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We discuss the results of the latest experiment on stimulated Raman scattering (SRS) in a field of 
ultrashort laser pulses and under conditions of anomalous broadening of the spectral line as a result 
of the nonlinearity of the refractive index of the scattering medium. We show that to interpret the 
experimental data it is necessary to analyze the SRS under rather broad assumptions concerning the 
type of modulation of the pump (amplitude (AM) and phase (PM) modulated pumping, pulsed pumping 
with phase modulation within the pulse) and the character of the "priming" Stokes signal (noise, 
narrow-band signal, a superposition of the two, etc.). A nonstationary theory of SRS is developed, 
in which account is taken of the foregoing factors. Besides a calculation of the intensity of the 
Stokes components, carried out not only for AM pumping but also for PM pumping and noise and 
narrow-band signals, appreciable attention is paid to the indicatrix and to the spectrum of the 
nonstationary SRS. A new mechanism of anomalous broadening of the spectrum of Stokes radiation, 
connected with the finite time of establishment of the molecular oscillations is considered. 

1. INTRODUCTION 

THE presently most complete stationary theory of 
stimulated Raman scattering (SRS), in which the inter­
action between harmonic pump waves and Stokes and 
anti- Stokes components is considered (see ll-3 l), is valid 
only for a limited number of experimental situations. 
This theory is in satisfactory agreement with experi­
ments on linear amplification of RS components in gases 
in the field of a single-mode nanosecond pumpl4 l and 
with the results of measurements of the distribution of 
the energy over the Stokes components in the essentially 
nonlinear regime for SRS in liquids, in the case of pump­
ing by pulses of duration 10-9-10-10 secl5 l1>. 

The simplest example of a nonstationary problem in 
which time modulation of the Stokes component is im­
portant ("nonstationarity with respect to the signal") 
is the problem of the SRS line width in a given pump 
field; closely related to it in scope is the problem of 
the passage of modulated signals through an amplifier. 

An important class of nonstationary problems where 
the principal role is played by "the nonstationarity with 
respect to the signal'' is connected with the investiga­
tion of the generation of giant ultrashort Stokes pulses­
an effect first observed by Maier, Kaiser, and 
Giordmainel6 l in the investigation of SRS at 180°. The 
theory developed in l8 - 9 J shows that for a satisfactory 
explanation of the phenomena it is necessary to consider 
the nonstationary effects in the nonlinear amplification 
regime. 

The appearance of mode-locking lasers and the ob­
servation of SRS in a nanosecond pumping field and 
under conditions of anomalous broadening of the spec­
tral lines in a scattering medium has stimulated the 
study of processes connected with "nonstationarity with 

1lThe "amplification regime" is defined as one in which the intrin­
sic fluctuations of the scattering medium can be neglected, and the sig­
nal at the Stokes frequency is fed from an external source; the "scat­
tering regime" is defined as one in which the waves of the scattered 
components result from the intrinsic fluctuations in the medium. 

respect to the pump," i.e., with effects due to the am­
plitude modulation (AM) and phase modulation (PM) of 
the pumping2>. 

For sufficiently rapidly modulated pumping, an im­
portant role is played by the transient processes due to 
the fact that the characteristic modulation times become 
comparable with the time of transverse relaxation T2 
(in typical cases, T2 ~ 10-11 sec for liquids and T2 
~ 10-8-10-9 sec for gases), and also by processes con­
nected with the difference between the group velocities 
of the pump wave and the scattered componentsu4- 17l. 

It should be noted, however, that the presently devel­
oped theory of SRS in a modulated pump field is insuffi­
cient for the interpretation of the already accumulated 
various experimental data. Thus, in most published 
papers the data on the nonstationary SRS and on the non­
stationary scattering of other types are analyzed on the 
basis essentially of the results of Kroll's theoryllsl, 
which was developed for stimulated Mandel'shtam­
Brillouin scattering (see, for example,[l5' 18 l). The 
picture obtained in this case is far from complete; it 
usually deals only with the intensity of the harmonic 
Stokes signal, amplified in a pulsed pump field under 
group- synchronism conditions. 

At the same time, in order to interpret correctly the 
new experiments (see, for example,l17- 22 l), it is neces­
sary to consider the features of SRS under rather broad 
assumptions concerning the type of pumping (Am and PM 
pumping; in some cases the most satisfactory model is 
noise pumping) and the ''signal'' (a harmonic signal for 
the interpretation of amplification experiments, and a 
random-modulated signal for the interpretation of SRS 
experiments). In the most interesting cases the non­
stationarity ''with respect to the signal'' and ''with 

2>we note that certain effects due to pumping modulation were 
discussed already in 1964-1966 in connection with the investigations 
of SRS in a multimode pumping field [ 10- 13 ]. Although effects agreeing 
with the predictions of [ 11 - 13 ] were observed at approximately the 
same time in SRS, they were not investigated in detail; for a long time 
the researchers paid attention to the much stronger self-action effects. 
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respect to the pump" must be considered simultane­
ously. 

We developed below a theory in which the foregoing 
factors are taken into account.3> For simplicity we con­
fine ourselves to examination of nonresonant SRS of first 
order by fully-symmetrical oscillations for not too 
strong fields. Such an analysis makes it possible to ob­
tain useful information on many features of the non­
stationary SRS in liquids, crystals, and gases. Anum­
ber of conclusions of such a theory turned out to be 
applicable to nonstationary SMBS and to nonstationary 
stimulated Rayleigh-wing scattering (SRWS). 

2. EQUATIONS OF NONSTATIONARY SRS 

A. Fundamental Equations 

Let us assume for simplicity that nonresonant SRS 
takes place for one pair of alternatively-forbidden 
quantum levels of the scattering medium. We consider 
the interaction between quasi-monochromatic pump 
waves Ep and the Stokes component Es in the form 

E p= aAp(t, z) exp [ (iwpt- kpz)] + c. c., (1a) 

Es= bAs(t, z) exp [i(w8 t + ksz)] + c.c. (1b) 

(the+ signs in (1b) correspond to the most interesting 
cases when the pump waves and the Stokes radiation 
have the same or opposite directions). The average 
frequencies of the pump and of the Stokes component and 
the transition frequency W21 are connected by the rela­
tion 

wp- ws= w" + ~. I t!l I w" ~ 1. 

It is assumed further that the relative widths of the 
pump spectra and of the Stokes component are small 
compared with W21, i.e., ~wp,S << W214>. Then the be­
havior of the isotropic medium (we shall deal hence­
forth mainly with liquids and gases) in the SRS process 
can be described by the equations for the slow amplitude 
of the nondiagonal element of the density matrix a, and 
the difference between the level populations n l231 : 

(2) 

(3) 

where no is the equilibrium value of n, T1 is the lifetime 
of the particles at the level 2, T2 is the transverse re­
laxation time, Ya = r*/H2, and r is defined as 

r = '\1 ( Pal mPbm' + Pam2Pblm ) • 

.l...J. <ilm2- Ws Olm2 + Ulp 
m 

Here Panm and Pbmn are the projections of the matrix 
elements of the dipole-moment operator on the vectors 

3>Preliminary results were reported at the International Conference 
on Nonlinear Optics (Belfast, September, 1969). 

4>The latter condition is certainly satisfied for the overwhelming 
majority of nonstationary problems connected with SRS in liquids and 
gases and for many cases of SRS in crystals. It should be noted, how­
ever, some investigations (see, for example, [ 22]) of CS 2 revealed broad­
ening of the pump spectrum L'>wp - w 21 . The mathematical formation 
of the problem of nonstationary SRS differs in this case from that given 
in the present section. 

a and b. It is necessary to add to Eqs. (2) and (3) the 
equations for the slowly-varying field amplitudes. In the 
first approximation of dispersion theory, which is valid 
for pulses to 10-14 sec (see l 141 ), they are first- order 
equations: 

(4a) 

(4b) 
here 

2nNow,p 2r* 2nN0ws 2r 
Yp= kpc21t ' Ys= ksc•lt 

No is the density of the scattering particles, op,s are 

the damping decrements of the pump and of the Stokes 
wave. The plus sign in (4b) corresponds to scattering in 
the pump direction, and the minus sign to scattering at 
180°; u = aw/ak is the group velocity. 

B. Quasistatic Approximation 

For sufficiently slowly modulated waves and rela­
tively short interaction lengths, Eqs. (2)-(4) can be 
greatly simplified. Let the characteristic times of 
variation of the amplitudes (Tal and of the phases ( T ph) 
of the pump and of the Stokes component satisfy the con­
dition 

(5) 

Then we can neglect in (2) the derivative aajat and ob­
tain in the usual manner a system of nonstationary rate 
equations for Jp,S = I~,S 12 and the population differ­
ence n: 

(6) 

__!__!!.~s :i: &Is_ 2YaYsT, 1 1 n _ 26 1 (7 ) 
Us at az 1+1'1'1'22 P S S S• 

on 1 4ya2T• J I (8) 
Tt + T;(n- no)=- 1 + t!2f22 P sn. 

If Tap• Tas » T1, then the derivative an/at in (8) can 
be neglected, and the problem reduces to a solution of 
the two equations (6) and (7). For the essentially non­
stationary cases, when Tap• Tas << T1, we can disregard 
the term (n- n0)/T1 in (8). For many cases of practical 
interest, the motion of the populations can be neglected 
in general. For example, for pump pulses of ~ 10-11 sec 
duration, the populations remain relatively unchanged 
up to fields Ep ~ 107 V /em. This can be easily verified 
by starting from Eq. (8) and recognizing that for typical 
media y~ ~ 103-104 cgs esu, T2 = 10-11 sec, and the co­
efficients of conversion of picosecond pumping into 
Stokes radiation does not exceed 0.2 as a rulel191 . 

Neglecting the motion of the populations (n = n0 ~ 1) 
and assuming (5) to be satisfied, the SRS is described 
by the system (6) and (7). In this case the influence of 
the time modulation of the pumping and of the Stokes 
component on the development of the process is deter­
mined entirely by the ratio of the group velocities and 
by the interaction length. For waves moving together at 
up = us, introducing new variables 

1]=t-z/us, z=z (9) 
we get from (6)-(7) the characteristic system of ordin-
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ary differential equations of the stationary theory. 
The requirement up = us is obviously the condition 

for the applicability of the stationary equations for an 
unbounded medium; on the other hand, if the SRS is con­
sidered over a finite length l, then the quasi static ap­
proximation is convenient for the description of the 
forward scattering (we assume Tap l'::l T aS l'::l T a) when 

-r, ~,P-> =I! up-•- us-• I 
and for backward scattering when 

't'a :l!> .p+J = llup-' + ug-' 1, 

(lOa) 

(lOb) 

i.e., so long as the effects of group delay of the inter­
acting waves do not come into play over the length l. 

3. NONSTATIONARY STOKES SCATTERING UNDER 
CONDITIONS OF GROUP SYNCHRONISM 

A. Energy Characteristics of Stokes Radiation 

The bare radiation at the Stokes frequency in the 
''scattering regime'' is the result of spontaneous Raman 
scattering. In order to take into account this fact, we 
introduce in (2) the random force N(z, t) and assume 
zero initial and boundary conditions for the Stokes 
waves. Then, in the given-pump-field approximation, 
the SRS equations in the coordinate system (9) take the 
form 

BAsi 8z = -iysAp(tJ)O(tJ, z), 

where {3 = 1/T2 + iD.. 

\ (11) 

(12) 

The solution of the system (11)-(12) under zero 
boundary and initial conditions, As(TJ = 0, z = 0) = 0, 
takes the form 5 ' 

'I % 

As(tJ,z)=-iysAp(tJ) J dte-~t JN(t]-t,z-~)/o(1Jl~(~,t))d~, (13) 
0 0 

where Io(x) is the modified Bessel function 

Introducing the natural assumption that 

N(t, z)N"(t', z') = g.S(t- t').S(z- z'), (14) 

we obtain an expression for the average intensity of the 
stokes radiation: 

" ' 
ls= gys'lpJ dtexp(- :t)S d~lo'(.p,(~,t)). (15) 

0 2 0 

Before we proceed to consider different particular 
cases, let us note one important conclusion that follows 
directly from (15). According to (15) the intensity of the 
Stokes component in the scattering regime is not sensi­
tive to phase modulation of the pumping, regardless of 
the ratio of the transverse relaxation time T2 to the 

5'Strictly speaking, the solution (13) should consist of two terms 
[ 24). It is easy to show, however, that the second term [24) reflects the 
specific effects of "turning on the interaction," which are missing under 
the experimental conditions. We therefore did not take into account 
this term in this solution. A solution of the type ( 13) is discussed also 
in [26]. 

modulation period (it is of interest that in the "amplifi­
cation regime" the situation is different, see Sec. 4). 
At the same time, according to (13), phase modulation of 
the pump greatly influences the spectrum of the Stokes 
wave. In particular, if the structure of the pump spec­
trum is determined mainly by its phase modulation dur­
ing the propagation process, then exactly the same 
structure should be observed also in the spectrum of 
the Stokes component if the conversion coefficients are 
not too large. We now turn to a more detailed analysis 
of relation (15). 

Let us consider first the energy characteristics of 
the Stokes radiation. When r - 0 formulas (13) and (15) 
describe the spontaneous Raman scattering (SpRS), the 
intensity of which, according to (15), is equal to 

/s'P= 'i2gy,'l',/p('J)z(1- e-'•JT'). (16) 

It follows therefore directly that the intensity of the 
spontaneous Raman scattering in the field of short pul­
ses of duration Tp ;S; T2 is greatly reduced compared 
with the intensity of the spontaneous Raman scattering 
in a field of pulses with Tp » T2. For the latter case 

we obtain from (16) the usual formula for the intensity 
of spontaneous Raman scattering: 

Jssp= 1/2gys'T,/pz. (17) 

Easily-interpreted formulas are obtained for nonstation­
ary SRS under conditions of large gain, when 

(18) 

In this case the Bessel function in (13) and (15) can be 
replaced by its asymptotic expression. 

For pump pulses of rectangular form, i.e., 

IAp(tJ) I= { IApol . ~f 0 ~ 'l ~ Tp (l9) 
0 lf t}<0and1J>Tp' 

we can obtain convenient formulas describing the ampli­
fication of the Stokes radiation. 

In the essentially nonstationary regime 
Tp~ T,. (20) 

the following formula holds for the average intensity of 
the Stokes wave: 

ls= Ysg[8;ty,~·,(z, 1J)]-' exp {2,joo(z, tJ)}, 
(21) 

~·, (z, IJ) = (2l',Z!J I T,) 'h, r, = 2ysy,1',/P'' 

We see that in this case the gain is mucn lower than in 
the quasistatic case, and depends on the time (Fig. 1); 
this causes the shape of Stokes pulses to differ strongly 
from the pump pulse (see Fig. 2). 

Integration of (21) with respect to time yields an ex­
pression for the energy of the Stokes pulse 

'lsgT2 (22) Ws::::::: ---exp{21jJ0 (z,-rp)}. 
16nyafoz 

In the more general case, when the condition (20) may 
also not be satisfied, calculation of the integral in (15) 
yields for the pulse (19) 

(23) 

where 
a= 21'} IT, if r,z > 21} IT,, a= r,z if r,z < 21'} IT,. 

Formula (23) describes the amplification of Stokes 
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FIG. 1. Time dependence of the intensity of the first Stokes com­
ponent in different cross sections of a nonlinear medium: l-1'0 z =50, 
2-1'0 z = 60, 3-1'0 z =-75. 

FIG. 2. Shape of Stokes SRS pulse excited by a rectangular pump 
pulse in the essentially nonstationary regime, 1'0 z ll> 2Tp/T2 . Dashed­
pump pulse; the solid curves correspond to Stokes pulses in different 
sections of the medium: l-1'0 z = 10, 2-1'0 z = 15. The pump and 
Stokes-radiation intensities are plotted in different scales. The measure­
ment units are arbitrary. 

radiation for arbitrary ratios of T and T2. When 
p 

1]/T,:>-1, Y2TJ/T2 -1f,z:>-1 (24) 

we get from (23) 

(25) 

Formula (25) describes the SRS intensity under con­
ditions when the problem is quasi static ''with respect 
to the pump.'' It must be emphasized at the same time 
that the growth of the intensity with increasing coordin­
ates is slower than exp(I'oZ), since the gain is accompan­
ied6> by a narrowing of the line. From (25) it is easy to 
obtain also an expression for the width of the spectral 
line in a field of "almost harmonic" pumping; we note 
that according to (24) the condition for quasistationary 
behavior with respect to the pump is of the form Tp/T2 
» roZ, and not simply Tp/T2 » 1. 

We note finally that a formula such as (25) can be 
written also for a pump pulse of more complicated 
form, provided its duration is Tp >> T2, rzT2• In this 
case it is necessary to substitute in (25) r(71) in place 
of ro, where the function r(71) describes the pump en­
velope. The quasistatic amplification of the stokes wave 
·in a field of a dome-like pump pulse is accompanied by 
a narrowing of the stokes pulse in accordance with the 
law 

-r8 =-rpl}'r,z <26) 
a circumstance noted earlier as applied to parametric 
amplificationl7J. For an exponential pulse pump the 
duration of the Stokes pulse Ts varies like 

Tg~ Tplf'oz. 

B. Spectra of Stokes Radiation 

Using (13), we can calculate also the spectrum of 
nonstationary scattering. Let us consider first the spec-

6l A similar relation was obtained for SMBS by Tang [25 ] by means 
of a theory that uses equations for the individual spectral components. 

truro of spontaneous scattering. The calculations are 
particularly simple if the pump can be regarded as a 
stationary random process. In this case the scattered 
field is also stationary. Specifying the correlation func­
tion of the complex pump envelope in the form 7> 

Bp(T) = (Ap(1J)Ap'(1J + -r)) = Apo2 exp (--r 1-ro), (27) 

we obtain for the correlation function of the scattered 
field, taking (14) into account (to change over to spon­
taneous scattering it is necessary to let r in (13) go to 
zero) 

B8(-r)=+gyiApo2T2exp[- (;, + !JT ]. (28) 

It is easily seen that the width of the spontaneous- scat­
tering spectrum is 

llro 8sp ~ (T, +To) I 1 ,-r,. (28a) 

When To >> T2 we have ~w~P RJ 1/T2, just as in a mono­
chromatic pumping field. 

The width and the shape of the spectrum of the stokes 
component in the stimulated scattering regime are de­
termined not only by the pump spectrum but also by the 
form of its amplitude modulation. Let us stop to discuss 
this circumstance, which is of greatest interest for ex­
periment, in greater detail. The correlation function of 
the stokes radiation, with allowance for (14), takes the 
form 

Bs('l. -r)=vs2g ( Ap(ll)Ap' (1J 4--r). 

- 2t+ 
X [ dt oxp (-~) [ Io(IJl~(s, t) )lo(~+r(t, t + -r) )ds) (29) 

For the subsequent analysis we shall use the condition 
(18), which enables us to replace the Bessel functions 
by exponentials. 

In the general case, the correlation function Bs(71, T) 
depends on the time and corresponds thus to the corre­
lation function of a nonstationary process. For esti­
mates of the width of the spectrum, we shall use a func­
tion corresponding to time averaging over an interval 
exceeding the pump modulation period: .. 

B8(-r)= Jn8 (1J,T)d11. (30) 
0 

Such an averaging is actually always carried out in ex­
periments on nonstationary scattering. 

Let us consider the following cases: 
1. The pump radiation has the constant intensity and 

has a correlation function (27). Then calculation by 
means of formulas (29) and (30) yields 

8 8(<) ~ cxp {-llro88P-r + [foz(foz + 2t I 1 ,) )'/•}. 

Finding from this the effective correlation time T eff 
and assuming that ~ws RJ 1/Teff• we obtain 

/l(l)s~ 1 -~~~~)m-(m2 + 2foz -1)''•], (31) 

m = 1- r,z I 't"ollros•P. 

Formula (31) shows that at small gains, i.e., as roZ 
- 0, the width of the spectrum ~ws- ~w~ (28a). With 

7lFormula (27) corresponds, for example, to oscillation with a dif­
fusing phase. 
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.f fQ f.f Zll 
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FIG. 3. Width of spectral line of SRS Stokes component as a func­
tion of the reduced distance traversed in the medium in the pulsed 
pumping field. The parameter of the curves is the ratio of the duration 
of the rectangular pulse pump T p to the time of transverse relaxation 
T2 : 1-Tp = oo, To= oo, 2-Tp = oo, To= T 2 ; 3-Tp = T2 , To= oo, 

increasing gain, the spectrum becomes narrow, and in 
the limit as roZ - oo its width becomes equal to the 
width of the pump spectrum, i.e., 

(31a) 

On the other hand if the pump radiation is monochrom­
atic (To- oo, m- 1), then the narrowing of the Stokes 
spectrum is described by the formula 

~ms~ 1/1,(1+l'2r.z). (31b) 

2. The pump is a rectangular pulse with duration TP' 
having no phase modulation (To- 00 ). Then from (29) 
and (30) we can obtain 

{ 't' ( 't' -"t)'"} Bg('t')- exp -r;-+ 2i',z ;
2 

The corresponding width of the Stokes spectrum is 

~ms~ 1,-'[(d'+2r,z)''•-1-d]-•, d=foz[1- (2"tp/r,zT,)'"]. (32) 

It is easy to see that this formula describes the 
broadening of the Stokes- radiation spectrum in the non­
stationary regime. When roZ :'7 2TP/Tz (strong non-

stationary behavior), we get from (32) 

~ws~ (r,z/21,"tp)''•. (32a) 

Thus, at not too large gains (roz < 2Tp/Tz), the spec­
trum of the Stokes radiation in a field of a rectangular 
pumping pulse narrows down in accordance with (31b) 
and reaches a minimum value at the point roZ = 2Tp/T2 : 

~ms min= 1/ (2fT,"tp·- T,). 

Further increase of roz leads to the spectrum broaden­
ing described by formulas (32) (see Fig. 3). At large 
roZ, the width of the stokes-radiation spectrum can 
greatly exceed the width of the pump spectrum ~Wp 
f::; TP1 • It should be noted that the "anomalous" broad­

ening of the stokes spectrum in the essentially non­
stationary regime, described by formula (32a), is con­
nected with rapid variations of the real amplitude and 
consequently can be observed by methods of intensity 
interferometry. 

For pump pulses of more complicated form, it is 
impossible to obtain convenient analytic expressions 
describing the width of the Stokes spectrum. Numerical 
calculations, on the other hand, show that if the rear 
front of the pump pulse decreases sharply practically to 
zero, then the stokes spectrum broadens in comparison 

with ~wp if roZ > 2Tp/T2 , but the rate of expansion is 
lower than is given by formulas (32). 

4. AMPLIFICATION OF STOKES SIGNAL IN A RAMAN 
AMPLIFIER 

We now turn to investigate the singularities of the 
nonstationary "amplification regime." Assume that a 
stokes signal with amplitude As0 (77) is applied to the 
input of the Raman cell. It is now necessary to solve 
Eqs. (11) and (12) with boundary conditions 

Asl•=• = Aso(TJ), Ad,=• = O; (33) 

The random force N(77, z), by definition, is insignificant 
in this case. Then, using Riemann's method, we obtain 

As(TJ, z)= Aso(TJ) + 2zysvaAp(TJ) · 

J11 dtA.p.(TJ-t)Aso(TJ-t)e-~t 1 ( ( )) 
X 0 'ljl~ (z, t) 1 'ljl~ z, t . (34) 

The solution (34) differs in form significantly from (13), 
which corresponds to the "scattering regime." It should 
be noted, in particular, that the integrand now contains 
the complex pulse amplitude raised to the first power; 
therefore, unlike the results of Sec. 3, we should expect 
phase modulation of the pump to affect the intensity of 
the stokes component. 

Let us stop to discuss this in greater detail. In order 
to separate the effect in the "purest form," let us con­
sider amplification of a harmonic signal in a pump field 
constituting an oscillation with constant amplitude and 
diffusing phase81 • We assume that the pump radiation 
has a correlation fuY>::tion (27), i.e., the pump spectrum 
has a Lorentz contour with half-width ~wp = To1 • From 
(34) we obtain for the average intensity of the first 
stokes component (for simplicity, we neglect the detun­
ing ~) 

II ~ 

Js(IJ,z)=2(ysya) 2T2zlp(1J) Jdt Jat'Bp(t-t')e-l~i+l'/F(t,t'), (35) 
0 0 

where. 
F(t, t') = ['ljl,(z, t)1jl,,(z, t')]-'I,(~:.,(z, t))l1 ('1j,,(z, t')). (36) 

Let us estimate the value of the double integral in 
(35) under conditions when the phase diffusion coefficient 
is sufficiently large: 

't',..,g; 1,, 'to< r,;r,z. (37) 

It is easy to verify that under the foregoing assumptions 
the phase modulation of the pump does not influence the 
intensity growth coefficient, and only decreases the pre­
exponential factor in a ratio roZT2/To. This circumstance 
must be taken into account in the interpretation of 
experiments in which the SRS is excited by broadband 
signals obtained from lasers operating in the regime of 
partial mode synchronization. 

Let us consider now the amplification of a random 
Stokes signal in a randomly modulated pump field. Then, 
using (34), we can write for the average intensity of the 
stokes radiation 

8lFor AM pumping (particularly pulsed pumping) the results of cal­
culations by means of formula (34) are similar to the result of Sec. 3. 
If the pump pulse duration is Tp < T 2 , then it follows from (34) that 
Js = Jsoi~(yl2roz7J/T2 ). 



STIMULATED RAMAN SCATTERING IN A FIELD 271 

~ ~ 

J5 (tJ,z)=2(y5ya) 2T2zJp(tJ) J dt J dt' 
0 0 

·Bpo(t- t')Bso(t- t') e-ll<t+t'>F (t, t'), 

Bso(t- t') = A50(tJ- t)Aso(tJ t'). 
(38) 

From this we can readily see that if the Stokes signal 
has a correlation time Ts much shorter than the corre­
lation time of the pump radiation To (Ts «To), i.e., the 
signal spectrum width t.ws » t.wp, then random PM of 
the pumping plays practically no role. Indeed, in this 
case Bs0(t- t') ~ A2 

0 6(t- t'), and only the average 
pump intensity Jp(TJ~ is involved in the _!ntegrand. Fur­
ther calculations lead to formulas for Js, analogous to 
those of Sec. 3. For example, if the quasistatic ampli­
fication conditions (24) is satisfied we obtain (compare 
with (25)) 

ls = lso er,z. (39) 
4l'nf0z 

In concluding this section, let us consider the ampli­
fication of a Stokes signal in the field of a pumping pulse 
whose duration satisfies the condition (20), and whose 
frequency increases linearly with time (such a model is 
applicable to pulsed solid-state lasers), 

(40) 

If we assume that T piT ph » 1, then the integral in 
(34) can be estimated by the stationary-phase method. If 

1] / 't'ph~'IJ 0 (z, 1]) (41) 

then an estimate yields 

V n r,z-rph' ( i1J'} A 5 ::::::Aso ---/I(Ii'o(z,1J))exp 2 . 
4 T21J ,;ph 

(42) 

From a comparison of (35) with (42) we see that the 
presence of a frequency shift within the limits of the 
pump pulse reduces the amplitude gain by an approxi­
mate factor v'roZTphhpT2. 

The Stokes pulse, according to (42), is frequency 
modulated in accordance with the same law as the pump 
pulse. 

5. EFFECT OF GROUP DELAY 

A. SRS lndicatrix 

The finite relaxation time of the molecular oscilla­
tions, as shown in the preceding sections, decreases the 
gain of the Stokes components, and consequently also 
the energy of the Stokes waves. This decrease however, 
as can be readily seen, does not depend on the observa­
tion direction. Therefore the decisive role in the deter­
mination of the form of the scattering indicatrix is 
played by effects of group delay. 

In order to reveal their role most clearly, we neglect 
first the effects of molecular relaxation. Then the cal­
culation can be carried out on the basis of Eq. (7), as­
suming the pump field to be specified and propagating 
with velocity ~ in the z direction. The linear loss 6 s 

will be neglected. We write the solution of this equation 
in the form 

• 
/~'fl=lsocxp [Jr(TJ'F-v+x)dx ]. (43) 

0 

where v-. = up1 + u'ft and TJ-. = t + z/us· The plus and 

minus signs preceding J pertains to the intensities of 
the forward and backward Stokes radiation, respectively. 

It is easy to see from (43) that the gain of the Stokes 
signal reaches saturation at a length (see (10)) 

l"'=.,;p/v"'. (44) 

The ratio of the radiation energy scattered forward and 
backward (the energy asymmetry coefficient) is given by 

lV (-) l 
R= - 5 -z-±-exp[f0 (l_-l+)], (45) 

w~+) z_ 

where wJT are the energies of the forward (-) and back­
ward(+) Stokes pulses. 

The group-delay effects should become most strongly 
pronounced in the case of pumping by picosecond pulses. 
In this case, generally speaking, it is impossible to re­
gard the response of the molecular system as having a 
steady state. On the other hand, simultaneous allowance 
for the nonstationary character of the response of the 
medium and of the detunings of the group velocities 
introduces great difficulties in the solution of Eqs. (11) 
and (12), where the amplitude~ must be regarded as a 
function not of TJ but of TJ~- v.z. It is possible, however, 
to solve this system of equations for pump pulses of two 
types, rectangular and exponential 9 >. We present here 
the formulas for the growing part of the Stokes pulse in 
pumping by a rectangular pulse of duration T p « Tt, in 
the case of forward scattering: 

](-)~ s ~ yggl)- exp[211Jo(z, tJ-)] 
8nycrl):n(z, '1-) (v-Z + 11-) 

if tJ- ~ v_z; 

(46a) 

'\'sg {cxp[21jl0 (z,tJ-)]-~2 V TJ- exp[2\j-•o(z, v_z)]} 
8nyo11Jo (z, TJ-) ZV-

if 1J- ;:_::, v_z; ( 46b) 

It is seen from these formulas that the intensity in the 
Stokes pulse reaches a maximum value at a length 
L=Tp/v_: 

~ vsEdT2 [ ( 'Cp )'''] lg,max:::::: . cxp 2 2I oL- . 
16nycrl'2foL-rP T2 

(47) 

A similar formula is obtained for the maximum of 
the backward- scattered radiation intensity, if l_ is re­
placed by l+ in (47). 

To estimate the energy of the Stokes radiation scat­
tered forward and backward, it is necessary to multiply 
J s max by the duration of the corresponding Stokes 
pulses. The duration of the pulse moving forward is 
T s) ~ v'2T T2/roL. On the other hand, the duration of 
the pulse £oving backward is T S+) ~ l_v+ at a cell length 
l = l_. We then obtain for the asymmetry coefficient the 
expression 

( 2-rpT, ) 'i• l+ [ ( 't'p ) 'I• - - ] 
R:::::: -- ~exp 2 2f0 - (l'l--'Yl+) . 

fo4 L-v+ T2 
(48) 

We see therefore that the nonstationary character of the 
response greatly decreases the asymmetry of the radia­
tion, but still leaves it quite appreciable. 

9>The amplification picture is greatly altered by group de tuning in 
the case of phase modulated pumping. Here, unlike the results of Sec . 
4, there is an appreciable decrease of the gain. This question is dis­
cussed in greater detail in [28 ]. 
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B. Influence of Group-delay Effects on the Spectrum of 
the Stokes Components 

It is obvious that at appreciable cell lengths the 
duration of the backward stokes pulse cannot greatly 
influence the width of the spectrum. At the same time, 
the gains attainable in the case of short pulses 
(2r0l+ Tp/T2)112 are small. Consequently, the width of the 

backward-scattered radiation spectrum should become 
approximately equal to the width of the spontaneous­
radiation spectrum following excitation by a short pulse. 

The width of the spectrum of the forward-scattered 
stokes radiation at lengths z « l_ in the field of pumping 
pulses having Tp « T2 is determined by formula (32a). 

When z > l_, a broadening of the Stokes pulse (a narrow­
ing of the spectrum) begins. The duration of the pulse 
is then determined by the formula 

T t1 ~ (2TpT2/roL) ''• + (z -l-) '~-· 

6. CONCLUSION 

The present results make it possible to consider a 
much wider group of nonstationary-scattering problems 
than in the case of the customarily employed Kroll 
theoryu61 and the works is based on it(l5' 181 . New fac­
tors are simultaneous allowance for the "local" (con­
nected with T2) and "wave" nonstationary effects, the 
consideration of a wide class of pumping waves, and 
allowance for spontaneous transitions. Of course, the 
relations obtained in the present paper include also 
Kroll's results; in particular, they follow from formulas 
(35) with D.= 0, To- 00 and roZ- 2TJ/T2 > 1. Although 
the analysis presented in the present paper is limited 
mainly to cases of pulsed and phase-modulated pumping, 
the general expressions make it possible to analyze also 
other problems of practical importance. 

Interesting conclusions can be obtained, in particular, 
for a Gaussian noise pump; under conditions when the 
dispersion effects are negligible and the noise correla­
tion time Tc « T2, the gain of the spectral Stokes com­
ponent of the wave is determined by the average pump 
intensity: 

A similar result can be obtained also for multimode 
pumping with unsynchronized modes. 

Of definite practical interest may be the possibili­
ties, considered above, of quasistatic (see formula (26)) 
or nonquasistatic (32a) compression of the pulse. Under 
conditions of small group delays, it is possible to 
realize a threefold compression of the pulse; experi­
ments in which such effects were observed in liquids 
excited by picosecond pumping are described in our 
paperc27110 J (see alsol281 ). The formulas (21)-(23) for 
the intensities of the scattered components also agree 
well with the experimental data obtained in the study of 
the scattering of ultrashort light pulses in liquids 08' 271 . 
Although, insofar as we know, there are still no direct 
experiments on the amplification of narrow-band Stokes 
signals in the field of broadband pumping, the results of 
Sec. 4 of the present paper can be used to interpret ex-

10lEffects connected with nonlinearity of the refractive index were 
excluded in this case. 

periments on SRS under conditions of anomalous broad­
enings of the pump spectrum as a result of self-action. 

One of the most interesting aspects of SRS of pico­
second pulses are the strong-field effects, which can 
lead, in particular, to noticeable changes of the popula­
tion difference. This question is discussed in a number 
of papers l7'8'29 ' 301 ; the effects arising here have features 
in common with resonant self-bleachingl31 ' 321 . We pres­
ent a general result that follows from the system 
(2)- (12). If the pump pulse duration is T « T2, then in 
the case of exact resonance (D. = 0) it forfows from this 
system that the behavior of the population difference is 
described by the formula 

n(TJ)=cos_{2va JJls(t)lpo(t)- :sP 152(t) ]"'at}, 
where J 0(t) is the input pump pulse. We see that n, as 
a functiCn of the time and field intensities, can assume 
values from 1 to -1. Equations (4) show that the first to 
occur is the process of conversion of the pump radia­
tion in the Stokes radiation. When n becomes negative, 
the Stoke wave is transformed into a pump wave. Since 
the population difference can reverse sign many times 
during the interaction time (provided, of course, that the 
pump-pulse energy is sufficiently large), we should ex­
pect the pump and Stokes waves to break up into indi­
vidual pulses. 

We note also that when n < 0 favorable conditions are 
produced for two-photon antistokes scattering, having 
no specific angular structure. 

The authors are grateful to Yu. E. D'yakov for useful 
discussions. 

1E. Garmire, C. Pandarese and C. Townes, Phys. 
Rev. Lett. 11, 160 (1963). 

2 V. T. Platonenko and R. V. Khokhlov, Zh. Eksp. 
Teor. Fiz. 46, 555 (1964) [Sov. Phys.-JETP 19, 378 
(1964)]. 

3 Yu. E. D'yakov, Proc. First Vavilov Conf. on Non­
linear Optics, Novosibirsk, 1969. 

4N. Bloembergen, G. Bret, P. Lallemand, A. Pine and 
P. Simova, IEEE, QE-3, 197 (1967). 

5 M. Maier, W. Kaiser and L. Von-der Linde, Phys. 
Rev. 178, 11 (1969). 

6 M. Maier, W. Kaiser and J. Giordmaine, Phys. Rev. 
Lett. 17, 1275 (1966). 

7S. A. Akhmanov, A. S. Chirkin, K. N. Drabovich, 
A. I. Kovrigin, R. V. Khokhlov and A. P. Sukhorukov, 
IEEE, QE-4, 598 (1968). 

8 K. N. Drabovich, Zh. prikl. spektrosk. 12, 411 
(1970). 

9M. Maier, W. Kaiser and J. Giordmaine, Phys. Rev. 
177, 580 (1969). 

10 B. Stoicheff, School of Phys. Enrico Fermi, 
Lectures, 1964. 

11 N. Bloembergen andY. Shen, Phys. Rev. Lett. 13, 
720 (1964). 

12 W. Wagner, S. Yatsiv and R. Hellwarth, Physics of 
Quantum Electronics, McGraw-Hill, N. Y., 1966, p. 159. 

13 S. A. Akhmanov and A. S. Chirkin, in: Nelineinaya 
optika (Nonlinear Optics), Nauka, 1968, p. 164. 

14 S. A. Akhmanov, A. P. Sukhorukov and A. S. 
Chirkin, Zh. Eksp. Teor. Fiz. 55, 1430 (1968) [Sov. 
Phys.-JETP 28, 748 (1969)], 



STIMULATED RAMAN SCATTERING IN A FIELD 273 

15 E. Hagenlocker, R. Minck and W. Rado, Phys. Rev. 
154, 226 (1967). 

16 N. Kroll, J. Appl. Phys" 36, 34 (1965). 
17 S. Shapiro, J. Giordmaine and K. Wecht, Phys. Rev. 

Lett. 19, 1093 (1967). 
18 G. Bret and H. Weber, IEEE, QE-4, 807 (1968). 
19 M. A. Bol'shov, V. S. Dneprovski1, Yu. D. Golyaev 

and I. I. Nurminski1, Zh. Eksp. Teor. Fiz. 57, 346 (1969) 
(Sov. Phys.-JETP 30, 191 (1970)]. 

2° F. Shimizu, Phys. Rev. Lett. 19, 1097 (1967). 
21 R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Chiao 

and C. Townes, Phys. Rev. 166, 316 (1965). 
22 M. A. Bol'shov and G. V. Venkin, Zh. prikl. spek­

trosk. 9, 1050 (1968). 
23 Yu. G. Khronopulo, Izv. vuzov Radiofizika 7, 674 

(1964). 
24 C. Wang, Phys. Rev. 182, 482 (1969). 
25 C. Tang, J. Appl. Phys. 37, 2945 (1966). 
26 Yu. E. D'yakov, ZhETF Pis. Red. 9, 487 (1969); 

11, 362 (1970) (JETP Lett. 9, 296 (1969); 11, 243 (1970)1. 

27 S. A. Akhmanov, K. N. Drabovich, V. S. Dneprovsky, 
I. I. Nurminsky and R. V. Khokhlov, Transient Effects 
by Stimulated Raman Scattering of Picosecond Pulses, 
Paper at lnternat. Conf. on Nonlinear Optics, Belfast, 
1969. S. A. Akhmanov, Mat. Res. Bull., 4, 455 (1969). 

28 R. L. Carman, M. E. Mack, F. Shimizu and N. 
Bloembergen, Phys. Rev. Lett. 23, 1327 (1969). Dep. 
Appl. Phys., Harvard Univ., January 1970, Preprint. 

29 S. A. Akhmanov, K. N. Drabovich, A. P. Sukhorukov 
and R. V. Khokhlov, Paper at Fourth All-union Sym­
posium on Nonlinear Optics, Kiev, 1968. 

30 K. Shimada, Self Modulation and Picosecond-Pulse 
Generation by Stimulated Raman Scattering, Paper at 
Internat. Conf. on Nonlinear Optics, Belfast, 1969. 

31 S. McCall and E. Hahn, Phys. Rev. Lett. 18, 908 
(1967). 

32 S. McCall and E. Hahn, Phys. Rev., July 10 (1969). 

Translated by J. G. Adashko 
57 


