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The nonlinear Vlasov equations for a plasma are solved (neglecting the collision terms) to third 
order in a perturbation that represents a transverse wave in a neutral isotropic plasma. The 
second-order solution contains the longitudinal second harmonic and the stationary flow along the 
wave vector. The correction to the frequency in the initial-value problem and the correction to the 
wave vector in the boundary-value problem occur in the third-order solution; these two corrections 
are different in the two planes of elliptical polarization. Transverse waves corresponding to eight 
different frequencies are obtained. The increase in the number of waves leads to a nonlinear deflec
tion of the radiation at the boundary of the plasma. For the zeroth correction, four of the waves 
correspond to the first harmonic and the other four to the third harmonic. In the third-order ap
proximation this leads to the splitting of a single elliptically polarized wave into two plane-polarized 
waves with different phase and group velocities. The frequency shift is in the red direction. Numer
ical calculations for the nucleus Fe 57 used in Mossbauer experiments yield a relative frequency 
shift of the order of only 10-23 • 

1. INTRODUCTION 

NoNLINEAR effects up to third order that arise in 
wave propagation in a uniform isotropic plasma have 
been studied in a number of papers_P-sJ 

We have solved the nonlinear Vlasov equations for 
a plasma (7 J up to third order in a perturbation in the 
form of elliptically polarized electromagnetic waves; 
this problem has not been treated by other authors. 

The initial nonlinear equations that describe the 
electron motion are 

(~+vV) /+.!!__{ E+~[vHJ}Vv/=0, ot m c 
(1.1 )* 

1 aE 4ne ~J 
rotH---=- v(f-/i)dv, 

c fjt c 
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divE= 4Jte J (f- /;)dv, (1.4) 

where f{r, v, t) and fi are respectively the distribution 
functions for the electrons and ions, e is the negative 
charge of the electron, m is the electron mass, and E 
and H are the electric and magnetic field vectors. 

We assume the existence of a neutral isotropic 
equilibrium state for the plasma in the absence of a 
static magnetic field with the following distribution 
functions: 

foe(z:2)== {-~ )';, cxp{- _!n~~-), 
~rr.xTc 2x1 c, 

( N )';, ( Jlfv2 ) 
fo;= 2md; exp - 2x1';- ' (1.5) 

where K is the Boltzmann constant, M is the ion mass 
and Te and Ti are the kinetic temperatures for the 
electrons and ions. 

*[vH] =vx H. 
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This complete system of equations will be solved by 
a method of successive approximations given by 
BogdanovfaJ and developed further in the present paper. 

In the first approximation the linearized equation 
(1.1) assumes the form 

{1.6) 

where f0 { v2 ) is the Maxwellian electron distribution 
foe(v2 ) from (1.5). The solution f1(r, v, t), which cor
responds to elliptically polarized electromagnetic 
waves, is of the form 

j, (r, v, t) = g,(v) cos{)+ g,(v) sin U, 

0 =kr- r•ll, 

(1.7) 

(1.8) 

Substituting this in (1.2) and (1.3) and simplifying we 
have 

Ne fo m , ( 
/ 1 (r, v, t)= ---.--(E1v 1 cos 0- E2v2 sin 0), 1.9) 

m 0 xT 

e~ kv-w, {1.10) 

where v 1 and v 2 are two orthogonal components of v, 
which are perpendicular to k1, while E 1 and E 2 are 
the amplitudes of the two components of the perturbing 
electric field in these directions. The plane which 
contains k and Vi ( i = 1, 2) will be called the .Li 
polarization plane ( i = 1, 2) of the elliptically polarized 
wave. Actually, (1.9) is an integra-differential equa
tion since 

(1.11) 

where 

~~' = 6l2 -- k'c'. (1.12) 

The integrals in (1.11) are triple integrals in 
velocity space and the limits must encompass the en
tire space. 

The equations given above yield the dispersion rela
tion 



NONLINEAR EFFECTS CAUSED BY TRANSVERSE WAVES IN A PLASMA 251 

(1.13) 

where 
F(t•u)= J /o(v2)dv1 dv2, (1.14) 

and vu is the component of v parallel to k. The singu
larity that appears in (1.13) when v 11 = w/k is not im
portant for transverse waves) 9l Hence, in what follows 
we shall make use of the principal value of the integral 
in (1.13), expanding the reciprocal denominator in 
powers of kvu/w and integrating Eq. (1.13) by parts. 
Other simiJtlr integrals which contain positive integral 
powers of 6 in the denominator are treated in the 
same way. 

2. SECOND-ORDER APPROXIMATION 

The second-order approximation to Eq. (1.1) can be 
written in the form 

( iJiJt + vV) /2 + Ne (E211 iJiJfo + E2.LI iJiJfo -j- E2.L2 Dfo ) 
m VII v1 iJv2 

+ i(O~J + vllk)/J =- .!._ [ {Eu_ !!I!_+ Eu_ 8h) 
m 18v1 28v2 

VJI ( 0/J iJ/J ) 1 . 8/J ] +- Hu_,-0 -Hu_,-0 h+-(vllfu_,-v2Ilu_,)- , 
c V2 Vj c UVI 

where E211 is the longitudinal field in second order 
while E211 and E21 are the two components of the 
elliptically polarized field in second order with polari
zations 11 and 12 respectively. It is evident that terms 
that play the role of sources appear on the right side of 
this equation and consist of quadratic products of the 
first-order field quantities. Account is also taken of 
the possibility of nonlinear corrections to the frequency 
and wave vector, <'lw and <'lk, respectively. However, the 
sources on the right side of the equation cannot lead to 
the appearance of first harmonics, so that these cannot 
appear on the left side of the equation. It then follows 
that the last term on the left, composed of first har
monics of the field quantities, must vanish for all 
values of <'lw and <'lk. Thus, in the second approxima
tion the quantities <'lw and <'lk vanish, as has also been 
deduced in[1-s]. 

To solve the equations given above we write the 
first-order solution in the form 

f,(r, v, 1) =nxp (-yt)(g,cosO-J-g,sinO) (2.1) 

and take the limit y - 0. Using Eqs. (1.2) and (1.3) 
we find 

j,(r, v, t) = <ll1(v)cxp(-2yt) + <D,(v) cos 20 (2_2) 
+<D,(v) sin 20, 

where 

<!J3=l~,z,2------ lc- -;- +-/o -.-; • ' -· " ''" l v ( io ) m ] VtV2 

2m2t•l Y.T 8vi' 9 v.T 0 

mv,2 ' ---1- mv22 ar- -JFdvu 
/.1 = 1------ 11.2 , o;r on- -.-. '(2.5) 

• v.T xT am 
The separation of the charges and the induction of 

the currents are governed by the following relations: 

(2.6) 

where v1 = V1 + v2. These relations show that the 
transverse waves do not appear in the second approxi
mation. The quantity 4> 1(v) is a correction which is 
independent of time and coordinates and hence changes 
the form of the background distribution f 0( v2 ). How
ever, the third relation in (2.6) shows that this does 
not l~ad to a static separation of charges; the first 
relahon shows that ~1 does not lead to the appearance 
of a stationary current transverse to k. Only a sta
tionary longitudinal current <'lju appears, where 

lli!r =J evu<ll1 dv =- (E12 + El)kewo• g- 2 (2. 7) n• 1. 

This quantity might be called the "wave wind"; it can 
be found by taking f1 in the form (2.1) and then letting 
r - 0. A "wind" of this type has been predicted in a 
paper by Golovko[ll but only in the case of longitudinal 
waves and in first order. Other authorsr2-a] did not 
note this effect. A review of nonlinear effects in the 
theory of orbits and particles moving under the effect 
of an electromagnetic wave has been given by Bloem
bergen.r101 The analysis of Eq. (2) of this work, after 
multiplication of the electromagnetic field by the factor 
exp ( -yt), leads to the appearance of additional terms 
which give in the second approximation a stationary 
flow that coincides with <'lj 11 at zero temperature. 

If we write the longitudinal electric field in second 
order in the form Ez sin 2 6 + Ez1 cos 2 6 then 

2neJ (Et2-E22)Tcew0• 
Et=-- <ll2dv=- !!T3 

k Bmw(i- 1/.wo2!!T2) ' 
(2.8) 

2ne J Et, = -k- <1>3 dv = 0, (2 .9) 

where Ez vanishes in the case of the circular polariza
tion of the wave. 

We note that the role of the coefficients for the 
quantities sin 2 6 and cos 2 6 are essentially different, 
but we can not present a physical explanation for this 
difference. 

If Sz is the energy flux in the form of a longitudinal 
field, thenr111, p. 284 

S _ E!2w(4w 2 - w02)cos2 29 
I d- 4 Tc 2 • n wo 

(2.10) 

Comparing this result with the Poynting flux of the 
first-order electromagnetic wave we can determine 
the fraction of energy that is converted into longitudi
nal form. Furthermore, if So is the energy density in 
the "wave wind," then 

(2.11) 

which vanishes at zero temperature, showing that the 
transfer of energy to the "wave wind" is effected by 
microscopic thermal motion. 

This motion is also responsible for the second
order pressure wave on the plane that contains the 
electric oscillations of the plane-polarized wave. To 
demonstrate this, it is necessary to compute all of the 



252 B. CHAKRABORTI 

components of the pressure tensor Pij, these being 
specified by the relation 

Putting E2 = 0 we find 

16nro Pz2~[--. wo~sr-3 ___ 31.: xT .<r3lcos20, 
R.'J,;w,' 4{1-'/,co,'fT,) m J 

fT. =S Vi;l·~~.':!l... (2.12) . 9 • 

the right side of equation (2.12) vanishes when T = 0. 

3. THIRD-ORDER APPROXIMATION 

The second-order solution does not contain incre
ments to the frequency and wave number. However, 
they appear in the third-order solution, otherwise the 
results are meaningless. The increments are different 
for the 1i polarizations (i =1, 2) if the wave is not 
circularly polarized. If the wave vector (taking ac
count of the increment) is ki = k + OkiJ the frequency 
is Wi = w + owi and the p}:lase is ei = (ki · v) - Wi, then 
(Ji = kiVII - Wi and 0 Bi = (Ji - e. The four phases (Jl, 

2 e2 - e1, 2 e1 - e2, and e2 give the phases of the first 
harmonic waves in first order when the increments 
vanish; the other four phases 3 (]1, 2 e1 + (]2 , 2 (]2 + e1, 
and 8e2 are equal to 3(] in the case of zero increments. 
The mixed harmonics 2 (]2 + (]1 and 2 (]1 ± (]2 appear as 
the consequence of the interaction between fields with 
two different polarizations and cause a rotational ef
fect of the magnetic term of the Lorentz force 
(v x H)/c. The third-order approximation will repre
sent a linear combination of sines and cosines of these 
arguments. The coefficients of these trigonometric 
relations are functions of v. However, up to third 
order the difference between the cosines of (]1, 2 e2 - (]1, 
2e1- e2, and e2 will be negligibly small and each 
function can be taken equal to cos e'' where e' = k'vu 
- w', k' = k + 6k, and w' = w + Ow. Similarly, the 
sines of these arguments can be equated to sin e', 
while the arguments 3 elJ 2 (]1 + (]2, 2 (]2 + (JlJ 3 (]2 can be 
taken equal to 3(]' for the purposes of the present dis
cussion. 

Thus, the third-order approximation to (1.1) can be 
written in the form 

( _iJiJ + v il} j, + Ne (E•u i)iifo + Eu, iJiJj, + Ea, iJi)f, ) 
t m L'n v, v, 

E Ne m .· {6w 1 (w'-J--k2c2 c'.'} k(2kc2 vn}} f + ,--sme, -· --,- -6, -----=- v, o 
m x1' Col Q' 0 Q' e 

E N e 1n { 6w2 ( w2 + k2c2 --".a'-) + 2--cosO, -- ---'---
m x1' w Q' 

-6k, (:!__"':' -~)}~'do= _ __:__E,n!._i_!_ _ _:_{ E, +~[viii]} V,.f2. 
~~- e m iJvu m c 

For a field with polarization 11 in the case of the 
initial-value problem we have okl = 0 and the fre
quency increment is 

3k'1c2 xT 
-t-{3E12 -E22)---f'Ts. (3.1) 

Sm'w m 

In the case of boundary-value problem, Ow1 = 0 and 
ok1 can be determined from the equation 

~~'-{w'fT•+·2co2 -3Q'}=- 6w1 {w'fT,-j-- w2 +k'c'} (3.2) 
k co02 w wo2 

making use of (3.1 ). Similarly, the corresponding 
quantity for the field polarization 12 is obtained by 
interchanging E1 and E2 in (3.1) and (3.2). 

The amplitude E31 of the third harmonic of the 
electric field with polarization 11 is 

k 211.2Ne4 [ 12k2xT E31 = E,----- - 8E,2fT3- (3E,2 - E22)---fT5 
B~m~ m 

_ (E12 -E,2)fT3 {4- wo2 (3wfT3+fT,)} 1 (3.3) 
1- 1/4cOo2fT, J · 

The amplitude E32 of the third harmonic with polariza
tion 12 is obtained by reversing the sign of each term 
and interchanging E1 and E2. The quantity 
1 - ( }'4) w~ !T2 in the denominator in the third term on 
the right side of (3.3) cannot vanish because of the dis
persion relation (1.13). The increment OE1 to the 
amplitude E1 for T = 0 is given by 

(3.4) 

4. DISCUSSION 

Expanding the obtained expressions in powers of 
w~/w2 and KT/mc2 and keeping only the first nonvanish
ing powers of these quantities, we have 

6w 1 = _ e2 [{sE,' (t + 'lx1') +BE,' x1' } w' 
.co 16m2c2co4 me2 mc2 

-E,2wo2 (1- SxT\- Elwo'(1 + 9xT)] . 
me2 L me2 

The quantity Ow 2 can be found in similar fashion. 
For a plane-polarized wave in the polarization plane 
11 we have E2 = 0. Consequently Ow1/w < 0, so that 
the frequency shift is in the red direction. The magni
tude of the change in the red shift with temperature 
(w-1a(ow 1)/aT) is also negative, indicating that the 
frequency is shifted in large degree in the red direc
tion with increasing temperature. Furthermore, the 
shift is different for the two planes of elliptical polari
zation. The increments a (Ow d/ak and a ( ow 2)/ak of 
the group velocity are also different in the two planes, 
so that the wave is split into two waves that move with 
different group and phase velocities in the two polariza
tion planes. 

Taking m = 9 x 10-28 g and e = -4.8 x 10-10 esu for 
the electron, we find at E2 = 0, E1 = E, and T = 0 

The nucleus Fe57 used in Mossbauer experiments 
(hv = 14.4 keV) can serve as a source of y rays. At 
such high frequencies the coupling of the electrons with 
their own nuclei is very weak so that the electrons can 
be regarded as comprising a plasma. Taking w = 2.2 
x 1019 and N = 4 x 1023, we get w0 = 4.58 x 1016. Assum
ing that the source delivers a flux of 108 photons/sec 
we have ow/ w = -2.8 x 10-23 which is much smaller 
than the red shift, of the order of 10-1\ observed in the 
Mossbauer effect. 
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As a second example we consider the propagation of 
ultraviolet rays in alkali metals. Taking E = 10 esu 
and w =10 15 Hz, in the case of sodium N =26.3 
x 1019 cm-3 and an electrical conductivity a = 9.3 
x 1016 cgs esu, we find Oj/aE = 0.75 and Oj<21/aE 
= 0.094, where Oj 121 is the amplitude of the second 
harmonic ( =e I vu<I>2dv). In this case Ow/ w = -15.5 
X 10-14• 

A third example is provided by the ionosphere, 
where typical values are E = ( }'10 ) VIm, w = 21T x 5 
x 107 Hz, and N = 106 cm-3 • In this case Ow/w = -1.7 
X 10-14 and Ez/E = 2 X 10-7 • 

The calculation for the nucleus used in the Moss
bauer experiment yields a negligibly small shift. The 
relativistic corrections can lead to an additional red 
shift. This is expected since the relativistic correc
tion[4l to the frequency shift[2J leads to a change in the 
sign of the shift from the blue to the red. 

The shift in the wave vector Ok in the boundary
value problem leads to an interesting nonlinear deflec
tion of the radiation at the plane of separation between 
the plasma and another medium. [121 

In conclusion the author would like to express his 
thanks for the help given by Professor A. A. Vlasov, 
who made it possible for the author to work on this 
problem during his residence in the Soviet Union. 
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