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The relation between the phonon width of the EPR line in a crystal and the spin-lattice relaxation 
probabilities, and the "elastic" phonon width of the EPR line are considered on the basis of the 
spin-phonon kinetic equation. The relaxation coefficients of the spin-phonon kinetic equation are 
expressed in terms of the Fourier transforms of the lattice correlators. The contribution of an
harmonism to the relaxation coefficients is considered. For both the acoustic and optical 
branches, the contribution of the single-phonon anharmonic correlator may be greater than that 
of the Raman harmonic correlator. Formulas are obtained which take into account the effect of 
the anharmonism of the lattice on the spin-lattice transition probabilities and on the line width. 
The temperature dependence of the relaxation coefficients with account of anharmonism differs 
from the temperature dependence in the harmonic case for the acoustic branches in the tempera
ture range ( }'10)® < T < ® (® is the Debye temperature). The inverse correlation time in the 
lattice is considered for various temperature ranges. 

1. INTRODUCTION 

THE study of spin-lattice relaxations has as its aim 
the explanation of experimental data, or the prediction 
of the latter, for objects of interest for EPR and ap
plied problems of quantum electronics. At the same 
time, experimental study of spin-phonon interactions 
in a wide temperature range, including the high tem
peratures T ~ ® ( ® is the Debye temperature of the 
crystal), can be a source of information on the spec
trum of lattice oscillations, the role of quasi-local and 
local oscillations, and so on. For such purposes, 
those samples are of interest which have sufficiently 
strong dilution, small disorders of axes of local sym
metry of impurity centers, and sufficiently strong tem
perature dependence of the EPR linewidth. However, 
specimens which are of interest in applied problems as 
a rule satisfy the requirements at which the spin
phonon EPR line-width is negligible. The number of 
experiments in which the temperature broadening of 
lines has been studied is unfortunately small (see, for 
example, [ll). 

One of the important characteristics of the phonon 
system is the magnitude of the anharmonic forces. 
Account of lattice anharmonism in the EPR line shape 
is important not only for the purpose of studying the 
phonon system, but also for the ordinary problems of 
explaining the spin-lattice relaxation times observed 
in the experiment. 

The role of anharmonism in EPR spin-lattice re
laxation was considered by Aleksandrov, [21 who con
cluded that the account of anharmonism is important. 
In[ 2J anharmonism was taken into account by the phe
nomenological introduction of damping in the correla
tion functions of the particle displacements in the 
lattice. In the present paper, we consider the effect of 
anharmonism on the relaxation coefficients of the spin-
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phonon kinetic equation, u and the anharmonic terms 
are explicitly taken into account in the phonon part of 
the Hamiltonian of the system. Consideration of the 
relaxation coefficients makes it possible to take into 
account the effect of anharmonism both on the spin
lattice relaxation probabilities and on the EPR line 
width and shape. Our results confirm the conclusions 
of Van Kranendonk and Walker[4 J that the anharmonic 
single phonon relaxation mechanism can dominate the 
ordinary two-phonon Raman process. We also take into 
account the optical branches, the contribution of which 
to the relaxation coefficients becomes significant at 
sufficiently high temperatures. Moreover, some prob
lems connected with the application of kinetic spin
phonon equations for the description of EPR lines and, 
in particular, the calculation of phonon widths are also 
considered in the work. 

2. THE SPIN-PHONON KINETIC EQUATION. DEPEND
ENCE OF THE RELAXATION COEFFICIENTS ON 
LATTICE CORRELA TORS 

Consideration of spin-phonon kinetic equationsrs-s) is 
convenient in that the description of the shape of EPR 
lines and the relaxation times of different macroscopic 
spin quantities is possible from a single point of view. 
Both the parameters of the line shape (say, the quanti
ties T 1 and T2 in the simplest case of a two-level 
system) and the different relaxation times are expressed 
in terms of the relaxation coefficients of the kinetic 
equation. 

Equations, which are actually useful in the UHF 
range and in the radio-frequency range, can be written 

l) Some of the results of this work were reported at the All-union 
Jubilee Conference on Paramagnetic Resonance (Kazan', 1969). [3 ] 
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down for a non-equidistant spectrum wmn ¢ wm'n' in 
the form (see, for example,r 8J)21 

damn "Ul ] O'mn --=t[a,...,(t) mn--T , m=Fn, 
dt mn 

d (1) ~=i[a,:M(t)]mm+ ~ (WzmO'l!- Wm!f1mm)· 
dt ~ 

Here amn are the density matrix elements of the 
dynamic spin subsystem, in our case-a single para
magnetic center with Hamiltonian 

/M(t) = ;M, + ;M,(t), (2) 

where :M0 describes the interaction with the static 
fields and !Ml(t) with the variable external fields, while 
the conditions of sufficient smallness of the variable 
field enter as the criterion of the validity of (1).rs-a) 
The indices m and n enumerate the states of :Mo, while 
wmn are the frequencies of the dynamic subsystem 
(the Hamiltonian ~ is assumed to be expressed in 
frequency units). 

The relaxation transition probabilities wmz and the 
transverse relaxation times Tmn are expressed in 
terms of the relaxation coefficients of the spin-phonon 
kinetic equation rmkln· As is shown in[SJ, 

U'ml = 2rtmn:c, (3) 

T"!.-'=! L(Wm>+w •• )-2rmmnn+r •••• +rmmmm· (4) 
R.=Fm,n 

It is understood that the spin-phonon interaction can 
be represented in the form 

(5) 
~ 

where V iJ. are the spin operators, U iJ. the lattice op
erators. If we introduce the Fourier transforms of the 
lattice correlators (FC) ( UIJ.; U) w such that 

1 ... 
G~v(ro)=- J e'"t(U~(t); U,) dt ==(Up; U,).,, (6) 

2n_,. 

then the relaxation coefficients can be put in the form 

where 

rmkln= rc E Gpv(rozn) v~lnv.,.A (romk + ffiln). 

,,.v 

(7) 

(8) 

w* = ·f"C\ where Tc is the correlation time of the 
lattice correlators. In Eq. (1), as is seen from (3) and 
(4), only such rmkln appear for which Wmk + wzn = 0. 

Equations (1) are identical with those obtained by 
Bloch.rsJ On the other hand, Eqs. (1) were obtained in 
the book of Faln and Khanin[aJ from more general 
equations 31 in which all the rmkln ¢ 0 enter, deleting 
the r mkln with Wmk + wzn ¢ 0 under the assumption 
that 1 Wmk + wzn I ? w* is satisfied for these m, k, l, 
n. The conditions rmkln = 0 and Wmk + wzn ¢ 0 are 
identical, as is seen from (7) and (8), only for the case 
I Wmk + wzn I ? w*. However, in crystals for UHF, 
and even more, for the radio frequencies we have 

2)Degeneracy of the levels of the dynamic system is assumed to be 
absent. For the equations in the degenerate case, see [9 ). 

3)See Eq. (8.3) in the book [8 ). These latter essentially are identi
cal with and differ only in form from the equations in the review [7 ). 

Wmk « w* if l'iwmk « kBT, T >To (see Sec. 4 on the 
parameter w* ), so that the condition I wmk + wzn I 
Z" w* is not satisfied in solids for T > To. Therefore, 
it is important to note that the conditions I Wmk 
+ wzn 1 ? w* are sufficient but not necessary for the 
validity of Eqs. (1) for a dynamic system with an un
equally spaced spectrum. In other words, if I Wmk 
+ wzn 1 « w*, then all the terms in the spin-phonon 
kinetic equation containing rmkln with Wmk + wzn 
¢ 0 are inessential for the stationary solutions of 
Eqs. (1)Y0J 

For practical purposes of the interpretation of the 
experimental results, it is important to explain the 
relation between the phonon EPR line width, which is 
determined by the transverse relaxation times Tmn, 
and the time T 1 , which enters into the saturation fac
tor of the EPR line and the wzn determined from (3). 
The time Tmn from (4) consists of a relativistic 
"inelastic" contribution, given by the sum w in (4), 
and of an "elastic" contribution, the value of which, 
according to (7), is determined by the FC at zero 
frequency. If the "elastic" contribution dominates, 
then the EPR phonon line width will not be determined 
by the relaxation transition probabilities, as is some
times assumed when attempts are made to character
ize the relaxation transition probabilities of the EPR 
phonon line width. 

Let us define the operator (5) concretely. Let u~j 
be the displacement of the ion with equilibrium posi
tion Rsj in the direction of the xp axis ( s is the 
number of the elementary cell, j the number of the 
site in the cell). For brevity, we introduce the index 
a in place of sj. Then (see, for exampleP1) 

(9) 

where or are the well-known Hermitian spin o_pera
tors, which are described in terms of the sphencal 
tensor operators. The allowed values of L and M are 
determined by the value of the spin ( L s 2S), the point 
symmetry of the problem, and the invariance of (9) 
relative to the time inversion; the coupling constants 
a, b, c, d, and e can in principle be calculated for 
each specific case[ 2' 11J or expressed in terms of the 
parameters permitted by symmetry theory. The com
ponents c and d describe the rate (nonadiabatic) 
mechanisms, and the component e the mixed mecha
nism. Summation is assumed for repeated indices in 
(9). 

From the invariance relative to an arbitrary dis
placement and the Galileo principle we obtain the 
well-known relations: 

~ PP' .l..J bLMaa' = 0, .L,cfMa=O, ... , (10) 
a a 

so that actually (9) is an expansion in terms of the dif
ferences of the displacements of the atoms and their 
velocities. If we denote the impurity ion by the indices 
s = 0 and y = 0, then in place of ug and u.g in (9) we 

have uEo = uE - u~ and iJCo = uE - u~. Everywhere be

low, by Ua, iJ.a, we mean Uao• Uao· 
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Using the expansion (9), with the help of (6), (7), 
(10), we find 

r m~ln = :rc(OLM)ln(Or,•M')~[ai'Maar:M'a•(UaPj Ua•P')"ln 

PP' P"P'11 P • 'P' P" • P"' · + euraa'eL'M'o"o"' (Ua Ua• i Uo" Uom ),ln + mterferenCe termS) • (11) 

If the temperatures are not very low and the basic 
contribution to I'mkln is made by the two-phonon FC 
of the displacements, calculated in the harmonic ap
proximation, or the single phonon FC of the displace
ments, calculated with account of anharmonism (see 
Sec. 3), then the FC at zero frequency and the FC at 
UHF will not differ (since I wzn I « w* ). Consequently' 
the phonon parts of Wmn and I' mmmm and I' nnnn are 
identical, and the difference of the "elastic" and 
"inelastic" parts of T~n can be caused only by the 
coupling constants. Actually, it follows from (11) that 
I' nnnn and I' mmmm are determined by the diagonal 
spin matrix elements, i.e., by the operators or with 

M = 0, while the I'nmnm are determined by the non
diagonal matrix elements. If, say, I bL,M=ol bL,M"'o I, 
then the "elastic" part will dominate and T~n 
» Wmn (T2 « T 1). 

As an example, let us consider the Kramers doublet 
in a cubic field. For simplicity, let 

,J(' sph = ~ Bc,,,,,S,Jf,e;;, ....... . . 
iJkl 

where, in the macroscopic approximation, we introduce 
the deformation tensor Eij ( i, j = x, y, z) in place of 
the particle displacements. Here Of1 = Sxy, 0~ = Sz) 
and the coupling constant a from (9) is represented by 
the tensor f:lcijkzHz. It follows from (3), (4) and (9) that 

W12 C~ZX% 
r uu + r 2222 - zr 1122 ~ c:.,. · 

For Ho2+ in CaF2, this ratio is equal to 1.6 x 10-3; 

for Yb 3+ in Th02 , it is equal to 2.25.[ 121 

The velocity FC ( u; u)w-o- 0 so that, if the con
stant c dominates in (9) the "elastic" part is negligi
ble and the phonon linewidth is determined only the 
relaxation part. For sufficiently low temperatures, 
when the basic role is played by direct processes, the 
FC at zero frequency become small in comparison 
with the FC at the frequency wzn, so that the phonon 
width is completely determined by the relaxation part. 
We note that the account of anharmonism leads to the 
result that the components with coupling constant a 
give a contribution to the "elastic" part of Tmn (see 
Sec. 3). 

3. THE EFFECT OF ANHARMONISM OF THE LATTICE 
ON THE RELAXATION COEFFICIENTS OF THE 
SPIN-PHONON EQUATION 

As follows from (11 ), the effect of the lattice on the 
relaxation coefficients is completely determined by the 
FC of the differences of the displacements and veloci
ties of the particles. Computation of. the latter is not 
a part of EPR problems. There are many researches 
in which the lattice FC is considered for one problem 

or another of the physics of crystals, with account of 
anharmonism,£ 13- 151 lattice defects,[l5 ' 16l, local and 
quasilocal oscillations.r 17' 181 However, for clarity, we 
shall dwell on a number of initial premises, all the 
more since in the calculation of the lattice FC at UHF 
and radio frequencies there are certain features that 
are not important in the region of higher frequencies. 
We shall not take into account the local and quasilocal 
oscillations, the center of which can be a paramag
netic impurity. We shall assume that the centers con
sidered do not appreciably distort the normal oscilla
tions (see Sec. 5): 

h )''• u = ~ ( . [e,;-,e''a•- e,;o] (ao;- a_,t), 
.Ld 2mNw,J. 

·-i 

(12) 

where akj and akj are the Bose creation and annihila-
tion operators of phonons of the j-th branch and of the 
wave vector k; ekj are polarization vectors, and 

(J 

m = L)my is the mass of the elementary cell, and Nm 
')I 

the mass of the crystal. Thus, the calculation of the 
FC of displacements and velocities reduces to the cal
culation of the FC of the operators akj and akj. We 
denote 

Then, for example/) 

' h '\I ' 
(u:; u:. ), = ZmN ~ ( w o;<•> •i') -'l•th;oL'I-o;'a'!po;,-o;', 

kjj' 

(U~; u:: )w = w 2 (u~; Ua: )m. 

(14) 

(15) 

(16) 

(17) 

Calculation of (14) in the harmonic approximation 
is quite simple. In the anharmonic approximation, the 
Hamiltonian of the lattice has the form 

'\I + 1 '\, r +I( +)( ') ' 3( ph=~ IIW•P•i a,1 + 6 t....l 1 , 2 ,3 (a1 - a_1 L a,- a_, aa- a_a T 
J;;.:j 1,2,3 

( fi. )i- . -· efy er;. e~~.. . . 
V1 2 3 = z~N-- '\I '\I V~i}f. Jl -exp[z (k1R,+k2 R,·-f-k3Ro·)]. ' • "" i..J i...J (.1)1(1).,(!)3 

a,a',o"pp•p" • (18) 

The anharmonic terms of fourth order are similar. 
Here 1 = (k1 j 1 ), - 1 = ( -kd 1 ) and so on. The force 
constants Vaa'a" are the coefficients of the expansion 
of the lattice potential energy in powers of the dis
placements of the atoms from the equilibrium positions, 
and satisfy a number of symmetry properties (see, 
for example/ 191 ). 

Formulas are given in the Appendix for the various 
FC of the creation and annihilation operators of pho
nons. Formulas (A.1)-(A.4) were obtained by us by 
calculation of the corresponding two-time Green's 
functions by means of uncoupling the chain of equa
tions for the Green's functions, [ 201 so that anharmonism 
of third order is taken into account in the polarization 
operator with accuracy up to quadratic terms, and the 
anharmonism of fourth order is taken into account with 

4lThe absence of terms with k' =I= -k in ( 16) follows from the in
variance of the correlator of the difference of the displacements rela
tive to the choice of the origin of the coordinates. 
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accuracy up to linear terms (the anharmonism of 
fourth order in this approximation makes no contribu
tion to phonon damping). Most of the results given in 
the Appendix are contained in[4 ' 13 ' 14l. The feature noted 
above is that as w - 05 > the contribution of the FC of 
the type ( akj; ak.'j') and ( akj; ai{' j ') to the FC of the 
displacements is equal to the contribution of the FC 
of type ( akj; akj ), which are ordinarily taken into ac
count. From (A.1) and (16) we get 

(uaP; Ua,P')., = 2:N L,w.;- 1 Ll!;a~~~a• { [n(w) -1- 1] 
•; 

X ~----:,..,..-,:----.:----,.,---1-='•:!J(::..w!.-) --.--.----} 
n [(w'- w'.;)/2w.;-Pt;(w))'+ r.;'(w) 

(19) 

li \""1 ~!;atLlfra• 
+~N~ ,, '1'•;.-•i'(w). 

2m rWt·Wt'' •J.J'*' } J 

The second sum takes into account the polarization 
mixing and we shall not take it into consideration (in 
the Debye approximation, the polarization mixing of 
longitudinal and transverse waves yields zero). 

In (19), n(w) = (etiw/kBT- lf1 is the Planck factor; 

ft;(w)= 2~2 _EIY-t;,I,21 2{(1+n,+n2)[6(6>-ro,-w.) 
• 1,2 

- 6( ro + w1 + ro2) J+ 2(nt- n.)ll(ro +rot- w2)}. (20) 

For w = Wkj. I'kj(w) is the phonon lifetime; ni = n(wi). 

In what follows, we shall be interested in w in the 
UHF range, i.e., tiw « kB® and, if T >> 1°K, then 
liw « kBT. Therefore, the first two terms in (20) are 
really unimportant. The quantity Pkj(w) is the fre
quency shift~ the expression for which is found, for 
example, in 151 (Eq. (37 .4)). In the following, we shall 
neglect Pkj(w). 

In (19), we separate the contribution of the reso
nance phonons Wkj ~ w in the summation over k, j. 
In the harmonic approximation, one need consider only 
this contribution, since, the "quasilorentzian" in the 
curly brackets of (19) will be replaced by ll(w - wky) 
- ll ( w + Wky ). Anharmonism leads to the replacement 
of the I)-functions by bell-shaped curves of width 
I'kj ( w) and a shift of the center of the bell that is small 
in comparison with Wkj. This shift changes the contri
bution of the resonant phonons by an insignificant 
amount. The sum with Wky > w remaining after 
separation of the resonant phonons (the sum with Wky 
< w is generally insignificant) gives the fundamental 
anharmonic contribution, since this part contains sum
mation over the entire spectrum. For the nonreso
nance region, the function in the curly brackets of (19) 
is proportional to 4 ( n( w) + 1) I'kj ( w )/ 1TWkj. Moreover, 
Ln(w) + 1]I'kj(w), lim[n(w) + 1]I'kj(w). From (19), 
(20), we get 

(uaP; Uo•P')ro ~ (u0 P; U0•P')~arm + (u0 P; Ua•P')oanhann, (21) 

(uaP; Uo•P')oanharm= lz~N .E I Y-t,2,al 2wt-3n2· 
1,2,3 

X (n2 + 1) ~taP ~~!,b(w2- w3). (22) 

5lCalculation of the correlators for local oscillations as w _,. 0 is 
given in [ 17]. 

For comparison, we write down the FC in the harmonic 
approximation 

( ')harm 1i \""1 nt + 1 J!'' 
UaP; Ua•P," = 2mN.f....l~00-1-~taPLl[a• [t"(W-Wt)-6(w+w1)]. 

I (23) 

(uaPua,P'; u~;,' u:,:;')~ann. ~ (uaPu0,P'; u~:; u't,::)/1imn = 
_ lz2 I: nt(n2+1) 1 P' P" p'" p"' p" , 
--- , [~taP~2a·(~lo'•Ll2a"'+~tcr"'~2o") ]6(w,-ro2). 

m2N2 ro1w2 2 
1,2 (24) 

The temperature regions in which the single-phonon 
FC in (21) are important are different. Upon decrease 
in temperature, the occupation numbers of the high
frequency phonons decrease, and the number of pho
nons that make a contribution to the anharmonic part 
of the FC falls off rapidly, so that, at some tempera
ture (see Sec. 4), the anharmonic part ceases to be 
significant. Similarly, summation over the spectrum 
contains the FC of (24). Comparison in the long wave
length approximation for the acoustic branches, when 

(25) 

shows that the FC in (22) and (24) have the same tem
perature dependence when T << ® .[ 4 1 

We note that the contribution to the "elastic" part 
Tmn from (4) can give the anharmonic part of the 
single-phonon FC of the displacements and the har
monic two-phonon FC of the displacements, as follows 
from (22), (23), (24), (17). The velocity mechanisms 
( ila; ila 1 ) o and ( ila Ua 1 ; ilu "Ua" ) o make no contribution 
to the "elastic" part of Tmn· The anharmonic contri
bution to (17) at w ""0 is equal to w2 ( ug; ug;)l}nharm. 

Account of anharmonism in the two- phonon FC of 
the displacements and velocities is inadvisable, for 
even in the harmonic approximation these FC are 
expressed in terms of a sum over all the phonons of 
the spectrum. 

4. TEMPERATURE DEPENDENCES OF THE RELAXA
TION COEFFICIENTS. THE VALUE OF w* IN A 
CRYSTAL 

Let us consider the contributions of the various 
branches of oscillations to the anharmonic FC (22), 
separate the temperature dependences of this FC, and 
compare the anharmonic (AFC) FC [ Eq. (22)] with the 
two-phonon harmonic FC (H2FC) [Eq. (24)]. At high 
temperatures, kBT > liwm, the planck factors in (22) 
is ~ (kBT/liw 2 ) 2 , so that, independent of the dispersion 
law for the different branches, AFC and H2FC ~ T 2 • At 
low temperatures T << ®, when long wavelength pho
nons are fundamental in the lattice, the temperature 
dependences of AFC and H2FC are identical (AFC of 
the displacements ~T7). The region T ~ ® for the 
acoustic branches and the region kBT ~ liwopt for the 
optical ones require special consideration. The exact 
calculation of (22) for each crystal requires the 
knowledge of the dispersion law and the use of com
puters. 

Acoustical branches. We assume the long wave
length approximation (25) and the linear dispersion law 
Wkj =cjk, j = 1, 2, 3. Moreover, we write 

(26) 

' 
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The quantity A1,2,3 in (26) does not depend on the 
lengths K when k · R << 1, but only on their directions 
f= k/k; a(k)= lik,21TKn; pis the density of the 
crystal; Kn is the reciprocal lattice vector. Substitut
ing (25) and (26) in (22), we obtain the AFC for the 
acoustic oscillations. The summation in (22), as in 
the other sums, goes over the first Brillouin zone, and 
a(k) and li(w1 - w2) guarantee satisfaction of the laws 
of conservation of quasimomentum and energy. For 
the estimate of the AFC in this case, one can neglect 
the polarization mixing and take out I A 12 and the 
polarization vectors at the mean value. In the long 
wavelength approximation, we use the estimate[21l 

( IAr;; r,J; r,;l') av ~. "/,y'li'c/ / p, (27) 

where y is the Griineisen constant (y = 1-2). Taking 
transport processes into account in (22), we obtain 
~A(kl + k 2 - k) = 1. Transforming from summation 
k 

over k1 and k2 to integration over the frequencies, we 
get, in the usual way, 

<u P· P') anh- 241i2 2R R f, < (e1..f) r:;,) ( kaT )7/ ( ej ) 
a , Ua' a ---y a a' ' -- 6 -

ll4p2 .;_j c•10 li T 
.. i=l " av 

24/i2 ( ksT) 7 ( 9) ~ PP' ~ n'p2cl0 y2RoRo• -li- Is T l..J ((eAf);oo•>av· (28) 
jo=l 

Here ® j is the Debye temperature, determined for the 
j-th acoustic branch, 

li ( 6a2p ) ''• -'t. pp' P P'' 9;=- -- (cr3)av; (e?.f)Joo•==erjyerjy•(f1..o)(f1..o•); 
·k8 m 

Ro 
A.== Ra • 

( ... >av denotes averaging over the propagation 
directions. The second equality in (28) is the result 
obtained in the ordinary Debye approximation, where 
c is the velocity averaged over all the branches and 
is determined by the Debye temperature 

3 

® = (%) ~ ®j. Finally, 
j= l 8/T 

In (: )== J xn (ex~1)2 dx. {29) 
0 

In the long wavelength approximation, the H2FC (24) 
have such a temperature dependence, as is well known. 

It is interesting to note that a temperature depend
ence different from (28) is obtained in the continuum 
model, in view of the absence of transport processes, 
i.e., k1 + k2 - k = 0. In this case, the simultaneous 
satisfaction of the laws of conservation of the momen
tum and energy imposes additional restrictions on the 
region of change of the vectors kh k2, k. Calculations 
show that, without account of transport processes, 
I6(®/T) in (28) will be replaced by (z = ®/T) 

1 t r y'eY ( 8 ) 
=zJ xdxJ (eY-1)2dy=ls T 

0 x/2 
(30) 

+ ~ s' ( _!_z2x4- 2x6) eX dx, 
2 2 (ex-1) 2 

z/2 

I~ does not differ from I6 when T << ® . The drawing 
shows the difference between I~ and I6: (I~ - I6)/I6 
- 60% forT = ®/2 and 42% for T = e/8. Thus the 
contribution of transport processes at T - ® is not 
small and the long wavelength approximation is unsuit-

able. If we retain in (22) the exact A1aAia•,6> and if 
we take into account the dependence of I A1,2,3 l on the 
ki and the fact that the long wavelength approximation 
distorts the contribution of the trans port processes 
more strongly than the contribution of the normal pro
cesses, then, for T :S ®, the temperature dependences 
of the AFC and the H2FC will be different. 

In the region T « ®, the AFC and the H2FC differ 
only numerically. Let us consider, for example, a 
process that is quadratic in the spin ( L = 2) in (11). 
Then 

r::?:~ a'<u~; ug:>.anh 
r~'lm: - b'<u~ug:; ~:ug:>~arm 

a'R' 32r" 
b2R4 ((eM))av · 

(31) 

Assuming a 2R2 - b 3 R4 , y R; 1-2, and ((e;\f))av < 1, 
see that the contribution of the single-phonon anhar
monic mechanism can exceed, by two orders of magni
tude, the usual Raman process.[4l Their ratio depends 
on the coupling constants a and b and a more exact 
calculation of the AFC, but in each case, even for 
T « ®, it is necessary to take this mechanism into 
account. It also follows from (31) that in (21) the an
harmonic correlator lowers the temperature To at 
which the Raman processes become important, in com
parison with direct processes. 7l 

The relation between ( i!E; ug:)~nharm and 
' " "' harm ( ugug,; ug, iJ.~,,)w is the same as between the AFC 

and the H2FC of the displacements. 
We note that independent estimates of I A 12 in the 

point-charges model for ionic crystals[14 l and from 
the contribution of anharmonism to the heat capacity[ls] 
lead to quantities of the same order as in (27). 

Optical branches. The optical branches at tempera
tures T - ® can give a contribution comparable with 
the acoustic branches to the spin-lattice relaxation.[ 23 • 24 l 
If there is a comparatively narrow optical branch in 
the crystal, separated by sufficient space from the 
other optical branches, then this can lead to an expo
nential growth of the EPR linewidth when kBT 
:S fiwopt· 

Let us consider the contribution of anharmonic ef
fects in (22). We approximate the dispersion law 

W>J = Wu; + 1/,a;k', (32) 

and assume I Wkj - Woj I << Woj· If kBT « fiwoj, then 
the Planck factor in (22) leads to the temperature de-

Temperature dependence of(I6 -1~)/16 = 
Ill. 

t!f,% 
f(Jf/ 

1/J f.f ZIJ 
Z = 8/T 

6> Averaging of 6~0 t::.f/ over the directions of propagation is itself 
not complicated, [22T but, ifk·R- I, it is also necessary to take into 
account the dependence of IAI 2 on the lengths of the wave vectors. 

?)Comparison of (28) with (23) gives T 0 = 2- I5°K fore= I 02 -

I 03 OK. 
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pendence AFC ~ exp ( -tiw 0 /kBT). Using (32) and the 
narrowness of the band, and writing 

V1,2.s= v :NQ1,2,sA(ki + kd- k3), (33) 

we obtain from (22) the AFC for the optical branches. 
We estimate this AFC by neglecting the polarization 
mixing, for atoms belonging to an other sublattice than 
the paramagnetic impurity. We have 

(34} 

The proportionality indicated in (34) occurs for the 
two-atom lattice ( y = 1.0 ). We take the constant I Q 12 

in the average outside the sign of summation over the 
wave vectors and estimate it in the long wavelength 
approximation, using (33) and (26), 

(35) 

where km is the maximum value of the wave vector, 
k ~ kB®/tic, and the estimate of (I A 12 >av is given in 
(27). Thus, 

( •. P')anharm~ 21i'c'k~' 2 '\' n(wo;) [n(wo;)+ 1] (A" nr,':> (36) 
Ua , Ua' o _. 3n~p1 V L.J a,roo/ lr.]O" k]O' av· 

i 
The optical H2FC has in the approximation (34) the 

form 

Equation (37) agrees with the formula obtained by 
Kochelaevr 23J for Wkm· The ratio (31) has the form 

(37} 

r~~ a2km2 2c4km4 1 (38) 
-l'h-~-b2 ZOy -.-4 ('P. /';P~) ·' 
in~ rooJ Ll1oo kJcr av 

tickm;;:; kB®, a 2k:U ~ b 2, so that the ratio (38) is 
~20·/ for Woy ;;:; kB®/ti and ~1 for Woj ;;:; 3kB®/ti. 
Thus, our estimates indicate that, even for the optical 
branches, the contribution of the anharmonism to the 
relaxation coefficients can be substantial. 

We note that the transport processes, which are 
important here, were taken into account in (36). With
out them, the value of (36) is reduced to one half. 

Interference terms. Interference terms appear in 
Eq. (11 ). Their role can be important if the contribu
tion to (11) of two different autocorrelators are of the 
same order. We consider the corre lator ( ua; ua 'Ua ") . 
It differs from zero only with account of anharmonism, 
and can give a contribution comparable with 
( Ua; ua') and ( UaUa'; Ua"Ua"') in first order in the 
cubic anharmonism. 

With the help of (12) and (A.4), one can show that 

, .. ( fi'/, )'f,L AfaAf;.A;; .. 
(u~;u~.uf .. )ro;::;; 2--, ,f 3 · 2V_1,-2,-3 n,(n2 -f-1)o(w,-w3). 

mH y W1 ro2W3 
1,2,3 (39) 

It follows from (39) that the interference component 
( Ua; Ua'Ua") gives the same temperature dependence 
for T « ® and T > ® as the H2FC or the AFC. It is 
not difficult to obtain a numerical estimate of (39) on 
the basis of the approximation (27) for the acoustic 
branches and (33) and (35) for the optical branches is 
similar to what was done for the correlator (22). 

The parameter w*. The parameter w* in the 
theory of spin-phonon kinetic equations determines one 
width of the frequency distribution of the FC. If 

w << w*, then the FC at the frequency and at zero can 
be assumed to be the same. Thus, in (24), although 
w « kBT/ti(T < ®) or kB® (T > ®), one can replace 
o(w1- W2 + w) by o(w1- w2 ), which also leads to 
H2FC independent of w. The value of the H2FC begins 
to fall off sharply only for tiw ~ kBT (T <®),or 
w ~ kB®/ti (T > ®) because of the Planck factor 
n1 (n2 + 1)1i(w + W1- w2). The completely analogous 
dependence on w for the AFC follows from (22}. Con
sequently, w* ~ kBT/ti (T < ®) or w* ~ kB®/ti 
( T > ®), which agrees with the conclusion of Bloch and 
Wangsness,rsJ while account of the anharmonism does 
not change the estimate of w*. The w* are of the 
same order for the velocity correlators. 

Similar considerations show that the correlator 
determined by the optical branch with the narrow band 
begins to fall off sharply when w becomes comparable 
with the width of the optical band. In other words, for 
the optical branches, w* ~ ajk:U (which also occurs 
for the H2FC). 

If T ~ T 0 , then the AFC and the H2FC do not play 
roles and then w* ~ rkj (Wkj), where Wkj = WUHF• 
i.e., w* < w, and is actually determined by the lifetime 
of the resonance phonons. This conclusion follows from 
(23 ), if we replace li ( w - w 1) in the latter by a bell 
curve with width rkj ( Wky ). 

Thus, for T ~ T 0 we have w* ~ rkj (Wkj) for 
To< T < ® we have w* ~ kBT/ti, and for T 2 ® we 
have w* ~ kB®/ti for the acoustic phonons and w* 
~ ajkfu for the optical phonons. 

5. CONCLUSION 

Actually, any mechanism can be dominant in (11 ). A 
typical situation, without account of anharmonism, is 
the following: the single-phonon mechanism with con
stant a plays a role for T ~ To and the two-phonon 
mechanism with constant b for T > T 0 • Account of 
anharmonism leads to the result that the contribution 
of the single-phonon anharmonic correlator with con
stant a, for T > T 0 , can be the same, as or in the 
most favorable case, two orders larger, than the con
tribution of the ordinary harmonic correlator. This is 
true both for the acoustic branches and for the narrow 
optical branches. 

Qualitatively, the anharmonic contribution could be 
observed in the temperature dependence of the phonon 
width of the EPR line only in simple lattices, where 
there are no optical branches, or in a lattice in which 
the optical branches are sufficiently far removed from 
the acoustic one, so that the contribution of the optical 
branches could be neglected in the range ®/10 < T 
< ®. One could then expect a departure of the temper
ature dependence of the phonon width of the EPR line 
in the specified range from the harmonism dictated by 
the two phonon correlator. 

We also note that our calculations of the single
phonon FC with account of the scattering of phonons 
by static displacements (see Sec. 36, of[ 15 l) have shown 
that the scattering from defects leads, at small defect 
concentrations or small static distortions, to an in
consequential change in the relaxation coefficients in 
comparison with an ideal lattice (here, the local and 
quasilocal oscillations were not taken into account). 
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These changes are proportional to c(1 - c)~ 2 , where 
c is the defect concentration and ~ is a parameter 
characterizing the relative change of mass or force 
constants. 

The authors are grateful to M. F. Deigen for con
stant interest in the research and for us discussions, 
and to M.A. Krivoglaz for advice and a discussion of 
the results. 

APPENDIX 

For w ¢ 0, we have 
• ,1 [n(w)+ 1]f.;(w) 

((a•; -a-•;); (a-•;-a•;+)).,=- n -[-(w"""'2 ___ w_•.,;l:.::)/~2:.!..w....!.•i...:_::.:;po:-.,=:-.(w.:..:)~]-;;-2+~f-.;2;;-;(-;-w) 

(A.1) 
As w- 0, 

± 1 4 . 
((a•;- a-•;) ;. (a-•;- a.;+))o =---2 hm [n(w) + 1]f•J(w). 

1 n w.; <>-+o (A.2) 

The role of real correlators in the limit as w- 0 is 
seen from (A.3): 

(a:.;; a.;+)-o=~lim [n(w)+ 1]f.;(w), 
nw.; O>-+O 

(a.;; a.j.)<>-+0= --1-lim [n(w) +1]f•M(w), 
1t(l)tjOO.t.j' (1)-+0 

-1 
(a.;; a.;).,...o=--2lim [n(w)+ 1]f•;(w), (A.3) 

1t(t)tj 6r+O 

the quantity rkjkj I is defined in ( 151, 
The interference terms are represented in (A.4): 
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