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Expressions for alternating gain and mode-loss coefficients are obtained by solving the wave equation 
for an open one-dimensional resonator with plane-parallel mirrors containing a moving plane-parallel 
dielectric layer. Owing to the Doppler effect, the spatial component of the vector potential of the mode 
field oscillates in time with a period reciprocal to the doubled frequency of the Doppler shift. Solution 
of kinetic equations with oscillating gain and loss coefficients in a single-mode approximation leads to 
the kinematic modulation of laser emission. 

As a rule stimulated emission intensity of moving 
bodies fluctuates at a frequency that is constant for a 
given velocity of the active medium. This phenomenon, 
which we call kinematic modulation, was first reported 
in[ 1l. Kinematic modulation is revealed experimentally 
by the periodic variation of the generation power level 
accompanying the motion of the active medium along 
the axis of a plane resonator as in "traveling medium" 
lasers[21 • 

Mukhtarov noted[sJ that during the motion of an ac
tive medium in a mode field with a spatial period "A./2, 
where "A. is the emission wavelength, the boundary con
ditions at the plane end faces of the medium vary with 
a frequency Ilk: 

rok v 2v 
vk=~=i../2=T· (1) 

Tursunov measured[4l the velocity dependence of the 
frequency of kinematic modulation of stimulated emis
sion for various media. It was found that it is deter
mined by (1) with sufficient accuracy. 

The stimulated emission theory presented in[s] does 
not account for the aforementioned motion of the plane 
boundary of the active medium inside the resonator. 
Therefore the result of the active-center motion re
duces there to the narrowing of the generation spec
trum. 

This paper presents a theoretical analysis of kine
matic modulation. In this connection we consider a 
problem of the mode field of a plane resonator contain
ing a moving plane-parallel dielectric layer. We show 
that the layer motion leads to slow pulsations of the 
spatial component of the electromagnetic field vector
potential of the resonator modes. Inclusion of these 
pulsations in the kinetic equations of the "traveling 
medium" laser produces the effect of kinematic modu
lation of laser emission. In conclusion, kinematic mod
ulation is interpreted as a Doppler effect in electro
magnetic standing waves. 

1. MODES IN A "TRAVELING MEDIUM" LASER 
The figure shows an open plane resonator and a 

dielectric with plane-parallel end faces moving inside 
the resonator. Such a compound cavity is the resonator 
of a ''traveling medium" laser. 

!I 
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Naturally, the motion of the dielectric in the axial 
direction of the resonator should affect primarily the 
axial structure of the modes. Therefore the problem 
concerning the motion of the dielectric within the 
plane resonator as it affects the mode field is reduced 
to the solution of a wave equation in an infinite (trans
versely) resonator bounded by specularly reflecting 
plane-parallel surfaces and containing a moving infinite 
plane-parallel dielectric layer. 

The problem defined in this manner is best solved 
in a system of coordinates that travel with layer n at 
a velocity v relative to the plane resonator at rest in 
the laboratory system of coordinates. Consequently we 
seek a solution to the wave equation 

iJ2Au. 1 82~ (2) ------=0 a=I,II,III, 
fiz2 ca.2 8t2 ' 

in a system of coordinates that is fixed with respect to 
layer n (Aa and ca are the vector-potential of the 
field and velocity of light in medium a, respectively). 
The following equalities are satisfied at the boundaries 
of the media (see the figure): 

Ax(-vt, t) =0, Am(L- vt, t) = 0; (3) 
oA, 8Au 
fit (d-O,t)=Tt (d-t-O,t), 

8An 8Am 
Tt(d-t-l-O,t)=at(d-t-l+O,t); (4) 

8Ar 8Au 8Au 8Aur 
&(d-O,t)=a;-(cl-t-O,t), -az(d-t-l-O,t)= oz (d-t-l-t-O,t). 
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(5) 

Vector Aa lies in a plane perpendicular to the z 
axis according to the transverse-direction rule div Aa 
= 0. By selecting the polarization plane of vector Aa 
as the coordinate plane (z, y), we can consider (3)-(5) 
valid without change for the values of Aa. 

---. 
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An approximate solution with an accuracy to terms 
of the order of v/c, satisfying the wave equation (2), is 

A:. m (z, t) ~ 11 (t) {cxp[ikl (z + vt)]- exp[ -ikl(z + vt) ]}exp( -iwlt), 
(6) 

A111(z, I) ~ J-L(I) {D(t) exp [ik,1(z + vt)] - C(t) cxp [ -ik,1(z + vt) l} 
X exp ( --ic,/1), (7) 

where k~ = ..f€wj / c is the wave number of the j -th 
mode inside layer II at rest relative to the resonator, 
and D(t) and C(t) are slowly varying functions so that 
IJ.(t), a normalizing factor, is also a slowly varying 
function. The slow variation of the above functions is 
obtained by postulating that the "traveling medium" 
laser modes be quasi -stationary: 

o 6w '}, 
-;;- <{; --;_;;! ~ T , (8) 

where Ow is the frequency difference between neighbor
ing modes. Here (6) and (7) describe the mode field of 
the "traveling medium" laser in the interaction repre
sentation[sJ based on the eigenfunctions of a resonator 
with an immobile dielectric layer. The limitation of 
velocity v in (8) means that the time taken by layer II 
to traverse a characteristic length ,\ of the spatial 
inhomogeneity of a mode should be much longer than 
the time of flight of a photon along the resonator length 
L. The physical interpretation of this is that field fol
lows the motion of layer II. Condition (8) narrows down 
the velocity range since it is a much stronger inequality 
than the slowmotion condition v/c << 1 (because it then 
follows that v/ c « .\/L). The usual values for lasers 
are ,\ ~ 10-4 em and L ~ 102 em, so that v « 300 
m/sec. 

Con_sidering that owing to slow motion a.Aafat 
Rl -iwlAa, boundary conditions (4) can be written in the 
form 

A,(d-O,t) =11n(d+O,t), Au(d+l-O,t) =Am(d+l+O,t). 

Hence it follows that C(t) = D*(t), and thus stating 
D(t) in the form 

D(t) = p(l) exp [iljl(t)], 

we have 

W) 

(9) 

An'(z, t) ~ lt(t)p(t) {exp (i[k,1(z +vi) +'IJ(t)])- cxp (--i[k/(z 

+ vt) +'l)>(t)])} cxp (--iw1t). (10) 

To determine the function p ( t) = I D( t) I we must 
take into account the fact that the field energy is always 
dissipating in the resonator because, for example, of 
the finite transmission of the right-hand mirror. But 
then the mode frequency should be complex and equal 
to 

(11) 

According to wave equation (2), the wave numbers 
are also complex: 

K1 = w1 I c, x1 = y,1 I 2c. 
(12) 

Considering that Kj/Kj = yV~wj = 1/Qj « 1, i.e., that 
the Q-factor of the mode is Ql » 1, which is always 
the case in lasers, we find 

p'(t) = 1/.,exp (-2b(t)x,1) {(1 + 1 ll'e)'exp (26(t)xi) 
+ (1 - 1 I lif,)' exp ( -26 (t) x1) - 2 (1 - 1 / r) cos [2K1o (t)]}, 

where O(t) = d + vt, or for high resonator Q 

p'(t) ~ 112(1 + e-') [1- m,cos <D,1(t)], 

where 
m, = (e- 1) I (e + 1), <ll~(t) = w~t + Cf{ 

(tlk = 2f(iv, cpk_ = 2K1d. 

Modes whose wave numbers satisfy the conditions 

(13) 

(14) 

J(l(£"- l) = trq, q = 1,2, ... j q' = 1, 2, ...• 

have constant frequencies and phases ( w~ and qJ~). In 
the remaining modes the frequencies and phases of the 
kinematic modulation of the field are weakly time de
pendent. 

Expressions (6) and (10) contain the normalizing 
factor IJ.(t) that can be determined from the energy 
conservation law. The field energy of the j -th mode in 
the volume La inside the resonator equals 

{ .. 2 d d+l L-ot 

Tt'Lai= cr4;;~ [ J jAtj 2 dz+ J ejAuj 2 dz+ J 1Amj 2dt]. (15) 
-~ d d~ 

Substituting (6) and (10) into (15) we find 
o(wi)2 

11' LoJ = -A--2 [L -1- 1/2(e- 1) l] p 2 (t) [1-m cos cJ>kl(t) ]exp( --y0it), 
me (16) 

where 

m= <~+ 1 )/ m (17) 
2L + ( e- 1) l "' 

and w~ and qJk are determined by (14). It is clear that 
m :S m~, where the equality corresponds to the limiting 
case of l - L. On the other hand if l << L, we have 

1 l 
m ~ z ( 1 +e) L m,, 

i.e., m « m~ in this case. 
According to the law of conservation of energy 

dH',j I dt = -aS,,i, 

where Sj is the normal component of the Poynting 
n 

(18) 

(19) 

vector on the internal surface of the right-hand mirror. 
Computation yields 

S . (wi)2 iL 2( . ( . ) n' = 4;~ Yo J.1 t} exp --yo' I . (20) 

Substituting (16) and (20) into (19) and solving the re
sulting equation for 1J. 2(t) we obtain 

It' (t) = J-Lo2 • exp [- J y;,J' dt + Yot] ' (21) 
1-m cos <l~k.i (t) 1-m cos <IV (t) ' 

where 

y/ = y/ I [1- 'l,(e -1)1/'L]. (22) 

Inserting (21) into (16) we find the loss coefficient of 
the j-th mode: 

'\'; = y," I ('1-m cos <ll/(t)). (23) 

The mode losses of a "traveling medium" laser 
thus vary periodically. The p~riod of oscillation of the 
loss coefficient is Tk = 2n/w~ = ,\j/2v. Since usually 

(see (18)) m « 1, it follows that 

yi ~ y/[1 + m cos Cllk.(t) ]. (24) 

The obtained solution shows that the motion of layer 
II is accompanied by oscillations of the spatial com-
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ponent of the electromagnetic potential of the mode and 
of the loss coefficient. In the dielectric layer II these 
oscillations are defined by the product J.J.(t)p(t), and 
outside layer II within the resonator by the function 
J..1. ( t). If the layer is very thin (plate) or the resonator 
is relatively long, the field modulation in gap regions I 
and III, and consequently the loss coefficient modula
tion, is very weak since the modulation coefficient m 
(18) contains the factor l/L. At the same time the field 
modulation in the active layer II is fairly large and is 
determined by the modulation coefficient m~. 

Physically the kinematic oscillations are due to the 
beats of opposed plane waves with frequencies wl 
- Kjv and wj + Kjv, forming the modes of the 
"traveling medium" laser, as is apparent from the 
expz:essions for mode potentials. Doppler shifts I t.wD I 
= Klv of the opposed traveling-wave frequencies cause 
an oscillation of the field amplitude, with a fundamental 
frequency w~{.' called the frequency of kinematic modu
lation and determined by one of the formulas (14), 
which co inc ides with (1): 

(25) 

so that kinematic field oscillations essentially repre
sent a Doppler effect in standing waves. 

It is noted that an inclined position of layer II to the 
resonator axis also lends itself to mode field modula
tion analysis and yields corresponding values of the co
efficients m~ and m. In particular, if the normal to 
layer II is inclined at the Brewster angle to the reso
nator axis and the vector E lies in the plane of inci
dence, then m~ = m = 0, i.e., there is no kinematic 
modulation of the field. 

2. KINEMATIC MODULATION OF STIMULATED 
EMISSION 

The generation of stimulated emission by moving 
bodies is analyzed by the kinetic method[sJ. In the case 
of solid media the initial kinetic equations are con
veniently written in terms of photon numbers Nj per 
mode and inverted population n of the active centers 
as follows: 

(26) 

where n0 is the density of population inversion set up 
in the active medium by the given pumping, Tp is the 
characteristic pumping time that at mode-rate pump 
levels is close to the spontaneous decay time of the 
excited state of the active center, D is a coefficient 
proportional to the probability of stimulated radiative 
transition between the final and excited states of the 
active center, gj is a function describing the probabil
ity distribution for the interaction between active cen-

• ter.s and photons as a function of their frequency, 
1 Al 12 is the squared modulus of the spatial component 

ac 
of the electromagnetic potential to the j-th mode in the 
active medium 1 and yj is _the loss coefficient of the 
j -th mode (I Al 12 and yl can vary with time at a 

ac 

frequency that is much lower than the homogeneous 
width of a laser transition); the factor s = 1 for four
level systems and s = 2 for three-level systems. 

The initial kinetic equations of the laser can be 
particularized with respect to the specific features of 
the resonator field in the active medium and of the loss 
coefficient. A resonator with constant paramete.rs and 
with an active medium at rest has a potential A~c(z) 
that is constant in time. This potential is slowly oscil
lating in a moving medium, as shown by the results ob
tained in Sec. 1. According to (10), taking (13) and (21) 
into account, 

1-m.eos<DkJ(t) . . 
1Aacjl 2 = 1Anlj2 ~= q' . -- {1- cos[2f(e'(Z + vt)+'P(t))} 

1-m cos Jk' (t) . _(27) 

(J..I.~ was selected so as to have I ~c j 2 = 1 -cos 2Kl(z 
± vt) for ~ = 1) where m~ and m are given by (14) 
and (17) respectively. Thus the mode gain in a reso
nator with a moving layer of the active medium oscil
lates slowly (as compared to the time of flight of a 
photon along the resonator). The frequency of kinematic 
field modulation is Wk ~ 107 sec-1 when the active 
medium moves with velocities of v ~ 1 m/ sec. The 
homogeneous width of a laser transition in solid media 
Aw ~ 1010-1012 sec-1 so that Wk « t.w. This means 
that kinetic equations are suitable for the analysis of 
generation in solid state lasers also in the case of 
kinematic modulation of losses and mode field in the 
active medium. 

To determine the features of the modulation effect 
on generation we consider a single-mode problem as
suming that m « 1. Substituting (27) for the potential 
in the active medium and (24) for the loss coefficient in 
(26) and averaging over z, we obtain 

dn n-no 
-= ---- sDgNn[i- Afcos<Dk(t)), 
dt Tp 

dN at= -yo'[1 + m cos <l\(t) ]N + DgnlN[i- .M cos <Dk(t) ), (28) 

where M = m~ - m (the mode index is omitted). 
We linearize (28) by introducing the new variables 

n=nst[1+ ~n(t)]=n,t[1+11(t)). 
nst . 

N ~ N st rli + ~N(t) ]= N,t[1 + n(t) ], 
N,t 

where Nst = (a - 1 )/ sDg Tp, and nst = no/ at is the 
solution of the stationary problem at M = m = 0 
(a = Dgn0z/y~). Eliminating 1) from the resulting sys
tem we then obtain the equation of kinematic modula
tion of laser intensity: 

[1 + 111 cos <!Jk(t)] n. + [ ~ + meyo' cos Cllk(t) -llfwksin <Dk(t) ] ~ 
Tp 

+I a~ 1 '\'o'-me<•Jkyo'sinel\(t) )n=mewkyo'sin<Dk(t). (29) 

This linearization is acceptable provided the frequency 
Wk in (29) is much larger than the natural frequency of 
the relaxation oscillations of the laser intensity: 

<ok}> w, = l'(a -1)yc' hp. 

Since usually Tp ~ 10-3-10-5 sec, it follows that Wk 
>> Tp\ so that we neglected the corresponding terms in 
the derivation of (29 ). 

The approximate solution of (29) has the form 
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7t(t) ::::; ....-«t.sin (ookt + <flk), ak= m,y,' I ook. (30) 

As it follows from (30 ), the amplitude ak of the kine
matic modulation of the single-mode generation of 
moving bodies is determined by the value of m£ on the 
one hand, and by the ratio of 'Y~ to wk on the other. 
The values of m£ are computed from (14): for ruby 
m£ Rj }'2 , and for glass m€ Rj }'3, so that strictly 
speaking the solution of (28) yields in the linear ap
proximation only a qualitative picture of the phenome
non. This should be emphasized because the ratio 
y~/ Wk also often exceeds unity appreciably. We can 
therefore expect both a large modulation amplitude and 
the appearance of modulation components 2wk, 3wk, 
etc., since the exact solution of (29) contains harmonics 
with the frequencies 2wk, 3wk, etc. We also add that if 
the kinematic modulation frequency Wk is close to one 
of the resonance frequencies of laser intensity wr/2, 
wr, 2wr ... , the occurrence of both stable and unstable 
resonance oscillations at the frequency wr is possi
ble[7l. 

According to (14) the amplitudes of "traveling 
medium" laser modes are in phase, so that in the case 
of multimode generation we should consider the possi
bility of mode locking. Then, however, to describe the 
stimulated emission the kinematic balance equations 
such as (26) should be supplemented with terms that 
take amplitude interference into account. 

3. KINEMATIC MODULATION AND DOPPLER EFFECT 

As noted above, the Doppler effect is the foundation 
of the kinematic modulation phenomenon. Namely, 
modes interacting with the moving body are no longer 
represented as a linear combination of opposed plane 
waves that are degenerate in frequency, but as a linear 
combination of waves whose frequencies differ by 
21 ~WD I = Wk· However, this is yet insufficient to 
bring about kinematic modulation of the field. In fact 
if € = 1, then m€ = m = 0 and there is no modulation. 

The discontinuity in dielectric permittivity of a 
moving body relative to the medium filling the reso
nator causes the beats of the Doppler mode components 
outside and inside the body to occur at different fre
quencies. The beats outside the body, acting like a 
driving force, impose a time-varying amplitude upon 
the beats inside the body. In turn, the amplitude of 
beats outside the body within the resonator also varies 
in accord with the law of conservation of energy. 

On the other hand, according to (27), even for £ = 1 
kinematic modulation of field amplitude occurs at a 
given point z of the active medium with the frequency 
w~ Rj 2K£V. However the average (with respect to z) 
field amplitude is the same at any time, i.e., this mod
ulation merely means that each active center period
ically varies its position relative to the spatial distri
bution of the field; the narrowing of generation spec
trum determined in[s] is a result of this. 

Consequently the Doppler effect in stimulated emis
sion of moving bodies is manifested in two ways: 

1. In averaging of the mode field relative to a given 
active center; at a sufficiently large velocity of motion 
(corresponding to sufficiently high frequency of kine
matic modulation) this converts the "traveling medium" 
laser into a system analogous to the traveling-wave 
laser in terms of the emission spectrum[2 ' 5l; 

2. In a kinematic modulation of the gain and of the 
mode-loss coefficients, leading to a corresponding 
modulation of the laser emission intensity. 

4. CONCLUSION 
The experimental results concerning kinematic mod

ulation of laser emission presented in[4l confirmed the 
universal validity of the phenomenon discussed above. 

A detailed spectral analysis of kinematic modulation 
of stimulated emission shows also that under certain 
conditions it can be the cause of mode locking (broad 
continuous generation spectra[4• 81 ). Under other condi
tions the generation becomes single-mode, although 
kinematic modulation remains. This will be discussed 
in greater detail in a special paper on the spectral 
properties of emission from "traveling medium" ruby 
lasers. 

The experiment also confirmed the fact that kine
matic modulation of stimulated emission vanishes at a 
Brewster orientation of the end faces of the active rod. 
Furthermore, kinematic modulation is not observed 
even when the angle between normal to the rod face and 
the resonator axis is of the order of one degree. This 
is obviously due to the fact that at an inclined-position 
of the active layer the phase of kinematic molulation 
varies continuously in the transverse direction so that 
the modulation effect is smeared out if the diaphragm 
inside the resonator is sufficiently large. 

The author thanks Academician I. V. Obreimov for 
attention and discussion of the results of this work. 
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