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A hypothesis of asymptotic scale invariance is proposed for the study of the properties of the strong 
interactions at small distances. A direct consequence of this hypothesis is power-law asymptotic be
havior of the amplitudes at very large momenta and very far from the mass shell. It is shown that 
such asymptotic forms agree with the conditions of unitarity and analyticity. Exact equations des
cribing the interaction of strongly virtual particles are formulated. Application of these equations to 
the process e+e- - hadrons at high energies allows us to determine the total cross section for this 
process [Eq. (1.4)], to find the multiplicity of the hadron production [Eq. (1.5)], and to examine the 
properties of the cross sections for the production of given numbers of hadrons [Eqs. (1.2) and (1.3)] 
for cases in which the number is large. In conclusion we consider an analogy between the proposed 
theory and the theory of second-order phase transitions, and discuss the question of the role of 
SU(3) x SU(3) symmetry in this scheme. 

1. INTRODUCTION 

FIFTEEN years ago Landau and PomeranchukuJ 
showed that in the framework of quantum field theory 
with logarithmic divergences it is not possible to des
cribe a strong interaction. This is due to the fact that 
in renormalized theories the phrsical coupling constant 
g2 is determined by the formula lJ 

g' = 3:rt (In (A' I m'). (1.1) 

Here m is the mass of the particle occurring in the 
theory, and A is the maximum momentum up to which 
the theory has meaning. For the theory to have a region 
of applicability it is necessary that A :» m. It follows 
that g2 « 1, which makes a strong interaction impossi
ble in this theory. 

We have recently come to understand that the logar
ithmic situation is not the only possibility in quantum 
field theory. Gribov and Migdal, c2 J considering the 
problem of the interaction of reggeons, showed that one 
possibility is a "strong coupling" case in which the 
many-particle Green's functions are power-law, not 
logarithmic, functions of their arguments. It later turned 
out that strong coupling and a power-law situation exist 
also in many-particle systems near points of second
order phase transitions. c3- 5 J The problem arising here 
is formally identical with that of the relativistic theory. 
It is extremely interesting to study the possible exis
tence of a "strong coupling" regime in hadron interac
tions and to find some sort of observable manifestations 
of this situation. 

Power-law asymptotic forms of the Green's functions 
at large momenta mean that the theory has an invariance 
with respect to change of the space-time scale which is 
manifested at very small distances. In a paper by 
Wilson ce J such an in variance was postulated in de pen
dently of the idea of strong coupling, on a purely 
phenomenological level. Even with this approach Wilson 
succeeded in deriving a number of important qualitative 
results regarding current algebra. These results con-
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vincingly show the appropriateness of the approach based 
on the similarity hypothesis. 

For a quantitative analysis of the strong interactions, 
however, the similarity hypothesis by itself is insuffi
cient, and one must use dynamical equations based on 
unitarity and analyticity. In the present paper we study 
the consequences for the strong interactions of hadrons 
of the application of three ideas-unitarity, analyticity, 
and similarity. The problem is made easier by the fact 
that the required apparatus has already been applied in 
the solution of other problems, c2--5 J where its connection 
with scale invariance was pointed out. The contents of 
the present paper are arranged as follows. 

In Sec. 2 we derive a purely methodological result 
which is necessary for the subsequent analysis. Namely, 
the usual unitarity condition for the Green's function 
G(k2), which contains an expansion in terms of 
1m (k2 - m 2 + i0t1 (the phase volume), is reformulated 
in such a way that it involves Im G(k2). 

In Sec. 3 it is shown that the strong-coupling case 
requires that there be no subtractive constants in the 
dispersion relations and means that the theory is of the 
"bootstrap" type, and that neither bare fields nor bare 
interactions are essential in it. It is shown that the 
equations derived in Sees. 2 and 3 possess the group of 
scale transformations. 

In Sec. 4 the dynamical equations so obtained are ap
plied to the process e+e-- hadrons at high energies. It 
is shown that the cross section for production of n :» 1 
hadrons, an(s) is given by the formula 

(1.2) 

where s is the square of the energies in the c.m.s., 
a = 1/137, and 0 < 6 < %. The function x(v) has the 
asymptotic behavior 

(1.3) 

The total annihilation cross section at= I;n an is of the 
form 
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a,(s)ooa'/s for s-+oo, (1.4) 

The hadron multiplicity n(s) is determined by the form
ula 

ii(s)= ,L. na.(s) /L. C1n(s)cr.>s6• (1.5) 

In Sec. 5 a possible physical meaning of the scale in
variance is brought out, and an analogy is established 
between the proposed theory and the theory of second
order phase transitions. The question of including· the 
SU(3) x SU(3) symmetry and the weak interactions in the 
scheme is also considered. 

2. REFORMULATION OF THE UNITARITY CONDITION 

To prove the asymptotic scale invariance of the am
plitudes at small distances or large momenta it is de
sirable to have equations connecting the amplitudes with 
each other. The unitarity condition in its usual form is 
inconvenient for these purposes, since it involves the 
amplitudes on the mass shell, for which the asymptotic 
scale invariance is not valid. Therefore we shall re
formulate the system of unitarity conditions in such a 
way that the expansion will go not in terms of the im
aginary parts of the poles, Im(k2- m2 + wtl, but in 
terms of the imaginary parts of the Green's functions, 
Im G(k2). Furthermore the amplitudes will be taken off 
the mass shell and will go out to the region of large mo
menta. 

The usual unitarity condition is of the form l 7 J 

Im6-ik 2) ~ -o:::=:o- + ~ + ... (2.1) 

Here the quantity 9(ko)c5(k2- m2) is assigned to a line 
with a cross, and the shaded blocks are exact vertex 
parts. To simplify the figures we assume that there is 
only one type of particle. In an actual case with differ
ent hadrons all of the amplitudes are matrices in the 
space of SU(3) and the spin space and have indices de
noting the number of the SU(3) multiplet. 

Equation (2.1) can be derived by calculating the im
aginary part of the perturbation-theory series and using 
the "separation rule"l7J: one carries out in turn all 
possible dissections of a diagram, and at each cut re
places the propagator (k2- m2 + iOt1 by 21T9(ko)c5(k2- m 2). 
Combination of the diagrams then leads to (2.1). 

To reformulate (2.1) we consider instead of the 
perturbation-theory expansion an expansion in terms of 
exact Green's functions and calculate the imaginary 
part of each term. We have 

lma·'~Im{--<:>- + -<I>-+··· ~ (2.2) 

Here the lines correspond to G(k) and the points to bare 
vertices, which can be arbitrary. 

The rule for calculating the Im in (2.2) is again the 
"separation rule," the only difference being that instead 
of 9(ko)c5(k2- m 2) one uses 9(ko)Im G(k2). This becomes 
obvious if in (2.2) we substitute the Lehmann expansion 
for each line. Here, however, the combination of the 
diagrams does not lead to complete vertex parts, as in 
(2.1), because in (2.2) there are no diagrams of types 
such as 

(2.3) 

It is convenient to write the resulting equations in the 
following way.1> We introduce nodal vertices-sums of 
diagrams that cannot be divided by cutting one line. We 
shall denote them by unshaded circles. Their connec
tion with the complete vertices is obvious: 

;:x' --e: ~ -d. , -<ik- -d· + -cf-_3 z + permutations of (1, 2, 3) 
(2.4) 

and so on. Collection of the diagrams in (2.2) leads to 
the relation 

lm G _, = --o:::::n- + -din- + -a::3;Q:o- + ... (2, 5) 

Equation (2.5) is obtained by substituting (2.4) in 
(2.1), replacing thin lines with a cross by thick lines 
with a cross, and dropping extra terms of the type 

(2.6) 

[thick lines with a cross correspond to Im G(k2)9(ko)] . 
One can also verify that Eqs. (2.5) and (2.1) are 

equivalent by separating out from (2.5) the terms with 
n-particle intermediate states. An equation analogous 
to (2.5) can be written for the case of any number of ex
ternal lines. 

3. THE SIMILARITY HYPOTHESIS AND THE DISPER
SION RELATIONS 

According tol3' 6 J, the condition of asymptotic scale 
invariance means that the transformation 

x-+x'=il.z, q>,(x) -+q>/(x') =A-"<q>,(x) (3.1) 

(cpi are the operators for the various fields, and Ai are 
constants, which we shall call the dimensionalities of the 
fields cpi) leaves the correlation functions 

Ga, ... a,. (xJ ... xn)=< 01 Tii <Jlak(xk) 10) (3.2) 

·~· 
unchanged, provided that (xi- xl « m-2. If we trans
late this requirement into the language of the amplitudes 
Ga a (k) and ra :L (k1, ... , lr ) , l3 J it means that for 12 1•••-n ·"'l 

kikj » m2 
G.,.,(k) =const·k'•-•, 

4-ll. ( k1 kn ) 
ra, ... a (kJ ... kn)=kl Ya, ... a ,fL2 , ... ,-= , (3.3) 

" "'-- /k12 fk12 

where 2:n = Aa1 + Aa2 + •.• +A~. 
We now want to know under what conditions the 

asymptotic form (3.3) agrees with the unitarity condi
tions and the dispersion relations. We begin by finding 
out about the unitarity conditions. To do so we substi
tute (3.3) in (2.5) and examine, for example, the first 
term of this expansion. We have 

ImG-1(q)= J lr{k, q) l21l(k0)1l(q0 -ko)ImG(k)ImG(q- k)d4k + ... 
(3.4) 

Introducing the dimensionless variables 

'X= k/"'q', 

we get Im G-1 "'-' q4 - 2 A, in agreement with (3.3). 

(3.5) 

l)This form was suggested by V. N. Gribov and A. A. Migdal (pri
vate communication). 
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In the derivation of this formula it was assumed that 
the important regions for the integral are k2 ~ q2 ~ m2 
and (k- q) 2 ~ q2 ~ m2. Larger values of k2 and (k- q)2 
are impossible because of conservation of energy: 

l'q' ~ l'k' + l'(k- q)', 

and the contribution from smaller values is small be
cause the integral converges for small k. 

Examination of the n-th term gives the following re
lation between the dimensions of r n and G: 

(3.6) 

Here square brackets denote dimensions, i.e., the power 
of k by which the function of the dimensionless argu
ments is multiplied. Equation (3.6) follows from the fact 
that the n-th term of (2.5) contains n- 1 Green's func
tions, two vertices2> r n• and n- 2 integrations over d4k. 
A comparison of (3.3) and (3.6) shows that these form
ulas are equivalent. 

An examination of the unitarity conditions for the r n 
themselves again gives (3.6) and (3.3). 

This analysis shows that all of the terms of the uni
tarity condition (2. 5) are of the same order for large 
q2. If we assume that the number of important terms in 
(2.5) is of the order of unity, i.e., that the series (2.5) 
converges, then the sum of the series will be of the 
same order of magnitude, and the equations (3.3) will be 
consistent with unitarity. 

Let us now find out what choice of subtractive terms 
in the dispersion relations will correspond to the 
asymptotic forms (3.3). We first consider the Green's 
function G(q2) = G(s); the most general form of the dis
persion relation for it isLaJ 

s-m2 J lmG- 1(s')ds' G-1(s)=---
a (s'- s- i6) (s'- m2) 

E Rn(s-m2 ) 2 
+ ( 2 2)( 2 •6)+c(s-m), J.!n -m J.!n -S-1 

(3. 7) 

where Rn ~ 0 and c ~ 0. 
For the existence of similarity in the theory it is re

quired that Im G-1(s) C'Ol G-1(s) Ct:> sa (a = 2 - t.) for 
s - oo. For (3. 7) to converge we must have a < 1 or 
A > 1. But then for the condition G-1 oo sa to hold it is 
necessary that c = 0, since otherwise G-1 Rj cs for 
s- oo. 

The physical meaning of c = 0 is that the term as
sociated with the bare Green's function, c(s- m2), is 
absent. 3> Quite analogously, in the dispersion relations 
for r n the subtractive terms associated with the bare 
interaction must be absent, since otherwise it turns out 
that r n - cn for ki - oo (where cn is the constant co
efficient of cpn in the original Lagrangian), in contradic
tion with (3.3). We postpone a discussion of the question 
of the possible physical meaning of the similarity con
ditions (3.3) until Sec. 5. 

4. THE PROCESS e+e- - hadrons 

The results which were obtained in LBJ , and which we 

2lit is easily verified that the dimensions of all the terms in (2.4) 
are the same, and it may be assumed that the unitarity involves r~. 
For brevity r a1 •.• an is denoted by r n· 

3lMore exactly, the bare Green's function contributes only to the 
mass renormalization. The quantity c is the usual renormalization con
stant. 

have reconstructed from a dynamical point of view here, 
are not directly observable and do not make possible an 
experimental test of the correctness of the proposed 
theory. We shall remedy this shortcoming and show 
that the application of the idea of scale invariance to the 
process e+e--- hadrons at high energy allows us to make 
a number of definite predictions which cannot be con
fused with those of other theories. Ls-121 

As is well known, [QJ the total cross section for this 
process is connected with the imaginary part of the 
hadron contribution to the vacuum polarization, 
Im IliJ.iJ. (s): 

(4.1) 

Let us calculate the dimensionality of Im IliJ.J.l.' which de
termines the behavior of the quantity for s ::» m2. To do 
so we note that by an expansion of the type of (2.5) we 
have the relation 

(4.2) 

(here r iJ. is the vertex part for the emission of a photon). 
The terms not written out in (4.2) give a contribution 

of the same order, owing to the scale in variance. The 
Ward identity determines the dimensionality of the quan
tity r IJ. (see the analogous arguments in L3J )4 >: 

[r.] = [G-'] I [q]. (4.3) 

Substituting (4.3) in (4.2), we find 

Im II .. oo q' 
or 

a,(s) oo a.' Is for s-+ oo. 

(4.4) 

(4.5) 

The law (4.5) has been proposed on the basis of other 
arguments inL9l, and therefore testing it is not of criti
cal importance for our theory. 

Let us proceed to the treatment of more interesting 
quantities than av namely the cross sections an(s) for 
the production of n hadrons, and the multiplicity n(s). 

An important fact for the calculation of an(s) is that 
although for s - oo the number of particles produced 
increases, so that the number of important terms in the 
unitarity condition taken "by particles" [Eq. (~.1)] in
creases, the number of "jets", i.e., the number of im
portant terms in the unitarity condition (2.5) taken 
"by jets" remains of the order of unity. This is be
cause owing to scale invariance all of the terms in 
(2.5) are of the same order (3.6). In view of the impor
tance of a small number of jets, we can get from (2.5) 
an equation for the quantity A (n, s), which is the n -parti
cle contribution to Im G-1(s)' i.e.' the probability of find
ing n particles in a jet whose mass is s112. 

Let us examine, for example, the first "two-jet" 
term in (2. 5) and separate out in it the contribution of n 
particles: 

{~} ~.f-.~. n I I 
(4.6) 

Here n1 is the number of particles in the upper jet, and 
n2 the number in the lower jet. The analytic expression 
for the first graph in (4. 6) is 

4l An analysis of the equations for r ll (p, q) shows that the dimen
sion of this quantity is the same as that of r !J.(p, 0) = aG-1 /op!J.. 
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(4. 7) 

If we assume, relying on subsequent verification, that 
for n » 1 the terms with n1 » 1 and n2 » 1 in (4. 7) are 
most important, the integration over d4k in (4. 7) will be 
over the region 

k' > n1'm' >m', (q- k)' > n,'m' > m', 
(4.8) 

"¥7> yk' + l'(q- k)'. 

In the region (4.8) the vertices r n and the Green's func
tions G can be replaced by their asymptotic values (3.3). 
Substituting (3.3) in (4. 7) and using dimensional con
siderations, we can rewrite (4. 7) in the form 

(4.9) 

where 

_i __ i_K (~ ~)=('d4kjf(k,q)I'IG(k)i'iG(q-k)i' 
s~+a./2 s~+a/2 2 s ' s ~ 

X ~ (k2 - s1) ~ ((q- k')- s2 ) 8 (k0) 8 (q0 - ko), (4.10) 

with s = q2, G(s) =.s-0!; the() function in (4.9) appears 
owing to (4.8) and expresses the law of conservation of 
energy. We have replaced the sum over n, and n2 in 
(4. 7) by an integral, since n1 » 1 and n2 » 1. 

Any term in (2.5) can be rewritten in analogy with 
(4.9). The result is the following expression for A(n, s): 

oo N 

A( ) - I: err dn;ds;A(n;s;) K (~ SN) "( - ~ ·) n, s - ~ l+(N t)a/N N • • • v n ~ n, 
N=2 i=t si s s 

X 8(Vs- I: yB;) · (4.11) 

In Eq. (4.11) N is the number of jets, and ni is the num
ber of particles in the i-th jet; si is the square of the 
mass of the i-th jet, and KN is connected with the vertex 
parts and the Green's functions by a relation analogous 
to (4.10). 

From the definition of the quantity A(n, s) we have 
the equation 

~ 

ImG-1(s)= J dnA(n,s)=const·s". 
0 

(4.12) 

The sum rule (4.12) can be verified by integrating (4.11) 
over n, which brings the equation to the form (2.5). 

We shall look for the solution of (4.11) in the form 

A(n, s) = s•-•'ljl(n I s•). 

Let us substitute (4.13) in (4.11) and introduce the 
dimensionless variables 

The equation for the function If! takes the form 

(4.13) 

(4.14) 

ooooN N 

'ljl(v) = ~ ~ IJ ~:~~=;N 'ljJ (;~) ·KN(zt ... zN)~ (v- L v1) 
N~?.o 1=1 1 l 1 

N 

xa(1-I:v'Z;). (4.15) 
1 

We shall first show that the condition of solvability 
of (4.15) uniquely determines o. To do so we write the 
conditions for the quantities .. 

~= J lJ>(v)dv, vljl= J'VIjl(v)dv. 
0 0 

(4.16) 

that follow from ( 4. 15). 
These relations, easily derived by integrating (.;.. ~oJ, 

are 

(4.17) 
where 

"' N 

v1jl = v'ljJ L, ijiN-I J KN L, z16, 
N='l I 

A necessary condition for consistency between the equa
tions (4.17) is 

t iJiN J KN L, Zi~ I t iJiN s KN = 1. (4.18) 
N~ N=2 

For a known kernel KN Eq. (4.18) uniquely determines 
o. If it could be shown that all the KN are nonnegative, 
it would follow from (4.18) and the condition 

N r, -.;'Z;< 1, 
I 

that 0 < o < 1/2 . Despite the lack of a proof of non
negativeness, we can assume that the inequality 0 < o 
< 1/ 2 is satisfied, since by (4.13) the average number of 
particles in a jet is 

ii(s)= j nA(n,s)dnjjA(n,s)dn=s~"tP =const·so (4.19) 
0 0 iii 

Owing to energy conservation the maximum number of 
particles is of the order of s 112, so that we must have 
os'/2. 

Let us now examine the behavior of 1/J(II) for 11 » 1, 
i.e., the probability of finding in a jet many more parti
cles than the average number n: =so. We shall look for 
a solution of (4.15) in the form 

'ljl(v) = a(v) exp (-v•), v > 1, (4.20) 

where a(ll) is a function which varies slowly in com
parison with an exponential. We substitute (4.20) in 
(4.15) and calculate the resulting integral by the method 
of steepest descent. 

The exponential part of the answer is determined by 
the minimum of the argument of the exponential in the 
integrand: 

n 

mta L, (v1Vjz1~v), 
I 

under the conditions 

L v;=v, L jz; :s:;; 1. 

This minimum is at the point 

and is equal to 
'Vi= vI N, z, = N-' 

(4.21) 

(4.22) 

N(vN-')W'"• = N'-•<'-'">v•. (4.23) 

In order for the asymptotic form (4.20) to reproduce 
itself, it is necessary that the equation 

y=11(1-2c5). (4.24) 

hold. 
Accordingly, 

'ljl(v) lv-+oo = exp (-v'i('-'"l). (4.25) 

We note that in the limit 11- oo the important region 
in the integrals is where ~zi 12 ~ 1 or ~si 12 ~ s 112 , 
which corresponds to disintegration into almost station
ary jets. 
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The asymptotic formula (4.25) may have a very nar
row range of applicability, since the correction terms 
(associated with si ~ m2) to Eq. (4.11) can decrease 
more slowly than l4.25) for n-- oo, and finally predom
inate over it. 

The coefficient a(v) of the exponential can be calcu
lated with certain assumptions about the behavior of the 
kernel KN, and is a monomial. We shall not give these 
calculations here, since the significance of the result 
is not worth the complications and the use of a rather 
special model. We note that besides solutions of the 
form (4.13) Eq. (4.11) admits solutions of the form 51 

A(n, s) = e••s•-"1p(n Is") 

with an arbitrary value of~. When, however, we substi
tute this in the sum rule (4.12) we find that~= 0, and 
we come back to the solution (4.13). 

We have here studied in detail the distribution of the 
particles in a jet. It is clear that it is easy to express 
the physically interesting quantity an(s), the cross sec
tion for annihilation of e+e- into n hadrons, in terms of 
this distribution. In fact, 

(4.26) 

i.e., this quantity is directly connected with A(n, s) and 
is of the same self-similar form. Using (4.5), we find 

a2 ( n) an(s)=--:x; - . 
sl-t<~ sO (4.27) 

The average number of hadrons produced (the multi
plicity) is 

(4.28) 

When one considers a process with a number of parti
cles larger than the average, the behavior of the cross 
section is 

(4.29) 

As has already been mentioned, formulas of the type 
of Eq. (4.29) obviously do not hold for extremely large 
values of n, but it is hard to set an exact limit on their 
validity. 

Experimental observation of the self-similar law 
(4.27) and a power law for the multiplicity in electron
positron annihilation would be an indisputable confirma
tion of our theory. 

5. CONCLUSION. ANALOGIES WITH THE THEORY OF 
PHASE TRANSITIONS. THE SYMMETRY SU(3) 
x SU(3) AND THE WEAK INTERACTIONS 

An analogy with the theory of phase transitions has 
great heuristic importance in working with the proposed 
theory. It is useful to establish an exact correspondence 
between the concepts of these two theories; in particu
lar, this will help to show how the various symmetries 
and the interactions of the hadrons fit into our scheme. 
As the system undergoing a phase transition, let us con
sider an isotropic Heisenberg ferromagnet. When the 
temperature approaches the transition point from 
above, a long-range correlation appears between the 

S) A. A. Migdal called my attention to this fact. 

spins, extending over distances large in comparison 
with the interatomic distances. At such distances the 
crystal lattice does not affect the correlations, and they 
are isotropic. We may expect that in a relativistic 
theory the various distortions of the space at very small 
distances a (the "lattice") will be unimportant at large 
distances. The scale invariance for r » a is physically 
necessary, since the scale-fixing length a is unknown. 
All correlations then depend only on relative distances, 
and not on the orientation and dimensions of the lattice. 

Let us look at the question of symmetries in phase 
transitions and in elementary particles. Above the tran
sition point there necessarily is a symmetry, which is 
spontaneously destroyed below the transition point. In a 
Heisenberg ferromagnet this is the symmetry 0(3) under 
simultaneous rotations of all the spins; in a Bose gas it 
is the symmetry U(1) (the substitution lfi-- eialfi); and 
so on. It is natural and, as we shall show, even neces
sary to assume that the analogous symmetry in elemen
tary-particle theory is SU(3) x SU(3). 

We also assume[6 ' 131 that the addition to the Lagran
gian that destroys this symmetry is 

()L = ew + e,u, + e,u,, (5.1) 

where w is invariant under SU(3) x SU(3), and uo and u6 

transform according to the representation (3*, 3) 
+ (3, 3*). In the language of phase transitions the mean
ing of the hypothesis is as follows. The term EW does 
not change the symmetry of the system, and from the 
transition point it can take the system either into the 
ordered or into the unordered phase. In the first case 
we can say that there is a spontaneous breaking of the 
conservation of the eight axial currents. u 31 The result 
is that the term EW produces a unique finite mass in 
each SU(3) multiplet and requires that there be eight 
pseudoscalar mesons with zero mass. [131 The analogy 
to this in the phase transition is the appearance of a 
pole 1/k2 in the transverse susceptibility below the tran
sition point. 

The addition of the term EoUo, where uo is a SU(3) 
singlet, but is a component of the (3*, 3) + (3, 3*) repre
sentation of SU(3) x SU(3), is analogous to an external 
magnetic field in the ferromagnet and produces finite 
and identical masses of the pseudoscalar mesons. 
Finally, the term EsUs gives the octet mass splitting 
within the SU(3) multiplet. Furthermore, as was pointed 
out in u31 , the masses of the pseudoscalar mesons are 
of the order of the baryon mass differences, so that 
Eo~ Es <E. 

The second type of symmetry breaking (the system 
above the transition point) can be treated analogously. 

We shall now explain why the symmetry SU(3) x SU(3) 
must be asymptotically exact (at small distances). To 
do so we note that some of the 16 currents of SU(3) 
x SU(3) are weak-interaction currents, and their matrix 
elements between hadron states are directly observable 
in the semileptonic decays of hadrons. At the same 
time, if these currents were not asymptotically con
served, their renormalization would depend on the cutoff 
radius A ~ 1/a, would contain a factor m/ A, and would 
give very small values for the axial and vector weak
decay constants. Owing to the asymptotic conservation 
of the currents the dependence on A drops out (in analogy 
with the relation z 1 = z2 in quantum electrodynamics), 
and we get a finite answer. 
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Accordingly it is clear why the weak-interaction 
currents generate the approximate symmetry group of 
the strong interactions. 

It is tempting to assume that the weak interactions 
are due to small corrections to our theory owing to very 
small distances. At present, however, only very specu
lative arguments can be given on this question. 

The author thanks A. I. Larkin, A. A. Migdal, A. B. 
Migdal, and K. A. Ter-Martirosyan, with whom he has 
had extremely interesting and helpful discussions. 
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