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The problem of the wave fields is solved for the space surrounding a collapsing weakly nonspherical 
mass. The fields in question are the electromagnetic field which has the collapsing object as its 
source, and the nonspherical part of the metric. Near the gravitational radius there is a wave reg­
ion for such processes. The nonsingular solutions in this region are derived. By joining these solu­
tions onto the solutions in the region farther out from the gravitational radius we can conclude that 
during the collapse the external wave fields fall off exponentially with a characteristic time 
To ~ r I c. For an object with mass of the order of a few times the solar mass this means an ex­
tremefy rapid (To- 10-5 sec) disappearance of the field in space as the boundary of the body ap­
proaches the gravitational radius. 

1. STATEMENT OF THE PROBLEM AND INVESTIGA-
TION OF THE SCALAR FIELD 

IN the space surrounding a collapsing mass there are 
electromagnetic and gravitational fields connected with 
the matter. If the collapsing body is nearly spherical in 
shape the corrections to the metric, which give the 
deviation from the case of spherical symmetry, can be 
treated in the linear approximation, and this is also 
true for a sufficiently weak electromagnetic field. In 
this case the general form of the equations for the wave 
fields in empty space is obvious- in an appropriate 
gauge A i~ = 0, where A is the tensor that describes the 

' field in question. The covariant differentiation is done 
in the spherically symmetric metric, and therefore the 
variables can be separated; the solution for A can be 
put in the form of a superposition of generalized spher­
ical harmonics. lll 

In the Schwarzschild coordinatesl2 J the metric of the 
space in which the wave is propagated is independent of 
the time, so that the waves can be resolved into har­
monic components. We obtain the complete space of 
events for the region surrounding the Schwarzschild 
surface by using the Lemaitre coordinates correspond­
ing to the unperturbed spherically symmetric motion. 
To connect these reference systems we use the well 
known formulas l21 

t=-c-2l'rrg-rgln jl'"i-"J'rg j, 
l'r + frg 

r= [: (R--c) ]"'ri', 
(1.1) 

where R, T are the Lemaitre coordinates and r, t are 
the Schwarzschild coordinates. 

In a comoving system for the matter the instant of 
passage inside the gravitational radius is not disting­
uished in any way. l2 ' 31 Therefore we assume that at the 
surface of the body near r = r g the behavior of the 
fields, which comes into the problem as the condition 
for matching the solutions, is regular and can be expan­
ded in a series in the distance and the time of the co­
moving system, measured from the point of intersection 
of the gravitational radius. A study of the equations for 
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FIG. 1. The potential U(r, w) 
for various values of w. Curve 1 
corresponds to the case wrg ::» 1, 
curve 2 to the case wrg ~ 1, and 
curve 3 to the case wrg ~ 1. 

UlrJ 

2 __ 

the radial functions then shows that near the gravita­
tional radius rg, which we hereafter take as unit of 
length, rg = 1, the nonsingular solutions of Eq. (1.1) are 
of wave form. As an illustration let us consider the 
equations in the simplest case, when A = lj!, where lj! is 
a scalar. The angular functions for the scalar case are 
the ordinary spherical functions Yzm• and for the radial 
function Xz(r) = 1/!z(r)[r(r- 1)]112 the equation for thew 
harmonic in Schwarzschild coordinates takes the form 
of the SchrOdinger equation with the potential (Fig. 1) 

U(r)= l(l+1) 4ro2r4+1 
r(r-1) 4r2(r-1)z' (1.2) 

x"- Ux = 0. (1.3) 

Let us examine the behavior of the solutions of Eq. 
(1.3) near r = 1, where it has the form (y = r- 1) 

"+ 1 + 4ro2 A '! · - 1 I I) (1 4) X ~x=O, .X±= ±Y •±•• =A±fyexp(±iro n y . • 

Accordingly, in the region ly I « 1 the field lj! (y, t) is 
a sum of advanced and retarded waves: 

In Lemaitre coordinates we find 
"¢ (y, -c) 

=F+(-c) +F-(-c-2ln1Yi). (1.6) 

In order to find the form of the functions F + it is 
necessary to impose two conditions. The solution must 
contain only a diverging wave at spatial infinity, and it 
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FIG. 2. The straight lineR= R0 (T) corresponds to the motion of 
the boundary of the collapsing body. The matter is to the left of the 
line R0 . The curves I and 2 are respectively lines of constant argument 
for the retarded function F _ and the advanced function F +. 

must satisfy matching conditions at the surface of the 
collapsing body, which moves according to the law Yo(7 ). 
Let us first consider the second condition. Let 7 = 0 be 
the instant of proper time when the surface of the body 
passes inside the gravitational radius: y(O) = 0. The 
Lemaitre coordinate Ro(7) of the surface of the body 
does not change (Fig. 2). With the notation lj! (Yo(7), 7) 
= a(7), we find for 7 « 1, IYI « 1 

a(-r) = F+(,;) +F-(-2ln J,;J), 
F _ ( z) = a [ exp (- z (2) ] - F + [ exp (- z ( 2)]. ( 1. 7) 

We note that for 7 > 0, IYI « 1 the argument z = 7 
- 2ln ly I of the function F _ is always large: z » 1. For 
7 > 0 the field near the gravitational radius thus has 
the form 

1jJ(y, -r) = F+(,;) + a[exp {-'/,(,;- 2In Jy/)}] (l.S) 
-F+[exp{-'f,(,;-2In Jyl)}]. 

For a(x) and F .(x) with lx I « 1 it is natural to write 

a(x) =a+ bx +ex'+ ... , 

F+(x) = a+~x+-yx'+···• 

which gives for lj!(y, 7): 

(1.9) 

')>(y, ,;) = F +(,;) + (a- a) + (b- ~)ye-'1' + (c- -y)y,e-' + .... 
(1.10) 

For small 7 we can also replace the function F .(7) by 
the series (1.9), and we find that near the surface of the 
body the field 1/! changes slowly as we go away from the 
matter: 

(1.11) 

Let us consider the region of large 7 and IY 1 « 1. 
Here it is convenient to go over to the Schwarzschild 
time t. The solution for the component of frequency w 
is of the form 

1jJ(y, w)e'"' = c+ exp [tw(t +In I y I)] 
+C-exp[iw(t-In IYI)]. (1.12) 

For small w in the region - w ln ly 1 « 1 this solution 
must go over into the quasistationary solution found in 
Appendix 1, to assure matching with the solution which 
contains only a diverging wave at infinity. Near r = 1 
the quasistationary solution is of the form lj! ~ C ln ly 1, 
where C is proportional to the amplitude of the wave at 
infinity, C(w). We thus find for c., C_, and C(w) the 
values 

c+ = -c_, c = -2iwC-. (1.13) 

The behavior of C_(w) for small w follows from the 
behavior of the function F_(z) for large z, as given by 
Eqs. (1.7) and (1.9), 

F -(z > 1) ==; (a- a) + (b- M exp ( -z /2) + (c- -y) exp (-z) + ... 

(1.14) 

Therefore the spectrum C(w) has no singularities near 
w = 0. 1> The amplitude I(w) of the field at spatial infinity 
is determined by the quantity iwC_(w) and the ratio of 
the coefficients of the converging and diverging waves 
F + for the solution at spatial infinity. All of these quan­
tifies are regular for small 1m (w), so that the nearest 
singularities of I(w) are located at finite 1m w ~ 1. This 
means that the field at a finite distance from the gravi­
tational radius falls off exponentially for large times, 

/(t) ~ exp (-M). (1.15) 

We have given a detailed description of the character 
of the solution for the scalar field, since the equations 
for the electromagnetic and gravitational fields are 
much more complicated, while the general features and 
the idea of the investigation are the same as in the case 
we have analyzed. 

2. THE ELECTROMAGNETIC FIELD 

Let us consider the behavior of the external electro­
magnetic field during the collapse of a spherically sym­
metric, electrically neutral body. The body has magnetic 
or electric multipole moments. The electromagnetic 
energy of the body is assumed small in comparison 
with the gravitational energy; i.e., the metric of the ex­
ternal space is the same as the Schwarzschild metric. 
The possibility of applying such a model to actual 
astrophysical systems has been discussed inl4 J. 

The general solution of the Maxwell equations for the 
four-potential Ai near the Schwarzschild surface is 
found in Appendix 3. For example, the component~ is 
given by (for simplicity we assume that there is no de­
pendence on the angle cp) 

A3=~ {18~) (r,t)P011(cos8) 
2 £.... 

1~1 

1 {1 -=2 L . ./o11(cos 8) [Fz(t -In/ y /) + F2 (t +In /Y J)], 
l=l 

(2.1) 

with IY I = lr- 11 « 1; F 1 , F2 are arbitrary functions, 
and P~1 are associated Legendre polynomials. In the 
region r » 1 the solution of the Maxwell equations 
must describe a diverging wave r- 1F(t- r). This condi­
tion, together with the matching condition at the surface 
of the body, completely determines the external electro­
magnetic field. It is convenient to do the matching in 
the Lemaitre coordinates (1.1), in which 

A3 =~ LP011(cos8) [F1(,;-2In /u/)+F2(-r)], 
1~1 

The procedure of constructing a solution satisfying the 
boundary conditions at the surface of the body and at 
spatial infinity is given in detail in Sec. 1 for the exam­
ple of the scalar field. We shall not repeat the develop­
ments, and give here the final results. 

!)The constants in F + and F _ that lead to the appearance of a con­
tribution to C±(w) of the form IJ(w) can be cancelled out beforehand, 
or we must set C±(w) =lim C±(w). 

w~+o 
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a) Near the Schwarzschild surface, immediately after 
the boundary of the matter has passed inside r g we have 

As= _EPo11(cos 6) {m(O) +[m'(O)- N(O) ]y exp(-'t'/2)+'t'N(O)+ ... }, 
1=1 (2.2) 

with T « 1; M(T) is the value of the field component in 
question at the boundary of the matter. 

b) At large times 

A. ~ exp (-,-At). (2.3) 

Analogous expressions can also be obtained easily for 
the other components of the four-potential. 

In conclusion we make one more remark. The elec­
tromagnetic field intensities calculated from (A4.7) have 
a singularity at r = 1. However, in contrast with the 
static case, Eqs. (A4.4)-(A4.6), in which the field in­
variants also have a singularity, the singularity here is 
of a purely kinematic nature and disappears when we 
change to a comoving reference system. The field in­
variants (E · H) and (E2 - H2) are finite in the nonstatic 
case. 

3. THE GRAVITATIONAL FIELD 

A. Let us consider the collapse of a nonrotating body 
(with total angular momentum K = 0) with small (axially 
symmetric) initial deviations from a sphere. It is 
knownrsl that in a comoving reference system small 
initial perturbations of the matter remain small until 
the matter has attained very large densities. In this 
case the characteristics of the outside space also differ 
little from the case of spherical symmetry everywhere 
except in a small neighborhood of the singularity. To 
calculate the small corrections to the spherically sym­
metric part of the metric in empty space, it is sufficient 
to solve the linearized Einstein equations for these cor­
rections and satisfy the boundary conditions at the sur­
face of the body and at spatial infinity. 

A qualitative analysis of the problem has been given 
inr61 ( cf. alsor31 ), where it was concluded that the non­
spherical corrections to the metric decrease asymp­
totically outside the matter, and some estimates were 
made of the rate of this decrease. In this section we 
make a more detailed analysis of the behavior of the 
external field. 

The symmetry of the problem allows us to look for 
the metric in the form 

ds2= ft1- Tg)(1+d)dt2 - 1 +a/ dr2 
\' T 1-rg T (3.1) 

- r2(1 + b)de2 - r2sin2 6(1 + c)dq;2• 

A general solution of the linearized Einstein equa­
tions near the Schwarzschild surface is found in Appen­
dix 2. It turns out that for lr- 11 = jy I« 1 

a=d= ~ Poo1(cos6)(f++f-.), 
f:::rt 

c=-b=-2 ~ l/ l(l+i) P 1( 6)(/ +!) L-1 f,{l-1f{l+2) 02 cos + -' 
1=2 

f+=i+(t+lnjyj), f-=f-(t-!njyi). (3.2) 
In the Lemaitre coordinates (1.1) the metric (2.1) takes 
the form 

ds2 =(1 + d)d't'2- 1 +a dR2- r2(1 + b)d62- r2 sin2 9(1 +c) d~. 
r (3.3) 

All of the functions must be expressed in terms of T 

and R. We must have 

i+=f+('t'), f-=/-('t'-2ln jyi). 

Satisfying the conditions at the surface of the body 
and at spatial infinity (where there is an outgoing gravi­
tational wave) in the way illustrated in Sec. 1, we find, 
for example, for d 

d('t'<111; 1, y<111; 1) = ~P' (cos e) {q(O) + [q'(O) 
- f+'(O) ]y exp [ -'t' I 2) + 't'f+'(O)}, 

(3.4) 

where q(r) is the variable part of the component g0o of 
the metric tensor on the matter; 

d('t';:!!>1,r) ~exp(-A.'t'). (3.5) 

i.e., at times close to the instant T = 0 when the boun­
dary of the matter goes inside r g the metric near r g is 
the same as on the matter. With increasing time the 
nonspherical corrections decrease exponentially with 
time in the entire space. 

B. It is not hard to include a weak rotation of the 
body. It was shown inr61 that the presence of a small 
rotational angular momentum K does not affect the 
collapse of the matter. For K ;.o 0 nondiagonal compon­
ents 6g03 and 6g13 of the metric tensor appear in the ex­
ternal metric. For them we get a system of equations 
independent of (A3.2); it has been studied by many au­
thors, rs,?l and its solution is of the form 

6g1s = 1p(r)r2 sine, 6gos =+ ,E azPo11(cos e)Jz (+)sine; (3.6) 
1=1 

Here lj;(r) is an arbitrary function, a1 = const, f1(x) 
= x3u1(x)p(dx/x4u~(x)) (sic), and u1(x) = F(2 + 1, 1- 1; 
4; x) is the hypergeometric function. By means of 
small coordinate transformations which do not change 
the metric (3.1) and the boundary condition of rigid­
body rotation, we can bring (3.6) to the form 

6g1s = O. 6gos = - 2K sin2 e. 
r 

(3.7) 

Accordingly, in this case the external metric in the 
region r > 1 will approach the metric of a stationary 
rotating sphere asymptotically in time, according to the 
same law (3.5). 

The writers thank Ya. B. Zel'dovich, I. D. Novikov, 
and A. D. Doroshkevich for a discussion of this work. 

APPENDIX 1 

The static equation for a scalar field zp in the 
Schwarzschild metric is of the form 

r(r- 1)1!1" + (2r- 1)111'- l(l + 1)'1jl = 0. (A1.1) 

This is the hypergeometric equation with the parameters 

a = -~. b = l + 1, c = 1. 

The general solution is given by the expressionrsl 

(--1)1+1 ( . f) 
1p=C1F(-l,l+1,1,r)+C2 ,.Z+1 F l+1,l+1,2l+2,7 . 

(A1.2) 
The first solution 

f d1 . 
F(-l, l + f, 1,r)=lidri'[~(1- r)1] 

is regular everywhere except at r = co, where it diver­
gesasr\r-co. 

' 
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The second linearly independent solution falls off as 
r-l- 1 for r - oo, and behaves like ln(r- 1) for r - 1. 

APPENDIX 2 

The linearized Einstein equations for the metric 
(3.1) are (a prime indicates differentiation with respect 
to r, and a dot, with respect to t) 

aiz ac · . . ae + aa+ (c- b) ctge = 0, (A2.1) 

. . 2r - 3 . . 2r - 3 2a 
b' + b 2r(r-1) + c' + c 2r(r-1) ---,:- =O, 

b' , iJc' iJd' 2r - 3 iJd 2r - 1 iJa 
( -c)ctge-ae--Te+ 2r(r-1) de+ 2r(r-1) ae =O. 

1 iJ2a ctg e iJa r ·- 1 ' a r- 1 " 6r- 5 b' 
2roe"+ 2r2 Te--r-a -~+~b +~ 

+ b + r - 1 " 6r - 5 ' 1 iJ2c ctg e iJc ctg e iJb 0 
-r; ~c +~c +"Tri o82+--;:zaa--~aa= , 

1 o2d ctg 8 iJd r- 1 , rli 2r - 1 
2ra92+--z;:2Te·+----;?d 2(r-1) +-vb' 

b a rc 2r-1 1 iJ2c 
+~--;:z 2(r-1) +~c'+2r2a92 

ctg 8 i)c ctg e i)b 

+ ---;:,2aij- 2;:2 ae = 0' 

r-1 2r-,1 rc rii 2r-1 --c"+--c'- ----a' 
2r 2r 2(r-1) 2(r-1) 4r2 

-e~ r-1~ ~+1~ ~eM_ 
+ ---z,:2 o8 + ~ + ~ + ---z,:2 ae - 0• 

r - '1 b" + 2r - 1 b' rli rii _ 2r - 1 a' 
2r 4r2 2(r-1) 2(r-1) 4r 

+ _1_ iJ2a r-1 d" 2r+ 1 d' _1_ iJ2d _ 
2r2 iJ82+ 2r + 4r + 2r2 a92-0. 

According to the general rules for invariant decom­
position of tensors in terms of generalized spherical 
functions, l 11 we introduce new functions x = c + b, 
71 "' c - b. Separating the angular variables in the equa­
tions, we obtain the following system of equations for 
az, dz, Xz, 'Tiz (we omit the indices l here) 

1(1+1)+2 r-1 , r-1 , 6r-5 , 
- a--. -a +--x +--x 

2r2 r2 2r 4r2 

_ 1(1+1)-2x- [(1-1)!(1+1)(1+2)]"• 11 = 0, (A2.1a) 
4r2 4r2 

_ l(l+1)d+ r-1 d'+ 2r-1 x'-1(1+1)-2 X 
2r2 r2 · 4r2 4r2 

_ ___!i__.!!:__ [{l-1)!(1+ 1) (1+2)]''• =O (A2.1b) 
2(r-1) r2 4r2 11 ' 

r-1 2r-1 riC rii 2r-1, 
~x"+2Tx'- 2(r-1) r-1-~a 

_ l(l+i)a+ r-1 d"+ 2r+1 d'-l(l+i) d=O(A2.1c) 
2r2 r 2r2 2r2 ' 

r.....:f 2r-1 r .. [(l-1)1(!+1)(1+2)]'1• 
--z,:-11"+-----z,:.-- 11'- 2(r-1) 11 + 2r2 · 

·(a+d)=O, (A2.1d) 

[ (l-1){l+2) ]''• . 2r-3 2r-1 
11' +x' + 2d' ----d----a=O 

1(1+1) r(r-1) r(r-1) (A2.1e) 

., 2r-3. 2ci 
X +2r(r-1)x--,:-=O, 

. _!_· _!_./(1-1)(1+2)·_ 
a + 2 ')(, + 2 r I (l + 1) 11 - o. 

(A2.1f) 

(A2.1g) 

The solution of the equations (A2.1) near the gravita­
tional radius is of the following form l 91 

1 I 1 
az=2xz -Tyxz. 

1 rx.;_ ,_1(!+1)-1 ,_1(1+1)+3 1 dz= -1-1(1+1) y Y'Xl 2 'XI 4y 'XI.' 

1/ 1(1 + 1) ( 1 I 1 ) 
11'=- 2 V (1-1)(1+2) 2)(!- 4y'Xl ' 

(A2.2) 

X•= y[F+(t+ln IYD +F-{t-ln lyl)], 
y=r-1. 

From this we find for the corrections to the Scwharz­
schild metric the expressions 

a=d= _EP001(cos8) [: (F+'-F-')+! (F++F-) ]. 
l=2 

C=- b ~ -2 _EPoi(cos8) r+{F+'-F-')+! (F++F-)]. 
1~2 

(A2.3) 
For the functions F + a prime indicates differentiation 
with respect to the entire argument. 

APPENDIX 3 

As is well known, l21 the generally covariant wave 
equation for the four-potential Ai of the electromagnetic 
field is 

(A3.1) 

with the supplementary condition gkmAk·m = 0. 
Writing these equations out for the ca'se in which gik 

is the Schwarzschild metric, and separating the angular 
variables by means of generalized spherical functions, 
we get the following system of equations: 

r-iA" 2(r-1)A'+(w2r _l(l+i))A-iwA-O 
-r- 0 +--r- 0 r-1 --r- 0 7 !- ' 

r-1 At"+2At'+(~-2(r-1) _l{l+i))A, 
r r r-1 r3 r2 

iw 
----Ao 

(r- 1) 2 

yl(l+ 1) B =O 
r3 + ' 

_ 4yl(T+i}(r-i) A,=O, 
r2 

(A3.2) 

~Ao+ r-1 A,'+ 2r-1 A,+ yl(l+i) B+=O. 
r-1 r r2 2r 

We have at the same time made a Fourier transforma­
tion with respect to the time and introduced the func­
tions 

A a A_=---iA2. 
sin 8 

If there is no dependence on the angle cp (i.e., if the field 
is axially symmetric), then TAo = T{0 , and apart from 
numerical factors the B± are identical with the compon­
ents A2 and A3 of the four-potential Ai. 

For l = 1 we can find exact static solutions of the 
system of equations (A3.2). Written for the "physical" 
components of the four-potential the static solutions, 
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which go over respectively for r » 1 into the well 
known expressions for the field of an electric or a mag­
netic dipole parallel to the z axis, are 

dcos6 [ 1 r-1] Ao (phys) =- 2--+ 2(r -1)In--
' )'1-1/r r r 

(A3.3) 

and 
A 6 . [ 1. r-1 ] a;(phys)=- msma 1+-+rin~-; . 

2r r 
(A3.4) 

The solution (A3.4) was first found in[4 J. 

Let us find the behavior of the solutions of the sys­
tem of equations (A3 .2) in the region r ~ 1. Keeping the 
main terms of the expansion of the coefficients of the 
equations in powers of y = r - 1, we get the following 
system of equations: 

2 

uAo" + 2uAo' + ~Ao- .iroAt = 0, 
u 

2 • 

uAt'' +2A{ +~A~-~Ao-[l(l+ 1)]''•8+=0, u u2 
2 

uB/'+B+'+: B+-4Yl(l+1)uA 1 =0, (A3.5) 

II I -. (J)2 
uB- +B- +-B-=0, ·u 

irou-•A, + uA.' +A,+ 'f,[l(l + 1) ]'I•B. = 0. 

In the static case w = 0 the solutions near the gravi­
tational radius are of the form 

B± ~ constln lui. 

Ao = const, A, ~ const / u. 
(A3.6) 

For w .., 0 we have the following asymptotic behavior of 
the solutions near r = 1: 

B- = C,(ro)u'• + C,(ro)y-••, B+ = C,(>OJ)u'• +C•({I))u-••, 

A,= C.({l))u-•••• + C_(ro)u-•-••, A,= C.(ro)u'"(ro) - C_(.ro)u-••, 

or going over to the t representation: 

B-(U, t) = F,(t +In lui)-F,(t -In lui), 

B+(U, t) =F,(t+In lui) +F.(t-ln lui), 

1 
At(U,t)=-[F+(t+In luiHF-(t-ln lui)], 

u 
(A3.7) 

Ao(U, t) =F.(t+In lui) -F-(t -In llfi). 
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