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It is shown that introduction of an impurity with an internal degree of freedom into a superconductor 
alters significantly the spectrum of the superconductor, and gives rise in particular to gapless 
superconductivity. The appearance of a nonzero density of state inside the gap is the consequence 
of inelastic scattering of the electron by the impurities. 

IT is well known that when nonmagnetic impurities are 
introduced into a superconductor, the spectrum of the 
superconductor and its thermodynamic properties re­
main practically unchanged. On the other hand, the 
presence of magnetic impurities greatly alters the spec­
trum of the superconductor[1J. In particular, at a cer­
tain concentration of such impurities, gapless super­
conductivity arises. 

We show in this paper that when impurities with some 
internal degree of freedom are introduced into a super­
conductor, the electron spectrum can likewise be sig­
nificantly altered. Let us consider first the physics of 
the occurrence of gapless superconductivity in the pres­
ence of such impurities. Let an electron be scattered by 

· an impurity with an internal degree of freedom. Then, 
besides elastic scattering, scattering with excitation of 
the impurity is possible, and also scattering with trans­
fer of the impurity from the excited state to the ground 
state. These processes, as can be shown, cause damp­
ing to appear in the Cooper pair, and this in turn leads 
to a vanishing of the gap in the spectrum. It is clear 
from the foregoing that the effect indicated above is a 
threshold one and that at zero temperature it does not 
exist, since there are no electrons capable of exciting 
the impurity at zero temperature, and all the impurities 
are in the ground state and cannot emit excitations. The 
law governing the temperature dependence of the density 
of states on the Fermi surface (and this is precisely the 
quantity that can be used conveniently to describe the 
magnitude of the effect) is essentially different, depend­
ing on whether the excitation transferred to the electron 
by the impurity has or has no damping. If there is no 
damping then, obviously, the density of states in the gap 
is exponentially small, since there exists an excitation 
threshold, but if the damping is present, then it can be 
readily seen that there is no threshold and the density 
of states in the gap depends on the temperature in 
power-law fashion. 

We proceed now to a mathematical analysis of the 
problem. We use the following model: we assume that 
an impurity atom is present and that motion of this atom 
gives rise to a certain local oscillation. To describe 
this local oscillation, generally speaking, it is necessary 
to solve the equations of motion for the entire crystal 
with allowance for the impurity. We shall not do so, 
however, and assume that the phonon spectrum remains 
unchanged, while the impurity simply oscillates in the 
field of the neighboring atoms. This approximation, of 
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course, is quite crude, but it is justified by the fact that 
the main effect is practically independent of the concrete 
form of the spectrum. 

We assume a point interaction between the electrons 
and the impurity atoms. We choose the Hamiltonian of 
the interaction in the form 

V = J 'i'+(r)v(r)U(r)dr, 

U(r)=EU(r-r;), 

(1) 

Here a is the electron-impurity elastic-scattering 
length, b the scattering length with production or ab­
sorption of the impurity excitation. ci and cr the opera­
tors of annihilation and creation of the excitation of the 
i-th impurity, ri the equilibrium position of the i-th 
impurity, m the electron mass, and l/J(r) and ljJ•(r) the 
second-quantized wave functions of the electron. We 
now need to calculate the electron Green's function and 
to average it over the impurities. We shall use an aver­
aging technique analogous to that employed in the case of 
immobile scatterers[2 ' 3 J. To take into account the 
eigenlevels of the impurities, we used the method of 
introducing fictitious Fermi (or Bose) operators, em­
ployed, for example, in [4 ' 5 J • 

We introduce the Matsubara scattering matrix 

cr(r)=T,exp{- J V(-r')d-r'}, 

V(-r)=eH•'Ve-H•'. (2) 

To calculate the Green's function we need the scattering 
matrix a (1/T) [eJ ; its expansion in the perturbation­
theory series yields 

oo l/T ljT 

( 1) (-1)n 
cr r = 1: -n-1 -J d-r, ... J d-rn J dr1 ••• J dr" 

n=O 0 0 

(3) 

We substitute the obtained expression for the scat­
tering matrix into the expression for the electron 
Green's function lBJ 

(4) 
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It is further necessary to carry out the usual trans­
formations and to average over the positions of the im­
purities. We assume that the number of impurities is 
small and that poa, pob « 1, where Po is the Fermi 
momentum. We can then confine ourselves to the first 
order in the impurity concentration and to the second 
order in the interaction constant. As a result of simple 
calculations we obtain the following expression for the 
electron self-energy part: 

2nn ( 2na }2 J dq . 
M(p,ioo)=--;;;;-a+ --;;:;-- n (2n)s G(q,l<ll) 

2nb 2 T ' aq -(--) n--\"'ls -;--G(q,ie)L(i(oo- e)). (5) 
m No~ (2:-t) 3 

Here n is the impurity concentration, iw and iE are the 
Matsubara discrete frequencies, w0 the oscillation fre­
quency of the impurity atoms, G(q, iw) the Fourier 
transform of the function G(r, T), and L(iw) the Fourier 
transform of the function L( T), given by 

L(T) = - 1/,ro,(T,{c(T) +c+(T)} (c+c+)). (6) 

The remaining analysis is determined completely by 
the form of the function L(iw). If the impurity oscillates 
like a harmonic oscillator, without interacting with the 
surrounding atoms, then L(iw) takes the form 

Lo(iro) = ~>.' / [(too)'- <u.']. (7) 

We now discuss the question of damping of the local 
oscillations. We have already mentioned that the damp­
ing of the local oscillations is extremely important for 
the temperature dependence of the density of states in 
the gap. We introduce the damping, for simplicity, by 
using a model, namely, we assume that Lois replaced 
by L defined by the formula 

L-• = £.-·•- P. (8) 

We define Pas follows: 

P(lw) = -2ia.(iro)w.-•, (9) 

where 0 < a < 1. We then obtain 

wo2 
L= --

(iw)2-- w02- 2iu(i"')~>o 
(10) 

We shall henceforth assume that a is small compared 
with unity. 

We now proceed to solve the problem of scattering 
of an electron in a superconductor by such an impurity. 
It is easy to show (in analogy with the procedure used 
in superfluidity theory[71 ) that the superconducting 
Green's functions (their definition is given, for example, 
in[61 ) are equal to 

. Hu+f 
G(l<ll)= (iiii)L·F:.:_li(ic;;)-A(- iw) ' 

. - A(i<•>) 
F(zw)= .. , .. ---, 

(iro)2- ~·- u(lc") ~(- iw) 
where 

( 2nb ) 2 T L f dq -- -- n- -,--F(q,ie)L(i(w-·e)). 
, "" '''" -I • (2n) 3 

(13) 

We note that the Green's functions G and F which enter 
in (5) and (13) are complete and not zero-valued. We 
put further 

J , !' (w', Jl) 
G(i<•>,p)= -- clw -. - 1 , 

"" t(l)-(l) 

. • ,q,(ro',p) 
L(zw)=-Jtl~l c··--,-. (14) 

Hu -- w 

From (10) we get, taking (14) into account, 

eo= }'1 + a'wo, 'V• = aolo. (15) 

If Ia I« 1, then Eo 1'1:1 Wo· 
From (5) we easily obtain, by analytic continuation 

with respect tow, the following expression for MR(w) 
(the symbol R is used to denote retarded functions): 

2nn 2nn 
M 8 (oo) =---;;;-a +-;;;-ia'g(oo) 

2nb2 J J n(ei)- N(e2) -1 
+- de1 cle2Reg(ei)cp(e2) ; 

mwo w-e~- e2 (16) 

here 

..!!!..tg(w>=J ~S de p{e,p) =-J ~-GR(w p) (17) 
2n (2n)' w-e (2n)' ' ' 

with 
n(w) = (e"1' + 1)-•, N(•w) = (e•t• -1)-'. (18) 

We obtain analogously 

M R< l 2nn. 'f 2nb2S S , w =-Ia (w)-- de, de,. 
m mwo 

XRef(e!)tp{e2)n(ei)-N(e2)-i, (19) 
w-e1-e2 

!!!_if(oo)=J ~(F+)R. 
2n (2n)s 

(20) 

Taking into account the foregoing formulas, we can 
easily show that M1(-iw) = M1(iw), while AR(w) and 
sR(w) are equal to 

2nn 
SR(oo )=--;;;;-a, AR( oo )= MR(oo)- S8 (·w). (21) 

It can also be shown that 
m 'X 

g(w)=Po,, .... 2_ A2' f{w)=Po--===· (22) rw ym2 _ ,1.2 

We now can readily obtain the following equations for 
wand A. Recognizing that cp(-E) = -cp(E), we get 

m = w + ..!:!..e(w) + ~ Jde1J de2 Re8(ei)· 
Po npowo 

x cp{e2)[n(ei)+N(e2)][w-el+e2]-1, (23) 

A=/:;. +..!:!..f{w)+~Jclel Jae2Ref(e1). 
Po npoooo 

X cp{e2) [n(e1) + N{e2)] [w- e1 + e2]-1; 
2nn 2nn 

v=-;:;;:-poa2, ro =-;;;;-pob2• (24) 

Formulas (23) together with (22) constitute the equa­
tions for wand :ii. 

il.ih=io>·-A(ioo), 1 ,=1',--S(icu), X=/:;.+ !lf,(iw), 
A(ico)= 112(,1/(i<•>) ·-1!1(-lw)], 

(12) Let us consider these equations first for the case 

S(iw) = 1h[;l/(iw) -i-M(---iw)]. 

Here M(iw) is defined in (5), and M1(iw) is equal to 

( 2na ) 2 J d<i llf1(iw)= - n --F(q,iw) 
m (2.r)3 

when the local oscillation has no damping, i.e., at 
a = 0. We then obtain from (23) and (15) 

_ ly l'o s f n(e)+ N(<•>o) 
w = w + -l!( w)-- a~ Ikr(e) l -------

Po 2npo w - F. + wo 

n(e)-N(wo)-1} 
- ----.; --;~~-~0--- t 
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li= A +~f(w)--~J deHof(e){n(c)+N(wo) 
Po 2npo w - e + Wo 

_ n(e)-N(ro0)-1 }· 
(J)-e-ooo 

(25) 

To continue, it is necessary to make certain assump­
tions concerning the ratio of b. and wo. Let us assume 
that b. << wo. Further, we confine ourselves for simplic­
ity to the calculation of the density of states at t.. = 0, 
since the presence of a nonzero density of states at 
w = 0 indicates that there is no gap in the spectrum. 
We not~ that, as can be readily seen from (23}, Reg(.::} 
and Im f(E} are even functions of the real variable t:, 
while Re 'r(E} and Im g(t:} are odd. Taking this circum­
stance into account, as well as the fact that because of 
~he parity properties Re w(O} = Im ~(0} = 0, we obtain 
after simple calculations (we recall that the density of 
states is proportional toRe 1(0)) 

U(O) '= p,r{I" + (~ + Q)'}-'\ 

f(O) = -ip,.(A + Q){f' + (A+ Q)'}··'l•; (26) 

f=fo/sh 000 , R==-~ CaeHcf(e) n(e2+Nfc.1o).. (27) 
T npcJ cuo-e 

In the derivation of (26) we took into account the fact 
that Re g(wo) Rl Po, since Wo » t.., a. 

Let us discuss the results. We note first that there 
is a certain increment to t.., due essentially to the fact 
that there is an additional branch of the vibrational 
spectrum, leading to additional attraction between the 
electrons. In addition, we see that the density of states 
at w = 0, which is proportional to Re g(O}, differs from 
zero, i.e., gapless conductivity sets in. It is possible to 
calculate the density of states not only at w = 0, but also 
at other energies, but we shall not do so here, since the 
resultant formulas are quite cumbersome. We note only 
that, as already mentioned at the beginning of the arti­
cle, for the case of an undamped local oscillation the 
quantity r, which is the main characteristic of the den­
sity of states in the gap, is exponentially small. For 
example, if r « t.. and wo » T, then 

2fo ( Wo\ q(O)=--pocxp. --- .. 
L\ + lA \ T I (28) 

We now proceed to consider the case when the local 
oscillation has damping. We consider again only the 
value of the density of states at w = 0. It is easy to 
show that, owing to the parity, Re w(O) = Im ~(0} = 0. 
Further, it is seen that Im g(O} = Re 1(0} = 0. Then we 
obtain from (23) Eq. (26), in which, however, r and n 
are determined not by (27), but by the expressions 

f= -~J deRej(e)c:p(e) (sh..:._}-1
, 

powo T 

(29) 

We are interested mainly in r and not in U; we shall 
therefore consider just this quantity. We note first that 
although cp(E} is a resonant function with a maximum 
near t: = wo, at this maximum the term [sinh(E/T)r1 is 
exponentially small (since w0 >> T}, and therefore in 
fact the values of cp(t:} at E « wo are always significant; 
in this region we have 

c:p(oo) =-2aoo/noo,, lwl ~ Wo- (30) 

We then get from (29) 

· f= 2afo2 J edeRej(e)(sh 8T }-1
• 

npowo (31) 

The calculation of r from (31) calls for first solving 
the equation for g(E). For estimates, however, we can 
substitute for g(t:} the value of this function in the ab­
sence of impurities, and then we get 

(32) 

It is seen from (32) that when t.. ~ T we get 
r ~ (T/wo)2 , and this leads to a power-law dependence 
on the temperature, rather than to the exponential depen­
dence obtained when the local oscillations are undamped. 
We cannot state, however, that r depends on the tem­
perature just quadratically, since no account was taken 
at all of the temperature dependence of the parameter 
01, which also depends on the temperature, as a rule in 
a power-law fashion, and the exponent depends already 
on the concrete conditions. 

We shall now discuss the conditions under which the 
occurrence of gapless conductivity, which was discussed 
above, can be observed. Throughout the article we con­
sidered the case w0 >> t.., T. This condition, however, 
was assumed only to simplify the theoretical analysis 
of the problem and it not obligatory. On the other hand, 
if wo is much larger than b. and T, then it is seen from 
formulas (26) and (32) that r is very small. However, if 
wo is small compared with b. and T, then it is clear that 
the inelasticity effect simply drops out, so that it is de­
sirable to have wo :;c b. T. 

We note that a contribution to r should be made also 
by acoustic phonons. However, their contribution is 
small because of the smallness of the corresponding 
phase volume. 

The fact that inelastic scattering by impurities plays 
a principal role in the damping of the Cooper pairs is 
perfectly analogous to the fact that the inelastic scat­
tering by the impurities makes an appreciable contribu­
tion to the low-temperature part of the resistance[sJ. 
A more detailed analysis shows that both these phenom­
ena are described by analogous formulas. We note only 
that y, which is proportional to the residual resistance, 
does not enter the formulas for the density of states. 
The indicated analogy makes it possible to foresee that 
the effect predicted in the present article will become 
manifest most strongly in those cases when the tem­
perature-dependent part of the impurity scattering, due 
to the inelastic scattering by the impurities, is suffi­
ciently large at T ~ t... 

Taking into account the fact that r ~ vF/lin 
(vF-velocity on the Fermi surface, lin-free path 
relative to inelastic processes}, it is easy to estimate 
the order of magnitude of r from experiments on the 
measurement of the resistance, and also to choose 
alloys in which r is sufficiently large. From an analy­
sis of the experimental data on low-temperature resis­
tance it follows that r can be of the order of 1 o and 
consequently, the density of states when w < b. is suffi­
ciently large. 

We now consider the question of the experiment in 
which it is most convenient to observe the described 
effect. It can be observed, first of all, in ordinary tunnel 
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experiments. It is most convenient, in all probability, 
to observe it in experiments on the Josephson effect. 
The point is that in ordinary tunnel experiments, the 
tunnel current of the normal electrons interferes at 
finite temperatures. As to the Josephson effect, the 
phenomenon in question can lead, first, to a change in 
the temperature dependence of the current in the sta­
tionary Josephson effect, and second, to a broadening of 
the lines of the radiated electromagnetic radiation in the 
nonstationary Josephson effect. The point is that gapless 
conductivity, as can be readily shown, arises essentially 
as a re.sult of the fact that the Cooper pair becomes, as 
it were, damped and the damping of the Cooper pair, in 
turn, should lead to a broadening of the Josephson line. 

In conclusion, the author is grateful to S. v. Maleev 
and G. M. Eliashberg for a discussion of the work. 
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