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We consider the motion of a conduction electron in a nonmetallic ferromagnetic crystal with allowance 
for s-d exchange interaction. If the sign of the s-d exchange integral is negative, the wave function con
tains an admixture of the polaron state, in which the motion of the electron is accompanied by a spin 
wave. The problem has a close analogy with the problem of the bound state of two spin waves, and is 
solved rigorously. The energy spectrum of the system is investigated numerically for a wide range of 
values of the parameters. We also calculate the electron spin averaged over the ground state, and the 
wave function of the bound state. 

A conduction electron moving in a magnetically ordered 
nonmetallic crystal deforms the magnetic structure of 
the crystal. The mechanism coupling the electron with 
the localized atomic spins of the magnet is the s-d ex
change interaction. Since this is practically a contact 
interaction, the electron-induced deformation of the 
magnetic structure can be localized near the electron 
and moves when the latter moves over the crystal. If 
such a localization takes place, the corresponding quasi
particle (electron accompanied by the deformation of the 
magnetic structure) is called a magnetic polaron. The 
conditions for the occurrence of a magnetic polaron in 
an antiferromagnetic crystal were investigated by 
Nagaevu1 by a variational method. Initially, in the analy
sis of the motion of a conduction electron in a ferromag
netic crystal, account was taken only of the fact that it 
becomes magnetized by the exchange field of the local
ized electrons, as manifest by the appearance of a defi
nite orientation of the electron spin relative to the spon
taneous magnetic moment of the crystal. This effect, 
however, is due only to the diagonal (with respect to the 
electric spin) part of the s-d interaction, with respect to 
which the magnetic lattice is absolutely rigid. Respon
sible for the deformation of the magnetic structure is 
the non diagonal part of the s -d exchange, and if it is 
taken into account, then states of the polaron type can 
appear in a ferromagnet under certain conditions even 
at zero temperature. The present paper is devoted to 
the investigation of such states. It should be noted that 
in the limiting case of weak s-d exchange, this question 
was considered in [2- 41 , and in the limit of a strong s-d 
coupling it was investigated by Nagaev. [51 

Thus, let us consider a conduction electron in a fer
romagnetic nonmetallic crystal, which can be described 
by the following Hamiltonian: [lJ 

de= .E {EA6aa•-A(sSm)aa}ama+ama' 
maa' 

+ B .E ama +am+<\.,a -+I.E (SmSmH). (1) 
mAo mA 

Here amo is the operator of the annihilation of an elec
tron at the site m with spin a, Sm is the operator of the 
atomic spin of the quantity S, located at the site m. The 
energy parameters have the following meaning: EA
atomic energy of the electron, B-Bloch transport inte-

gral, A-integral of exchange interaction of conduction 
electron and a localized atomic spin, I > 0 -exchange 
integral between the nearest neighboring atoms (t. de
notes summation over the nearest neighbors). 

Let us direct the z axis of the coordinate system 
along the spontaneous moment of the crystal, and let us 
denote the directions of the electron spin along the z 
axis and in the opposite direction by t and I, respec
tively. The operator of the z-projection of the summary 
spin of the crystal 

S0 = .Esm'+~.E (amt+amt-aml+aml) (2) 

commutes with the Hamiltonian, and therefore the eigen
states of the Hamiltonian should be characterized by the 
eigenvalues of the Z-projection of the summary spin. 

When A > 0, obviously, the ground state corresponds 
to the summary spin NS + %, in which the conduction 
electron has a spin orientation along the spontaneous 
moment of the completely ordered localized spins. When 
A < 0, the ground state of the system should be charac
terized by the z-projection of the summary spin, equal 
to NS - 7'2 • However, this value of the z-projection of 
the summary spin is obtained not only in the case when 
the electron spin is directed antiparallel to the sum
mary spin of the ferromagnetic order, but also in the 
case of parallel orientation of the electron spin, pro
vided that there is a single spin deflection in the sys
tem of localized spin. 

In accord with the foregoing, the wave function of the 
system ~NS-?'z represents when A < 0 a superposition 

of two states (we shall call them the trivial and the 
polaron states): 

'I'Ns-•t,={.Ec(mt)aml++ L (2S)-'i•b(m,n)amt+Sn-} jO), {3) 
ut mn 

with I 0) the wave function of the state when there is 
complete ferromagnetic ordering in the spin system, 
and there is not a single electron in the conduction band. 
Such a state is defined uniquely by the conditions 

s,+jO)=O, Sn'!O)=SIO), amal0)=0. 

The Schrodinger equation for the state ~NS-1/2 leads to 
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the following system of equations for the amplitudes of 
the wave function 

-Bzc(nt}-1-B L,c(n+ 11, t)- 1/,A(2S)'"b(n,n)=Ec(nt), 
h. 

- 1/ 2A (2S) 'i•onpc (nt) + [- Bz- 1/zAS + ISz- 1/,A (S-Oup)] b(n, p) 

+BL,b(n+l1,p)-IS_L,b(n,p+ 11)=Eb(n,p) (4) 

"' h. 

with the normalization condition 

L lc(nt) F+ L, lb(n,p) I'= 1. 
n np 

The energy E is reckoned from the level EA +%AS 
+ Bz - % NziS2, corresponding to the energy of the 
ground state of the spin system and the bottom of the 
conduction electron with spin I . 

We seek the solution in the form of a Fourier ex
pansion 

b(n,p)=eiKR ~ L, b(K,q)ei••, 

where 

(5) 

(6) 

R=='/2(n+p), r==n-p. (7) 

As seen from (7), K corresponds to the summary mo
mentum and q to the relative momentum of the two ele
mentary excitations 11 (the electron and the spin deflec
tion), localized at the sites n and p (representing c(nl) 
in the form 

1 'K 
c(nt)=Nc1(K)e' ", 

we obtain in place of (4) the following system of equa
tions: 

Cj(K)=-: (2S)'"Gl 0 (E,K) L, b(K,q), 
q 

b(K,q)- E-et(K). A/2 -;-;1N1 ~ b(K,q')=O 
E-el(K) E-et('hK+q)-em('/,K-q) ~ 

q' (8) 

and the normalization condition 

~ lb(K ')I' 1 A'S 1 I~ I' "'-.! ,q +2 [E-q(K)]' N ,.wb(K,q) =1. 
q q 

(9) 

Here 
em(K)=IS( z-L:eiK•), (10) 

h. 

q(K)=-B(z-~eil••), (11) 
h. 

et(K)=-B( z-1>;"•) -AS, (12) 
A 

where Em(k) is the energy of the spin wave in an ideal 
ferromagnetic crystal (in the absence of a conduction 
electron), Ej(K) and E j (K) are the energies of the con
duction electrons with momentum K and corresponding 
orientation, moving over the crystal with ideal ferro
magnetic order; G0j(E, K) = (E- Ej(K)f1 is the Green's 
function of the electron. 

l) A distinguishing feature of the problem under consideration is 
that the state 'l'NS-Yz is neither a pure single-particle state nor a pure 
two-particle state (with respect to 10>), but is a superposition of both. 
Therefore the quasimomentum K characterizing the level E turns out to 
be the quasimomentum of a quasiparticle forming the trivial state, and 
at the same time the quasimomentum of the mass center of the two-par
ticle state. In the latter aspect, the problem has much in common with 
the problem of the bound state of two spin waves, solved by Wortis [6 ]. 

The second equation of (8) leads to the dispersion 
equation 

AS A 1 ~ 1 
E-et(K) =2/i.t.... E-q(1/,K+q)-em('/2K-q)' (13) 

q 

which defines the eigenenergies of the system E in the 
state '~~NS-7'2 • We see from this expression that when 

A ~ 0 the eigenenergies coincide with the band of the 
quasicontinuous levels of two-particle noninteracting 
excitations of the system, namely the conduction elec
tron with spin l and the spin waves. At each fixed K, 
this band contains N energy levels: 

E=q('/,K+q) +e,.('/,K-q), 

corresponding to N possible values of the relative 
quasimomentum q. 

In the other limiting case IAI ~ oo we have 

E ~'/,A. 

(14) 

(15) 

Inasmuch as A < 0, this means that a deep discrete level 
appears under the band of the quasicontinuous spectrum. 
At a finite value of the s-d exchange coupling parameter 
A, there exists for each K a band of the quasicontinuous 
spectrum of levels that lie (accurate to ~ 1/N) within the 
limits defined by (14), and a discrete level lying below 
this band can also appear. The latter level corresponds 
to a superposition of the trivial state of the conduction 
electron and the bound state of the conduction electron 
with spin t and the spin wave. 

Let us investigate first the structure of the spectrum 
at K = 0. To find the energies lying outside the band, it 
is possible to replace in (13) the summation with respect 
to q by integration. The dispersion equation (13) is best 
rewritten then in the form: 

B-IS S 1 
-A--= 28-z +4Gooo(8), (16) 

where 
8 = E+(B-IS)z+AS 

2(B-/S) ' 
(17) 

Gnm0 (0)=~JdKei"(•-m>[0-_!_ ~ ei"-•]-l 
(2n) 3 2 LJ · 

h 

(18) 

(n0 is the volume of the unit cell). 
The last quantity is the real part of the single-par

ticle Green's function in the node representation. It is 
tabulated in [?l for a primitive cubic lattice in the case 
of coinciding sites n and m (for which we used the sym
bol G::0), and also for the sites that are the nearest 
neighbors. 

In order to obtain an idea of the behavior of the right
hand side of Eqs. (16) as a function of 0, we can write 
down Eq. (16) for the one-dimensional case, in which the 
integral (18) at n = m = 0 can be evaluated exactly: 

B-IS =-S--+ 1 1 
A 28-2 4. f'$2 -1' 

0>1. (19) 

In the three-dimensional case, however, G~0(E) is finite 
everywhere, and the singularity of the expression in the 
right side of (16) is connected only with the first term. 
At 0 = z/2 this singularity, as can be readily seen from 
(17), corresponds to an energy E =-AS, representing 
the bottom of the band of the electron with spin t (dashed 
line in Fig. 1). It is seen from the figure that at all posi-
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FIG. 1 FIG. 2 

FIG. 1. Graphic solution of Eq. ( 16) for the eigenvalues of the 
energy at K = 0 and S = 1. 

FIG. 2. Dependence of the energy E at K = 0 on the value of A. 
Curves: 1-S= 1, II/BI=O.Ol;2-S= 1, II/BI = 0.1;3-S= ~. II/BI = 0.01. 

tive values of the parameter (B - IS)/A (these are the 
only values of interest to us, since A< 0 and B < 0), 
there is one solution of Eq. (16), and we always have 
B.> 3. In order to understand the physical consequences 
of this result, let us rewrite Eq. (17), which connects IS 
with E, in the form 

E 
IS-IS,= 2(8-/S)' 

AS 

IS,=S+2(B-IS)' (20) 

where /81 ~ corresponds to the energy E = 0, i.e., the en
ergy of the electron with spin l (trivial state). It is seen 
from the last relation that the energy of the trivial state 
can be obtained from the solution of (16), in which the 
last term with G~ is discarded. The curve representing 
the first term in the right side of (16) lies below the 
curve shown in Fig. 1, and therefore at a given value of 
the parameter (B - IS)/ A we always have IS > /81 > 3. 
Taking (20) into account, we conclude that at all values 
of A the true energy of the system E, for K = 0, lies 
below the energy of the trivial state. 

The dependence of the energy Eat K = 0 on the dif
ferent parameters is shown in Fig. 2. As before, the 
zero point is the energy of the trivial state. The straight 
lines in the upper part of the figure show the limits of 
the quasicontinuous spectrum at the corresponding val
ues of the spinS. It is seen from Fig. 2 that all the val
ues of A the discrete level becomes separated from the 
band of the two-particle stages, and the depth of the 
level increases strongly with increasing A. 

To investigate the structure of the spectrum at K * 0, 
we take into account the fact that 1/B is a small param
eter. In first approximation in this parameter, the dis
persion equation (13) can be represented in the form 

AS [ - \"1 1_. 1-B 21S-"-'cos(KA) 
A 

A 

where the unknown 'i is connected with the true energy 
E of the following relation: 

E+Bz+AS 
2B 

(22) 

FIG. 3. Structure of the energy spectrum 
for a wave vector K in the direction [ 111]. 
Parameter-: S = 1, II/BI = 0.1. Curve 1 and 
dashed curve 1 '-A/B = 8; curve 2 and dashed 
curve 2' -A/B = 2. The dashed curves repre
sent the energy of the trivial state at the cor
responding values of the parameters. 

FIG. 4. Dependence of the gap 
ll.E between the band corresponding 
to the discrete level for the wave 
vector direction [ 111] and the band 
of the quasicontinuous spectrum, on . 
the quantity A/B: curves 1 and 3-
II/BI = 0.01; 2 and 4-II/BI = 0.1. 

I 

0 

E/181 

The results of the graphic solution of this equation at 
particular values of the parameters are shown in Fig. 3. 
We see here the energy of the system as a function of 
the wave vector in the direction [111] of the Brillouin 
zone. The shaded area corresponds to the quasicontinu
ous spectrum of the two-particle states, calculated in 
accordance with formula (14). Curves 1 and 2 corre
spond to the discrete spectrum. The system of discrete 
levels represented by curve 1 lies in its entirety below 
the quasicontinuous spectrum at all values of K, and 
therefore corresponds to a band containing an admixture 
of only bound states. Curve 2 represents the case when, 
starting with a certain finite wave vector, the discrete 
level falls in the band of the continuous spectrum and 
the motions of the conduction electron with spin t and 
of the spin wave become uncoupled. 

Thus, depending on the value of the parameter A, we 
can have either an overlap of the band corresponding 
to discrete spectrum with the quasicontinuous band, or 
a gap. Figure 4 shows the value of the gap A.E as a 
function of the parameter A for two values of the local
ized spin. 

In two limiting cases it is possible to obtain an ana
lytic expression for the energies corresponding to iso
lated solutions of Eq. (13). In the case IAI « z IB I, iter
ation of Eq. (13) yields 

A2S 1 
E = e: (K) + - 2- N. 

X 1: e:(K)-et(IM<::q)-em(IM<:-q) ' 
q 

which coincides with the results of [3• 41 • 

In the other limiting case IAI » z IBI we have 

A (iBI+lS)z 1 ( ~ ) 
E=2+ 2S+1 + 1+1/2S[BI z-LJei"A . 

" 

(23) 
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FIG. 5. Dependence of the average 
z-projection of the electron spin in the 
ground state on the parameters of the 
system. Curves: 1-S = Y>; 11/BI = 0.01'; 
2-S = 1, 11/BI = 0.01; 3-S = 1, 11/BI = 
0.1. 

The width of the polaron band, given by formula (23), 
agrees with the results of Nageev. [51 

Let us calculate now the wave function of the system. 
A solution of the second equation of (8) in conjunction 
with the normalization condition (9) yields 

b(K, q)= ~ E- Et(K) 
"fN E-et('f,K+q)-em('/2K-q) 

{ 1 \"1 1 }-'/• 
X (E-e 1 (K))'~L.irp (III'+') (1/l. ')]'+2S . 

• • ' ... 1'- €t 2 \._ q -em 2 \.- q 
q (24) 

Substituting this result in (6) and integrating with re
spect to q, we can obtain, in principle, the spatial dis
tribution of the polaron component of the eigenstate of 
the system. It is seen already from (24) that for the 
energies E corresponding to the discrete spectrum (at 
a chosen value of K) the denominator E - Ef1('/2K + q) 
- e:m('/2 K- q) remains negative at all values of q, and 
therefore integration with respect to q in (6) gives rise, 
at sufficiently large [r [, to an exponential factor that 
points out the localized character of the bound state of 
the electron and the spin wave. 

Formula (24) makes it possible to calculate the mean 
value of the electron spin in a specified state of the sys
tem with energy E and momentum K: 

(cr')u = ('I'Ns-•t,(E) [cr'['I'Ns-'f,(E) ), (25) 

where az is determined by the second term in (2). Cal
culating this matrix element with the functions (3), we 
get 

(cr')E,K=4-{E [b(K,q) [2 -+ (E -~,~~K))' ~IE b(K,q) 1'}. 
q q (2 6) 

Substituting here the relation (24), we obtain finally 

(cr')E,K=+-28 /{ 2S+[E-et(K)]' ~ 

x.E [E-et('/,K+q)-em('/2K-q)J-'}· 
q 

(27) 

It is easy to obtain asymptotic values of this quantity in 
two limiting cases in the ground state: 

(cr')o = -'/, (A-+ 0); (28) 
(cr')o=-'/,(2S-1)/(2S+1) ([A[-+oo). (29) 

The first case correponds to a purely trivial state, while 
the second to an extremely large contribution of the 
polaron state with one spin deflection to the eigenstate 
of the system. 

At finite A, the results of a numerical calculation 
for the ground state of the system in accordance with 
formula (27) are shown in Fig. 5. We see from this that 
with increasing [AI the mean value of the z-projection of 
the electron spin changes monotonically from the value 
(28) to the value (29), owing to the increase of the con
tribution of the polaron state. 

Note added in proof (23 June 1970). It should be noted that the 
state with a summary spin NS-Yz will be the ground state of the system 
in the limit as lA I ~ oo only if S = Yz. If S > Y>, the ground state of the 
system in the limit as IAI ~ oo is characterized by a spin NS + Yz-2S, 
and this calls for taking into account several spin deflections in the cry
stal. For intermediate values of A in the ground state there will be real
ized values of the summary spin S0 from the interval NS-Yz.;;; S0 .;;; NS 
+ Y2-2S. 
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