e;•+•), 

where 

k; i, j=l, 2 

<P(1p, 1p') = -<P(2p', 2p) = (v.u.,- v.,u.)', 

<P(1p., 2p') = -<D(2p', 1p) = (u.u., -j- v.v.,)', 

This equation coincides with that derived in [BJ by the 
Bogolyubov method. 

The Green's functions {32) in conjunction with the ki­
netic equation {35} yield the solution of the problem for 
weak interactions. We note that the recombination inte­
gral can be simplified: 

( i'in) 1 1 4 fit ,=--:r,:-[v.4(1-n.) 2-n.2u.4]; ~~ 3e2 lvcvi 2 Q, {35a) 

by omitting small terms of the order of Pok/Q. Let us 
consider some limiting cases. 

If there is no recombination, then we obtain from the 
condition that (on/ot}f must vanish, but np is the Fermi 
function with a potential equal to zero:[lJ 

n.= [e'•'• -j- 1]-'. {36} 
When T = 0, the function n vanishes, and the Green's 
function {32} coincides wi~ the expression obtained in 
[ 5J. This proves that the Landau theory in the satura­
tion state is valid. If recombination prevails (Tr << Tf), 
then, by equating the integral {35a) to zero, we get[BJ 

{37) 
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In this case the Green's function (32) and the distribu­
tion function are respectively equal to 

u ~ v 2 
Go• (pw) = ---• -.- -1- • . 

IJl - tp -j- tb (J) -j- Bp - Lb 

+ 2niv.2(u.2 .S(w- e.)-- vl O(w ...J_ ep)), 

t. = 1-.'/2 (6.2 + >.2). 

Let us consider now a situation in which recombina­
tion and quasiparticle interaction with the phonons take 
place simultaneously. We assume that the probability 
of the electron-phonon scattering exceeds the recombi­
nation probability (this corresponds, as a rule, to the 
real situation). In this case, a quasiequilibrium is 
rapidly established for the produced quasiparticles, so 
that the distribution function takes the form 

n. = [cxp {(e.- f.t) / T} + 1]-•. (38) 

The chemical potential of the quasiparticles is obtained 
from the condition for the equality of the number of 
creative and annihilated quasiparticles: 

I: 2nC1J (1p, 1p + q)b(ep + e•+•- u>q) [n, n>+•- N • (1- n,- n•+•}] 
pq 

(39) 

which is obtained by integrating (35) with respect to the 
momentum. At T «A., the number of quasiparticles is 
small and 

( e.-p.J) 
np ~ exp - --T- a, 

In the case when T » A., quasiparticles are produced 
mainly as a result of the temperature (J.J. - 0), and np 
is given by formula (36). 

3. ABSORPTION OF STRONG ELECTROMAGNETIC 
WAVES. SATURATION EFFECT 

The system of equations in Sec. 2 makes it possible 
to solve the problem of the absorption of a strong ex­
ternal electromagnetic field, a problem considered 
earlier in [B-lOJ. We are interested in the absorption of 
energy in interband transitions. We define this absorp­
tion as the time-average of the scalar product of the 
field by the current, and express it in terms of the func­
tions F~ and F- : 

1--- i ~-, Q = -- (j) E(t)=- Q [f.F+-(pw)- A.'F-(pw)]. 
2 2 

(41) 
POl 

We integrate Eq. (27) with respect to the frequency and 
the momenta. We change the order of integration with 
respect to momenta, and using the relation 

D/(-wq) =D,-(wq), 

we obtain the equality 

J {I."F-(pw)- t.F+-(Pw) )cl'pdw = i J (G-(pw)~,-(- w) 

- G+(pc~)};,+(- u>) )d3pdw, (42) 

which expresses the law of conservation of the number 
of electrons. Substituting (42) in (41), we obtain 

Q=-QJdlpdw (G+(pw)~,+(-w)-G-(pw)~,-(-w)). (43) 
(2n) 4 

Expression (43) has a clear cut physical meaning. 

The integral to the right is the number of electrons re­
combining per unit time and multiplied by the energy 
lost in one recombination act. The first term describes 
the loss of particles as a result of recombination, and 
the second the increase in the number of particles as a 
result of absorption of thermal phonons. It follows from 
(43) that absorption is possible only in the presence of 
recombination. Expression (43) is convenient for the 
calculation of absorption of both weak and strong fields. 
In the strong-field case of interest to us, when the re­
combination probability 1/T r is small compared with A., 
it is necessary to choose as the functions G± the zeroth­
approximation functions (31). Substituting them as well 
as the Green's functions of the photons with Nk = 0, we 
obtain 

Q =-Q-s d3 pd3 kM.2 [n.np-k u/u!-.<l(w.- Q- 8p- Cp-k) 
(2n) 5 

+ 2n.(1- n.-•)v.2 u;_. 6(w•- Q- e•-• +e.) 
-j-(1- n,) (1- n•-•)v.2 v:-• b(w•- Q +e.+ e•-•) ], (44) 

where np is determined by the kinetic equation (35). 
Formula (44) makes it possible to obtain the dependence 
of Q on the field, temperature, frequency, and other pa­
rameters. Let us consider some limiting cases. 

1. If Tr « Tf, then np is given by (37) and the absorp­
tion is equal to 

Q ~E._~ 4(u.v.) 4 ~ E._poJA.J , Q ~Eo, (45) 
"t"r ""-" "t"r 8n 

p 

if we omit small terms of order p~/0. A relation of this 
type was obtained earlier in [s,lOJ. 

2. In the customarily realized case Tr » Tf, the func­
tion np is determined by expression (38) and we have for 
Q 

QE Q 
Q ~- v.•=-no, Q=const, 

"'t"r 't'r 
(46) 

p 

omitting small terms of the order of p~/0, A., T/p~. 
Consequently, the absorbed power does not depend on 
the field intensity. This result:{ known as the saturation 
effect, was effect by Krokhin [9 with the aid of perturba­
tion theory with respect to the field, which is not valid 
in our case. However, inasmuch as electron recombi­
nation goes from a phase volume p~ that exceeds the re­
gion of interaction with external field, p0A., then the re­
sults coincide accurate to Ajp~. The situation is differ­
ent in a quantum generator. In the generation regime, 
the principal role is played by the region near p0, so 
that the singularities of the spectrum can greatly influ­
ence the operation of the quantum generator, particu­
larly the gain, the occurrence of mode interaction, 
etc. [HJ 

4. DAMPING AND ENERGY SPECTRUM OF ELEC­
TRON EXCITATIONS 

By following Keldysh, we change over from (20)-(25) 
to a system of retarded Green's functions GR, F~, ad­
vanced Green's functions GA and F~, and correlation 
functions p and p+, which are connected with the previ­
ously introduced functions by the following relations 

en. A (pw)= G'(pw)- G±(pu•), F~,A =F'+' -F+±, (47) 
p(p<•>) = G+(pw) -1- G-(pw), P+(Jlw) = P-'(pu>) =F++(p(J)) -f- F,-(JH•>). 
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As a result we get 

((J)- ~- ~"(ro))G"(p<.ol) = 1- iF+a(pro) (A.+ F"), (48) 

((I)+ so+ l:8 ' (-w))J?+''(pw) = iGn(pw) (~:+}\a), (49) 
(ro- So- rR(ro))p(pro) = -ip+(ro) (A+ P") + GA(pro)l:(ro) - F + AF, 

(50) 
(m- so -l:8 (!:l})p+(Pw) = -ip(p, -w) (1.. + P") 

- GA(-ro)P+F"~(ro). (51) 

The self-energy parts ~Rand~ are expressed in 
terms of the functions GR, F~, p, and p+ with the aid 
of relations (47) and (52): 

l:n(w)=~-(w)-f'(w), F+8 =P+--F+•, 

:E=I++:E-, P=P++P-. (52) 

It is convenient to rewrite (48) and (49) in the form 

Gn( )-- w+s.+:ER'(-ro) F+R(pro)=ti.'+F+R(w) • (53) 
pro - Q(pro) ' Q(pw) 

where 
tl(pw) = (w- 6.- ~"(ro)) (ro + 6. + ~a'(-w)) 

- (i.+F")(i.' +P+"). 

To find the damping and the spectrum of the electron 
excitations in the saturation state, we can simplify 
greatly the solution of the system by taking into account 
the following circumstances. The strong-field condition 
denotes that the frequency transitions between the bands 
A exceeds the recombination time T ~. and therefore the 
electron-photon interaction is small compared with A 
and consequently, compared with the average particle 
energy € ~ p~ (inasmuch as in our case A « p~): 

As to the electron-phonon interaction, in the station­
ary state it is characterized only by the parameter 
(ETff1 ~ t 0, r51 and the difference between the results of 
the exact solution with to Rl 1 and the approximate one 
reduces to an inessential renormalization t 0 • (We note 
that for most semiconductors to << 1.) Consequently, in 
first approximation we can limit ourselves to perturba­
tion theory in the interaction, calculating I;R and~ with 
zero Green's functions (31) and (32), which contain the 
quasiparticle distribution functions satisfying the kinetic 
equation (35). Substituting (31) and (32) in (52), we obtain 
after certain calculations 

It is seen from (54)-(57) that w enters in the denomina­
tor in the combination w + iO. Thus, all the expressions 
turn out to be analytic in the upper half plane of the 
complex variable w, as they should. 

In the isotropic case considered by us, I;R and F~ 
are practically independent of p when p Rl p0 • Let us cal­
culate first the recombination self-energy part I:¥o. The 

real part of I:¥0 does not depend on w and is a correction 
to the chemical potential 

Re l:,,a ~ -•J,e'p,jv,.j'. (58) 

The imaginary part coincides with the recombination 
probability 

Im :E,,a ~ -1/2'f,. (59) 

The function I:r(w) breaks up into an odd part f0(w) and 
an even part IJ.f 0 + if1 (w ). IJ.f contains a component in 
which the essential region of integration is far from 
the Fermi quasilevel. This yields the correction to the 
chemical potential IJ.o = p~/2, which is practically inde­
pendent of the temperature and the recombination. The 
contribution to the functions f0(w) and f1(w) comes from 
the region near p0 • We can therefore change over from 
integration with respect to q to integration with respect 
to q = lql, E =,; ~~ + A2 and with respect to the angle cp, 
where ~pRlp0(p1 - p0 ), p 1 = lp +ql, A= IAI. As a result 
we get 

1 co d 2J>o 

/(ro)=/o(w)+i!I(w)=--J 8 8 J dq·qg2(q){[<1-2n(8)) 
8n2po ~ f82 - 1..2 0 

+cth~][ 1 + i ] 
2T w + e + w. + ill w - e - w. + ill 

[ lllq ] [ 1 1 ]} + cth--(1-2n(8)) + . 
2T 'W + 8- w. + ill w- 8 + w. + til 

(60) 
If n(E) is given by (36), then the function f(w) coincides 
with the expression obtained by Eliashbergr41 with the 
aid of the temperature Green's functions in a supercon­
ductor. Thus, allowance for the nonequilibrium nature 
of the system reduces to the substitution tanh (E/2T) 
- 1 - 2n(E), with n(E) determined by the solution of the 
kinetic equation. 

The real part f0(w) of this equation hardly differs 
from its value at T = 0 and 1/Tr = 0. Let us examine in 
greater detail the imaginary part f1(w): 

1 co d 2.!!.o 

/ 1(ro)=---J 8.8 Jdq·qg2(q){[ (1-2n(e)) 
8npo ~ ie2- ).2 o 

+ cth ;; ] [ll(w + 8 + roq}+ll(ro- 8- wq)] 

+ [cth ;;-(1-2n(e)) ][ll(w+e-wq)+l!(ro-e+wq}]}. (61) 

The first term vanishes when w :s: A.. The second term 
differs from zero at all w, but vanishes when T = 0 and 
l~Tr = 0. We are most interested in the second term 
f a>(w), since this is precisely the term determining the 
damping when w :::; A. We note that in very strong fields 
at A- w > w0= 2po5, the term fi2> also vanishes. In the 
opposite limiting case, A. « w0, the contribution to (61) 
is made by wq ~ T << w0 , and we can write 

/ <2>( ) 2n~""Jd8·e(w2+e2J 
1 w ~-- n(e), 

roo2 ~ "fe2- ').2 
(62) 

Omitting the terms with Nq, which were calculated in [41 • 

Let us consider the low-temperature case, T <<A., 
when n(E) is given by formula (40). We then obtain from 
(62) 

ft21 (co)~ -2n'1•~o- -(ul2+1..2)a < ( T )''• A. 
· 2/, Wo2 • 

(63) 

We call attention to the fact that the exponential de-
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pendence of the damping on the temperature e-A/T is 
replaced by a (T). The physical reason for the abrupt 
increase of the damping lies in the fact that the quasi­
particles are produced as a result of the redistribution 
of the particles under the influence of the external field 
and as a result of recombination, and not temperature. 

If T ~A, then n(E) is determined by formula (36) and 
the damping f~a> is given by the expression obtained 
in r4J: 

Jf'(ro):::::::- 8.2n~o(T/roo) 2T, ro~~. (64) 

Let us calculate now F'Th. The imaginary part of F!t0 

has a structure similar to f1(w). An investigation shows 
that the damping conne~ed with F!\ is smaller than 
f1(w). The real part of F~0 gives the correction to the 
gap~: 

A=~.+ Re F\o"(w). 

The expression for ~ can be written, accurate to 
(T/w0 ) 3, in the form 

(65) 

"' ... d 21!> 1 A="'--.-J. 8 (1-2n(e))ydq·qg2(q)( --
4n•po '· ye2 - i.2 0 e + ro~ + w 

+ e+<•>:_J. (66) 

This result coincides at n( E) = 0 with the equation for 
the gap in rsJ. It is seen from (66) that the increase of 
n(E) as a result of temperature recombination leads to 
a growth of the gap, which tends to the value A. Thus, 
the gap exists in a wide temperature interval. But it 
must be remembered that the very concept of the gap 
becomes meaningless if the damping of the excitations 
becomes comparable with ~. However, if the damping 
is small compared with ~. then we can determine ap­
proximately the gap that depends on the temperature 
and recombination. From a comparison of the damping 
(59), (63), and (64) with the gap (65) it follows that for 
the gap to exist at low temperatures (T <A) it is nec­
essary to have 

i.e., to satisfy the strong-field condition.[5] At high 
temperatures, T >>A, the gap exists if 

(67) 

i, > 8n~o(1' / Wo) 21'. (68) 
The analysis presented in the paper for the model of 

the electron-phonon interaction can be repeated in simi­
lar fashion for the electron-electron and electron-hole 
interactions. In this case there is obtained an additional 
damping analogous to the electron-phonon damping, with 
the substitution 

(see also tlaJ). 
The electron-hole interaction has a somewhat differ­

ent influence on the gap. The equation for the gap at T 
= 0, obtained in the approximation e 3/p0 « 1, is (see [lSJ) 

1- e*2 In(2w./ L\) ' 
(69) 

where We = 2p0 Ke, K~ = 4p0e 3 /1T, e3 is the electron charge 
divided by the dielectric constant. At A = 0, Eq. (69) 
goes over into the Keldysh-Kopaev equation for the gap 
of an exciton insulator. It is seen from (69) that the gap 
increases greatly as a result of the electron-hole at­
traction. 

In conclusion we present typical values of parameters 
of semiconductor lasers based on GaAs: 

in::::::: 0.1m,, n,::::::: 10'8 em-·. Wo::::::: 3-10lZ sec-.. J.to::::::: 0.04 ev, 

"• ::::::: 10-• sec "'::::::: (10"-'- 10") sec _, atE, = (10'...,... 10') V jcm 
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