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The Langevin random-force method is used to investigate the fluctuations of the ordering parameter 
in a superconducting film in the presence of an electric field at temperatures T > T and T < T . A 
descending section of the current-voltage characteristic appears in the resistive sta1e below T ~ The 
fluctuations have in this case characteristic growth times determined by the value of the electr~c 
field; this leads to the appearance of preferred emission frequencies. The latter effect may become 
manifest in a nonmonotonic (oscillating) dependence of the transparency of the film on the frequency 
of the electromagnetic wave incident on it. 

IT is well known at present that superconductivity and 
an electric field are not mutually exclusive concepts. 
Indeed, in the case of the Josephson effect, [1 J super
conducting order remains in force also at a nonzero 
voltage across the tunnel barrier V, and the supercon
ducting current oscillates as a function of the time with 
frequency w = 2eV /ti. Analogous nonstationary effects, 
connected with the motion of Abrikosov vortices under 
the influence of an electric field, arise in the dynamic 
mixed state of superconductors of the second kind. [2• 3 l 

On the whole, it can be stated that if the electric field 
does not lead to a complete vanishing of the supercon
ductivity, a certain nonstationary picture should be ob
served, connected with the dynamic behavior of the 
superconducting-ordering parameter 1/J. 

The purpose of the present paper is to analyze the 
nonstationary effect in thin superconducting films in the 
"resistive" state, i.e., under conditions when the cur
rent exceeds the critical value (j > jc). Nonetheless, as 
shown by experiment, there is no complete vanishing of 
the superconductivity when j > jc: the voltage across 
the film remains smaller than in the normal state at 
the same value of the current. An analogous behavior 
(sometimes connected with hysteresis) can be observed 
also when j < jc. A specific feature of this system com
pared with the Josephson tunnel junction, is the fadt that 
the electric field influences not only the phase of the or
dering parameter, but also the modulus of lj!. It can be 
shown in this case that at equilibrium, in the presence 
of even a weak constant electric field E, we have ljJ 
- 0. [4' 5J This is connected with the fact that when E 
* 0 the momentum of the Cooper pair increases without 
limit, whereas it is known that pairs with large values 
of the momentum are unstable and are consequently de
stroyed, i.e., 1/J vanishes. Therefore the experimentally 
observed nonzero value of 1/J should be connected with a 
deviation from equilibrium, i.e., with fluctuations. The 
picture of the resistivity at E i- 0 and T < Tc thus turns 
out to be close to the picture of the fluctuation conduc
tivity of films at T > Tc, first considered by Aslamazov 
and Larkin. [&J 

In the present paper we analyze the dynamic behavior 
of the superconducting-ordering parameter ljJ in a film 

FIG. 1. Dependence of the current 
on the superfluid velocity at T--> T c· 

': 

in the presence of an electric field at temperatures both 
higher and lower than Tc .1> It turns out here that although 
the fluctuation spectrum contains all the frequencies, 
nonetheless certain frequencies are singled out. In a 
weak electric field E0 at T < Tc, singularities appear in 
different characteristics of the film at frequencies w 
= nw0, where w0 is defined by the relation (compare 
with [4l) 

hw, = 2neE,S(T) (1) 

(~(T) is the temperature-dependent coherence radius of 
the superconductor). 

The reason for it can be understood from Fig. 1, 
which shows the dependence of the current in a super
conducting channel on the "superfluid velocity" param
eter Vs (see also [9l). The critical velocity Vc in Fig. 1 
is equal to vc = ti/m~(T). The time dependence of vc is 
determined by the equation mdvs /dt = 2eE, whence vs 
= Vso + 2eEtjm. Therefore the time required for the 
passage of the particle between points 1 and 2 in Fig. 1 
is equal to 

mvc 1i 
To=-=--

eEo · eE0£' 
(2) 

corresponding to an oscillation frequency w0 = 211'/7'0, the 
expression for which is given above. Thus, the super
conducting nucleus produced at the point 1 reaches after 
a time T 0 the point 2, after which it is destroyed within 
a time T 11 which is small compared with To if the elec
tric field E0 tends to zero. Of course, nuclei can be 

llwe consider the fluctuation conductivity of films in the spirit of 
the theory of Aslamazov and Larkin, and do not take into account the 
corrections introduced into their expression by Maki [ 7 ] and Thompson 
[ 8 ]. These corrections are small very close to Tc, or else in the case of 
strongly inelastic scattering. Qualitatively, at any rate, they do not in
fluence the effect considered below. 
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produced also at other points, but at any rate the time 
interval To is singled out (extremal). As a result, sin
gularities appear in the high-frequency conductivity of 
the film at frequencies w = nw0 • Owing to the random 
character of the fluctuations, the singularities have not 
a resonant but an oscillatory character, i.e., they ap
pear in the form of a nonmonotonic (periodic) variation 
of the impedance of the film as a function of the fre
quency, with a period w0 • We present below a quanti
tative theory confirming these qualitative considera
tions. 

Proceeding to a calculation of the fluctuation con
ductivity of the films, we shall use the method of ran
dom forces, the so-called Langevin equation in the the
ory of random processes (see, for example, [101 ). 2> 

According to this method, it is necessary to include 
in the equation describing the dynamic behavior of the 
investigated system a random "force" S(t), the ampli
tude of which is determined from a condition according 
to which the rms fluctuating quantity should coincide 
with its value calculated statistically on the basis of the 
equipartition law. In the case of interest to us, the role 
of the fluctuating quantity is played by if;, and the dy
namic equation describing its time evolution, is of the 
Abrahams-Ts uneto type: [121 

a,p ( . 2ie _)2 
-+f'¢-D V--A '¢=0, at c (3) 

where r = B:rc'(T ,.-- T,), D = l!Jv,l (4) 

(v 0 is the Fermi velocity and l is the mean free path of 
the electrons, l « ~ 0 ~ v0 /Tc)· 

It follows from an analysis performed by a number 
of authors particularly by Gor'kov and Eliashberg[131 

and by Schmid, [141 that the character of the relaxation 
of the Cooper pairs in the superconductor depends on 
the type of the "ground state," i.e., the value of if; = if;0 

in the absence of fluctuations. As already discussed, 
IJ!o = 0 in the presence of an electric field and in the 
presence of equilibrium at temperatures higher or 
lower than Tc. We shall call such a state "normal." 
In this case the role of the relaxation time T 1 of the 
Cooper pairs is played by the reciprocal of the param
eter r introduced above: r 1 ~ 1jr. Indeed, in the nor
mal state the gap in the spectrum is equal to zero, 
making it possible to derive an equation of the type (3) 
(see [151 ), describing precisely such a character of the 
relaxation. Another type of the ground state corre
sponds to a value of if; 0 different from zero (supercon
ducting state). In this case, owing to the presence of a 
gap in the spectrum, the relaxation time of the Cooper 
pairs becomes of the order of T 2 ~ T E VTc /(Tc- T) , 
and in this case, generally speaking, T 2 >> T 1• Here T E 

~ 10-8 sec is the time of energy dissipation in a normal 
metal as a result of electron-phonon and electron
electron collisions. [14' 151 

We shall consider below the "normal" ground state 
described by an equation of the type (3) or by an analo
gous equation for superconductors with paramagnetic 
impurities, obtained by Gor'kov and Eliashberg. [151 

2> An analogous approach at T > T c was already used earlier by 
Schmid [1 1 ] . 

Introducing in (3) the random forces, we obtain the 
Langevin equation 

o1jl ( 2ie )2 -+ f'¢ -D V--A '¢=S(r,t). at ,c (5) 

The stochastic term S(r, t) in (5) has the following cor
relation properties (we consider the case of a film with 
thickness d « ~(t)): 

8{0) = 0, S(r, t)S(r', t') = 0, 

S(r, t)S'(r', t') = 4.mTDd-'b(r-r')6(t-t'). (6) 

We can write analogously an equation of the type (5) 
for a thin superconducting filament. In this case we ob
tain in lieu of (6) 

4mTD , (6') S(x,t)S·(x',t')=-dd 6(x-x')6(t-t ), 
I 2 

where d1 and d2 are the transverse dimensions of the 
filament (small compared with HT)). 

It can be easily verified that relations (6) and (6') 
are obtained from the requirement that the correlation 
function of the ordering parameter if;(r, t) if;*(r', t) at 
T > Tc, calculated on the basis of Eq. (5) coincides with 
the corresponding quantity obtained by directly averag
ing if;if;* with the Gibbs factor exp {- tlF(if;)}, where tl 
= 1/T and F(if;) is a functional of the Ginzburg-Landau 
free energy, equal in this case ('fi = 1) to 

d f [ I ( 2ie ) '1 2 1 ] F=- d2r V--A ~) +-:-11Jlj2sign f . 
2m c 1',' (7) 

~(T) is the temperature-dependent coherence radius, 
which we define for T < T c and T > T c by the relation 

£'(T)=D/If(T)I. (8) 

Equation (5) is gauge-invariant, since multiplication 
of S by an arbitrary phase factor exp [ix(r, t)] does not 
violate relations (6) and (6'). From the physical point 
of view (5) describes the motion of a macroscopic sys
tem-a condensate under the influence of random "mo
lecular" jolts, having a a-correlated spectrum-which 
is analogous to the motion of a Brownian particle in a 
liquid. 

With the aid of (5) and (6) it is easy to calculate the 
fluctuation current resulting from an arbitrarily time
varying electric field E = E(t) (E lies in the plane of the 
film). In the Ginzburg-Landau theory, the current is 
expressed by the relation 

2e [ • ( 2ie ) ] i=-;nlm ¢ V --c-A '¢ . (9) 

Changing over to the Fourier representation, we obtain 
for the mean value of j: 

- 2e. '\1 2e 
i(t)=-£...J (k--A(t)) i'¢•(t) 12, 

m • c (10) 
t 

A(t)=- c f E(t')dt'. 
0 

The solution of (5) in the k-representation is 
t 

'¢•{t)=exp{- P•{t)} f exp{po(t')}So(t')dt', (11) 

where Sk(t) are the Fourier components of the function 
S(r, t) and satisfy the relation (see (6)) 
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S ( )s • 1 4mTD 1 • t •• (t )=--6.k16(t-t) 
d£1£2 

{12) 

{L1 and L2 are the dimensions of the film in the x andy 
directions). The quantity Pk{t) in {11) is given by 

t 2 2 

P•(t)= ![ r + D ( k- +A{t1
)) ] dt1

• {13) 

Taking {11) into account, we can calculate explicitly 
the sum over k in {10): 

~ L1L2 J 
.i..J = (2n) 2 d2k. 
• 

Omitting the simple derivations, we present the ex
pression obtained in this manner for the current: 

i{t)=- 2e•T 'J~ [tA(t)- _1_ J' A(tl)dtl}/e-•r<t-tl. 
ned t--r: t--r: • , 

-oo t 

•D t 1 t • } 
xexp{- 8: 2 [J A•(t1 )dt1 - ~(J A(t1)at·) ] . 

t t 

(14) 

The obtained formula is a general expression for the 
current produced in the film when an arbitrarily time
varying but spatially homogeneous electric field E{t) is 
applied. This formula holds both above and below Tc, 
and its applicability is not limited by the condition that 
E be small. The results obtained by other authors are 
limiting cases of expression (14) (see below). 

1. We consider first the case when E is constant. 
Then A(t) = - cEt. The current j will not depend on the 
time, and the expression for its value can be reduced, 
on the basis of {14), to the form 

- e2TE s"' ( £;1.3) 
j= 2ndlfl o exp -J.signr-3 dl., 

where E denotes the dimensionless parameter 

e = eE£/2Ifl. 

{15) 

{16) 

Above Tc in a weak field (E « 1), formula (15) yields 
exactly the Aslamazov and Larkin expression for the 
fluctuation conductivity: [&J 

j e2T e2 T 
a=-=--=---. 

E 2ndf 16dT-T. (17) 

From {15) it is possible to find the dependence of 
j{E) in a strong field, when the current-voltage curve 
of the fluctuation current is already nonlinear. This 
question was considered in recent papers. [11• 16J The 
strong-field criterion E ;c 1 or eE~ :c r denotes that the 
energy acquired by the electron over the coherence 
length is compared with the reciprocal relaxation time 
r of the Cooper pairs. In a strong field (E » 1), we have 
j C/.) E113, and this dependence remains valid up to very 
large values of the electric field intensity E. 

Below Tc we have negative r (see (4)). Therefore 
the integral {15) converges {the conductivity remains 
finite) only because of the second term in the argument 
of the exponential {15). This is precisely the term that 
accounts for the acceleration of the pair by the electric 
field and the resultant destruction of the pair. Calculat
ing the integral {15) asymptotically as E ~ 0, we get 

. :::::: eT( eE£_)'''ox {iJEL}. 
1 d~ 2n I fl p 3eE~ (18) 

This formula was obtained earlier by Gor'kov[5J with 

the aid of a microscopic calculation, and independently 
(prior to the publication of [SJ) by us. 

Of course, expression {18) is valid if the fields are 
not too weak, so long as the fluctuation current r is 
smaller than the critical unpairing current jc. When 
T ~ jc the fluctuations can no longer be regarded as 
linear (5). 

It is important that, in accordance with formula {18), 
the current T increases with decreasing electric field E. 
Therefore, if the fluctuation component of the conductiv
ity is sufficiently large, the current-voltage character
istic of the film (with allowance for the normal current 
jn = anE) will have a decreasing section, i.e., a negative 
resistance, leading to instability. Apparently there are 
grounds for hoping to explain in this manner the genera
tion of high-frequency oscillations by superconducting 
films in the resistive regime, an effect recently ob
served by Churilov, Dmitriev, and Beskorski1. [17J An 
investigation of the character of the resultant instability, 
which calls, however, for an analysis of the nonlinear 
fluctuations, is a very complicated matter and will be 
the subject of further investigations. 

2. At temperatures above Tc it is easy to obtain in 
general form an expression for the linear response of 
the system j{t) to an arbitrary (weak) alternating elec
tric field E(t). Linearizing in formula {14), we arrive 
at an integral connection between j and E: 

t 

i(t)= GAL J K(t- t1 )E(t1 )dt1 j {19) 

here a AL denotes the static fluctuation conductivity of 
the film in accordance with Aslamazov and Larkin 

<rAL = e'T I 2nfti, {20) 

and the kernel K{t) is given by 

K(t)= 4re-2r•"'J _-r: __ e-2N a-r: {21) 
o(t+-r:)2 ' 

The function K{t) has a characteristic radius At 
~ 1jr. Taking the Fourier component of K{t), we obtain 
the frequency dependence of the fluctuation conductivity 
a(w). This is easiest to do by considering directly the 
response to a monochromatic signal in formula {14). 
This leads to the expression 

{22) 

where 
{23) 

K is equal to unity when w ~ 0, K{O) = 1, as it should. 
Calculating the integral {21), we obtained for the real 
and imaginary parts of K the explicit expressions 

2 1 (>) 

ReK=QarctgQ- Q2 ln{,1+Q2), Q=2f• {24) 

2 2 1 
ImK= -Q+WarctgQ +gln(1 + Q2). {25) 

Formula (24) for the real part of K{w) was obtained 
earlier by Schmidt[1Bl with the aid of the fluctuation
dissipation theorem. Formula {25) describes the fre
quency dependence of the imaginary part of K(w). As 
follows from the latter expression, at small w the value 
of 1m a(w) is proportional to w: 
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(26) 

corresponding to the capacitive character of the fluctu
ation conductivity. 

3. Finally, let us consider the region of temperatures 
below Tc, assuming that the film is simultaneously 
under the influence of a constant electric field E0 and a 
weak alternating field E1 : 

E(t) = E, + E, cos UJt. 

Linearizing in (14) with respect to E1, we obtain 

i{t) = io + j,(t), 

(27) 

(28) 

where j 0 has already been calculated above (formula 
(15) at E = E0 ), and for j 1(t) we have 

j,(t) = Rc {[cr.L(ffi)E, + cr 11 (UJ)n(nE,)le-'"'}; (29) 

n is a unit vector along E0 : n = E0 /E0 • The quantities 
a1(w) and a 1(w) in (29) are determined by the expres
sions 

2e'T 1 + iUJ't - e'"' { 2 . ·} 
cr.L(ffi)=--Jd• ·exp -2fT--3 De'E,'i" , 

nd 0 (urr) 2 

8e2T s"" ffi't(ei"'' + .1) + 2i(ei"'' -1) 
cru ( UJ) = -- d• De2Eo2'3 _ _:_ _ _:...-':-..:....,.-;;-'----'-

nd 0 (ffi't)3 
(30) 

xexp{ -2fT-: De2E02; 3}- (31) 

Inasmuch as r < 0, the convergence of the integrals is 
ensured only as a result of the second term, propor
tional to T 3, in the arguments of the exponential (com
pare with (15)). 

At small values of E0 , the integrals written out above 
can be calculated by the saddle-point method. The saddle 
points T = To is determined from the equation 

(32) 

whence we obtain, using (8), T 0 = 1/eE0 ~, which agrees 
with formula (2) and corresponds to the picture dis
cussed at the beginning of the article. In the limit 
T 0 I r I » 1, we obtain asymptotic expressions for the 
conductivities a 1 and an : 

(33) 

(34) 

where a AL is expressed in analogy with the fluctuation 
conductivity of the film at T > Tc (formula (20)) 

r, o= e'T/2nifid, (35) 

and the functions F 1 (z) and F 11 (z) are given by 

F.L(z) = 2z-'(1 + iz- e''), (36) 

F 1,(z) = 6z-'[2i(1- e'') - z(i + e'')J. (37) 

They are normalized in such a way that at the point 
z = 0 we have F 1(0) = F 11 (0) = 1. Figure 2 shows plots 
of the real and imaginary parts of F 1 and F 11 as func
tions of the parameter z = wT0• As seen from the curves, 
F 1 and F 11 oscillate as functions of their argument and 
the amplitude of the oscillations decreases with increas
ing z. 

FIG. 2. Frequency dependence of the 
conductivities a1(w) and au(w): a-plot 
of the function F (z) = a1(w)/a1(0), b
plot of the function.FII (z) = au(w)/au(O): 
the parameter is z = wr0 • 

FIG. 3. Scheme of experiment for 
observation of oscillations of the im
pedance in the resistive state. 

Incident wave 

Reflected wave 
-~W-:-8..,...---t 

!Transmitted wave ·-w 

3 

Thus, the conductivities a1(w) and au(w) are nonmono
tonic (oscillating) functions of the alternating-signal fre
quency w. The period of the oscillations is equal to Aw 
= w0 = 21T/T0, where the quantity w0 corresponds exactly 
to formula (1). We note that the parallel conductivity 
a 11 (w) is negative at low frequencies, and it greatly ex
ceeds a1(w) by virtue of the condition Tolrl » 1 (see (33) 
and (34)). If the direction of the high-frequency field E1 

makes an angle (} with a constant field E0 then, in accord
ance with (29), the total conductivity is 

(38) 

At all values of the angles with the exception of e close 
to 1T /2, we have amplification of the incident signal. This 
is understandable, since we are on the decreasing sec
tion of the current-voltage characteristic. 3 > 

Homogeneous current oscillations corresponding to 
formulas (33) and (34) can be observed in a film by 
means of the scheme shown in Fig. 3. The supercon
ducting film S, which is made resistive by the transport 
current jT passing through it, covers a section of a 
waveguide WG. In this case the intensity of the radia
tion passing through the film is an oscillating function 
of the frequency w. We note that according to (33) and 
(34) the oscillations should take place also at a fixed 
frequency as a function of the field intensity E0 or the 
coherence length (actually, the temperature) ~. since 
T 0 depends on these parameters. In the latter case, 
however, there occurs also an essential monotonic de
pendence of a, described by the exponential terms in 

3lit is assumed that the film is connected in an external circuit with 
a given voltage. As usual, to this end it is necessary that the internal re
sistance of the source be much smaller than the dynamic resistance of 
the film. In addition, we ignore the possibility of formation of an in
homogeneous situation similar to Gunn's moving domains in semicon
ductors with a descending N-shaped characteristic (see [ 19] ). When the 
inhomogeneity is taken into account, the character of the resultant 
oscillations is different. Analysis of this question calls for allowance 
for the nonlin.ear fluctuations (see the remark made at the end of Sec. I). 
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formulas (33) and (34). Nonetheless, if the frequency of 
the radiation incident on the film is sufficiently large, 
wT0 >> 1, then the change of T 0, needed to observe one 
period of the oscillations, may be small, and the mono
tonic part of the dependence of a on T 0 will be weak. It 
is easy to see that to this end it is necessary that the 
frequency be high in comparison with lrl, namely w 
> %1rlrl. According to (4), at Tc- T = 10-2 °K this cor
responds to w ~ 3 x 1010 sec-1 • 

In conclusion, I am grateful to L. P. Gor'kov for a 
discussion of the work and for supplying a preprint of 
his article [5J. I am also grateful to I. M. Dmitrenko 
for constant interest in the problem and for useful 
discussions. 
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