
SOVIET PHYSICS JETP VOLUME 32, NUMBER 3 FEBRUARY, 1971 

RELAXATION IN INHOMOGENEOUSLY BROADENED EPR LINES 

D. M. DARASELIYA, A. S. EPIFANOV, and A. A. MANENKOV 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 

Submitted March 26, 1970 

Zh. Eksp. Teor. Fiz. 59, 445-456 (August, 1970) 

Relaxation processes in inhomogeneously broadened EPR lines are studied theoretically and experi
mentally. The theory is developed for the case of strong inhomogeneous broadening and takes ac
count of cross-relaxation processes within the line. Estimates are given of the form of the relaxa
tion curves, both for the usual pulse saturation method and for the case of quenching of the cross
relaxation in the line. Results are given of an experimental investigation of the EPR lines of Nd3+ 

in Cas( P04 )3F. The temperature dependence of the relaxation rate in conditions of quenched cross 
relaxation is studied. A technique is developed for constructing the probability density function 
w(x), where x is the frequency 'detuning, for cross-relaxation transitions. This function is deter
mined for the EPR line of Nd3+ in Cas( P04)3F. 

1. INTRODUCTION 

A large number of papers have been devoted to the in
vestigation of inhomogeneously broadened magnetic 
resonance lines. In particular, the stationary satura
tion of such lines[l-31, spectral diffusion and its effect 
on the dynamic ~olarization of the nuclei[4-61, and the 
spin-echo effect 71 have all been studied experimentally 
and theoretically. In a number of investigationsC7 • 8l, it 
was found that spectral diffusion plays an extremely 
important part in pulse saturation processes (including 
discrete saturationC8• 9l) and paramagnetic relaxation. 

The general form of the relaxation curve describing 
the recovery of level populations after saturation is 
determined by both spin-lattice and cross-relaxation 
processes. The dynamics of these processes and their 
effect on each other have been insufficiently studied, 
especially on the theoretical level. 

In the present paper, relaxation processes in inhomo
geneously broadened EPR lines are studied experi
mentally and theoretically. Experimental data are given 
for Nd3+ ions in crystals of fluoroapatite Cas( P04)3F; 
in particular, the phenomenon of quenching of the 
cross-relaxation within an inhomogeneously broadened 
line[loJ is considered. 

2. THEORY 

An inhomogeneous ly broadened line is an aggregate 
of a large number of narrow spectral components 
("spin packets,[ 11) with a greater or lesser degree of 
overlap between them. As is well known, by saturating 
such lines it is possible to ''burn out a hole" in them; 
the dynamics of the generation of the "hole" are de
termined essentially both by spin-lattice relaxation 
and by cross-relaxation between different spin packets. 
On the basis of the kinetic equations for the popula
tions, we shall study the basic relationships governing 
these processes and shall give some estimates of the 
form of the burnt-out "hole" for the case of appreci
able inhomogeneous broadening of the EPR lines. 

The Basic Equation 

An inhomogeneously broadened line can be repre
sented in the form of the system of levels shown in 
Fig. 1 (wo is the frequency of an electron transition 
and corresponds to the center of the line). The splitting 
:liw 0 is caused, e.g., by the internal crystal field, and 
the broadening t:;.w can be due to very different 
causesC 1l. In addition, it is assumed that dipolar inter
actions are present in the system, leading to homogene
ous broadening t:;.w' << t:;.w of the components and to 
cross-relaxation processes (between different spin 
packets) within the EPR line. 

We shall assume that only the electron transitions 
of frequency w1 shown in Fig. 1 are allowed in the 
system. In the case of inhomogeneous broadening due 
to interaction with the nearest magnetic nuclei, this 
assumption means that the probabilities of transitions 
with simultaneous reorientation of nuclear spins are 
small. (Exactly this case is realized in the inhomo
geneously broadened lines of Nd3•: Cas( P04hF in the 
experiments described below.) 

The linearized equation for the population differ
ences t:;.ni of the i-th pair of levels has the formC 11' 12l 

d/:J.n; 1 (A A ~ 1 -=-- JJn;-unP)+ w;; (N;!:J.n;-N;I:!.n;), 
dt T, 

(1) 
j=Fi 

where w~. is the probability of cross-relaxation be
tween th~J i-th and j-th pairs of levels, T 1 is the spin
lattice relaxation (SLR) time, which we shall assume 
to be the same for all the components, and Ni is the 
total population of the i-th pair of levels. 

We make the following simplifying assumptions. 
1) The intensity of an inhomogeneous line is con

stant over its width t:;.w: Ni = N. Computation of the 

FIG. 1. Level scheme of an in
homogeneously broadened EPR 
line. Wavy lines denote spin-lattice 
transitions and straight lines denote 
transitions induced by the high-fre
quency field. 
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shape of the line in the first approximation reduces to 
superimposing "holes" on a function of this shape. 
For the limits of applicability of this assumption, see 
Remark 1 (at the end of this section). 

2) liwo « kT; t:..w « Wo. 

Using 1) and 2), we can write t:..ni = t:..n°, where 
t:..n~ is the equilibrium population difference. 

3) The number of spin packets is so large that 
their distribution can be considered to be continuous. 

With these assumptions, introducing the coordinate 
x = w - w0 to define the position of a given spin packet 
in the spectrum, and putting w = Nw' and u(x) 
= t:..n(x) - t:..n°, we transform Eq. (1) to the form 

au(x,t)=--1-u(x,t)+ J w(x-x')[u(x',t)-u(x,t)]dx'. (2) 
at T1 "'"' 

We shall assume (see, e.g.,Cl21) that the function w(x) 
falls off over intervals t:..x0 such that in all cases 
t:..x0 « t:..w. The integral in (2) can be extended to in
finite limits. We put .. 

1/Tz= J w(x)dx 

( T~ is a certain parameter characterizing the cross
relaxation) and rewrite (2) in the final form: 

au(x,t) ( 1 1 ) J .. 
--at-=- T1 +T; u(x,t)+ -oow(x-x')u(x',t)dx'. (3) 

Fourier-transforming this equation .. 
f{y)={2n)-''• J e-tvzj(x)'dx, 

we obtain 
au(y, t) ( 1 1 - ) _ --=- -+--l'2nw{y) u(y,t) 

at T1 T,.. 
(4) 

If the initial spectral distribution u(x, O) of the 
population differences is given (this has the form of a 
"hole" by the time the saturating pulse ends), then the 
solution of (4) will be 

{ [ 1 1 - ]} u(y,t)= u(y,O)exp -t 1\"+T;"-l'2nw(y) , (5) 

and for the function u(x, t) we obtain the expression 
1 1 1 .. 

u{x,t)=--=.exp{- t [-+- ]} · Jetvzu{y,O)exp{y2nw(y)t}dy. 
f2n T1 Tz 

-oo (6) 

The spectral shape of the spin packets (and, conse
quently, the form of the function w(x), which is de
fined by the integral of their overlap) has been insuf
ficiently studied. Usually we have the opportunity of 
calculating only the lower moments of these functions, 
and for the lineshape we take either a Gaussian curve 
with the calculated second moment or some other 
simple distribution. Experimental lineshapes usually 
have a narrower central part and enhanced wings com
pared with the corresponding Gaussian curve; there 
have, therefore, been repeated attempts to describe 
experimentallineshapes by other functions. Below we 
shall consider some of the methods of assigning 
u(x, O) and w(x). Formula (6) provides a possibility 
of calculating the relaxation curve, if the form of the 
function w(x) is known, and then a comparison with 
the experimental curve permits us to find the parame
ter T~. In all real cases, the function w(x), like its 

Fourier transform, will be bell-shaped, and the method 
of steepest descents often turns out to be applicable 
for estimating the asymptotic behavior of u(x, t) as 
t/T~- oo, Thus, if dw(y)/dyiy=o = 0 and 
d\V(y)/dy 2 j y=o= k ~ 0, then, for t » T~, 

e-m·, 
u(x,t)~ __:__ ii{O,O)Il'2nTzkl-'"· (7) 

l't/Tz 

Of special theoretical interest is the determination 
of w(x) from the experimentally observable functions 
u(x, t). That such a determination is possible follows 
from formula (5), which can be rewritten in the form 

w(y)=......!... (.!.In[u{y, t)/il(y, O)l+__!,+-1-). 
l'2n t T1 Tz 

Fourier-transforming the experimental functions 
u(x, t) numerically, we can obtain w(y) and then 
w(x). It is necessary to bear in II,lind that u(y, t) 
contains a factor of the form e-t; T1 , so that, effec
tively, the time T 1 does not occur in (8). 

Solution of the Equation in Specific Cases 

1. Let a 
w(x-x')= 2T,.. exv {-alx-x'l}, 

u{x,O) =-8n'exp{-avlxl}. 

(8) 

(9) 

The quantity a is essentially determined by the second 
moment M2 Rj 2/ a 2 of the line formed by the mutual 
overlap of two spin packets; in those cases in which the 
shape of the "hole" at the moment the saturating pulse 
ends is determined only by spin-lattice and cross-re
laxation processes, the quantity 11 Rj (1 + TJT~t112 

(see below), and in real cases 11 « 1. With the initial 
conditions (9), formula (6) gives the following result: 

u(x,t)- 8 n°J .. e>vz av exp {-t [-1-+-y-2--1-]} dy. (10) 
n -~ a.2v2+y2 Tl a2+y2 T,.. 

Since 0 ::s y2/(y2 + a 2 ) ::s 1, we can make for t « T2; 
the transformation 

{ y2 t } y2 t 
exp ------ ~ 1----

y2 + a2 T,.. y2+a.2 Tr. • 

after which we obtain 

u(x,t)~ -I!J.n° (t--t }(1- ve-=-v2e-'""" t ) . (lla) 
T1 1-v2 Tr. 

Formula (7) gives the asymptotic form 

u(x,t)~- . 8 n° exp{--t-}· 
l'nt/Tz T1 

(llb) 

It is clear from the latter formula, in particular, that 
the relaxation curve has an essentially non- exponential 
character even fort>> T1 • 

If 11 « 1 (e.g., T1 » T~), the integral (10) permits 
an estimate of a completely different kind. We note 
that, in this case, u( y, t) falls off with y considerably 
faster than a 2/ ( a 2 + y2 ). The essential contribution 
to the integral is made by y ::s a11; then, however, 
y «a and exp{- [yr (a 2 + y2 )] t/T~} 
Rj{ -[y}'a 2 ]t/T~}. The error in this estimate de
creases exponentially with increase of the ratio t/~. 
After calculations we obtain the expression 

8no { [ 1 v2 ]} u{x,t)=--exp -t --- · 
2 T 1 Tr. 
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x[exp {-avJxl} Erfc ( 2vt/T-r.- aJxJ ) 
2"'(t/T, 

+ exp {av JxJ} Eric { 2vt/T-r. +a JxJ ) ] . (12) 
21t/T-r. 

For t =0, this function becomes equal to u(x, 0), in 
complete accordance with (9 ); as t - oo, the asymp
totic form is equivalent to (llb). In spite of the ap
parent complexity of expression (12), it provides good 
opportunities for a comparison with an experimental 
curve of the part of the relaxation process when T~ 
< t;;:; Th since the error function Erf(s) is tabulated 
in detail. 

2. We shall examine the case of Gaussian curves 
a 1 

w(x)=-=-- exp{- a2z2}, (13) 
l'n T-r. 

u(x, 0) =- -.1-n' exp{-v'a'x'} = -.~n' exp{-fl'x'}. 

For this case we easily obtain 

u(x,t) =- ll__n' exp [-t {-1 +-1 )] J e'••exp{ -4} 
2"J':rofl T, T, -~ 4fl -

xexp{;-r.e-u't4<>'}dy; (14) 

u(x,t)~ -an°( 1- ;
1 
){ 1- ;., )[ exp {-fl2x2} 

+ t a exp{- a2f12z2 }]. t~Tr.; (15a) 
Tr. "J'a2 + 112 a2 + 112 

f'inO { r 1 1 t ]-I ~2} u(x,t)~ -~~exp{-t/Tt}exp -~lp2 +~z;;- ~ 

( 1 1 t )-'I• 
X fii+~ T-r. ' fl~a. (15b) 

The last formula describes the relaxation process 
especially clearly. Since v- [ 1 + T1/T2;r112, it is 
clear, in particular, that we should expect a stronger 
temperature dependence of the relaxation curve than 
in the case of pure spin-lattice relaxation. 

3. Let 

w(x) (16) 

Then 

u(x, t)=- Ano exp{- t {~+~)}"'J eiuxe-IYitP ·exp{.!__e-IYito:}_dy. 
2fl Tt Tr. T-r. 

• -oo (17) 

In this case, the method of steepest descents is inap
plicable. However, by replacing the variable in the 
integral, we can obtain the following results (using the 
properties of the confluent hyper geometric function): 

u(O t)=- anO(J> (11 +~ · --t-) e-t/T,. 
' ' ~ ' TE ' (18) 

u(O,t)~ -ano(1--t-)(1--11--1-). t~T-r.; (19a) 
Tt fl+aTr. 

a T"[ a-fiTz] t u(O,t) ~- Anofle-ttT,_t 1 +-~~--t- ' y;;_-+oo. (19b) 

4. We shall consider the case of quenching of the 
cross-relaxation within the line[loJ. If the whole in
homogeneously broadened EPR line is subjected to 
saturation, the corresponding initial distribution must 
be taken in the form 

u(x, 0) = -1\n', u(y, 0) = -l'2nAn'6(y) (20) 

(o(y) is the Dirac-delta-function); from (6) we obtain 

u(x, t) = -An'e-'"', (21) 

regardless of the form of the function w(x). The fact 
that, in this case, experiment actually gives a relaxa
tion curve with a good exponential shape indicates, in 
particular, that the existing true dependence of T1 on 
x can be either neglected or, in any case, only taken 
into account parametrically (the change of T1(x) over 
the width Aw of the inhomogeneous line is found to be 
negligible). 

Estimate of the Shape of the "Burned-out Hole" 

Our problem now will be to justify the initial condi
tions, used in the previous paragraphs, for the relaxa
tion process. We shall consider a kinetic equation, 
analogous to (3) but during the period of action of the 
saturating pulse: 

iJu(x, t) = __ 1_u(x, t) +J w(x- x') [u(x', t)- u(x, t)]dx' 
iJt T, 

- 2p(x)[u(x, t)+ ~n°], (22) 

where p( x) is the probability density for induced 
transitions. In cases where it can be assumed that 
u(x, t) decreases with x appreciably more slowly than 
p( x) (more correctly, when the overall steepness of 
the decay is determined by the function p(x)), the last 
term in (22) can be rewritten in the form -2p(x)[u(O,t) 
+ An°]. If we are considering a monochromatic 
saturating pulse, this replacement is always admissible, 
inasmuch as the spreading apart of u(x, t) as a result 
of cross-relaxation gives this function a certain finite 
slope even at very small t. Taking this into account, 
we Fourier-transform Eq. (22): 

iJu(y, t) = -[.!....+~-12nw(y)] u(y, t)- 2p(y) [ii(O, t)+ An°]. 
iJt Tt TE (23) 

With the initial conditions u(x, 0) = 0, the solution of 
this equation has the form (essentially this is again an 
integral equation) 

u(y,t)=-2p(y)exp{-t[T~ +~: -Y2nw(y)]} 

t 

X J dt[u(O, t) + An°]exp {t [-1-+-1--l'2nw(y)]}. (24) 
0 Tt TE 

The following equation is obtained for u(O, t): 

1 .. i 1 -
u(O,t)=-= J dy [ -2ji(y)exp{- t [-+--l'2nw(y) ]} 

"J'2:n; -oo Tt T>: 

t 1 1 -
X[dtexp{t[r;-+T>: -12nw(y) ]}[u(O,t)+~n°J]. (25) 

We shall calculate the stationary form of the curve 
u(x, t-oo). For this we put An(O, t-oo) =bAn°, then 
u(O, t-oo)= -An°(1 -b). Here b = 1/(1 + Seff), and 
Seff is the effective saturation factor. For p(x), we 
take the o-shaped function p(x) =ph e-h2X 2/Tif (if 
h -oo, p(x)- o(x)) and let w(x) = (a/2Tl;)-ad xJ. We 
find u(y, t-oo): 

_ 2pMnO { y2 } a2 + y2 
u(y,t-+oo)=--=--exp -- T1v2, 

l'2n 4h2 v2a2 + y2 

where v 2 = ( 1 + T 1/T~t1. For the function u(x, t)stat, 
we obtain the following estimate: 

(26) 

It is clear from this last formula that u(x, t)stat falls 
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off at distances of the order 01. -l .J 1 + T d TI;, and this 
quantity can be used to characterize the half-width of 
the ''hole" burned out as the result of the action of a 
long saturating pulse. The estimates given are, of 
course, valid only for the case when the shape of the 
"hole" is determined only by spin-lattice relaxation 
and cross-relaxation processes. 

Remark 1. In Eq. (1) we put Ani = Ani/N. Then 
Eq. (3) will take the form 

8u'(x,t) 1 J.., 
--8-t -= -""T;"u'(x, t)+ N(x')~'(x- x') [u'(x',t)- u'(x,t)]dx'. - ~) 

Hence it can be seen that in those cases when N( x) 
changes negligibly over intervals Ax0 (Ax0 character
izes, as above, the half-width of the function w(x)), the 
computation of the lineshape reduces to superposing 
the function N( x) describing this shape on the function 
of the spectral "hole" 

u(x, t) = N(x)u'(x, t), (28) 

Here all the formulae given above for u'(x, t) are 
validu. 

Remark 2. It is also possible within the framework 
of the proposed theory to make estimates of the "hole" 
shape for other than the stationary case, provided that 
a physically reasonable function for u(O, t) can be 
assigned a priori (e.g. in the form u(O, t) 
= -An°( 1 - b)( 1 - e-rt) or with allowance for cross
relaxation processes). However, the expressions ob
tained in this way are very cumbersome and for such 
estimates it is better to use numerical methods, based 
on formula (24). 

3. EXPERIMENT 

An investigation of the electron paramagnetic reso
nance of Nd3+ in monocrystals of fluoroapatite (FAP) 
Cas( P04)sF was carried out at a frequency w0 /21T 
= 9430 MHz. The EPR spectrum of Nd3+ in 
Cas( P04 )sF[sl consists of three lines, corresponding to 
three magnetically-inequivalent complexes. The strong 
anisotropy of the spectrum ( gu = 6.02 ± 0.02, gl = 0.18 
± 0.02) leads to significant inhomogeneous line-broad
ening close to the perpendicular orientations ( () = 80°). 
The Nd3+ EPR lines in FAP are thus a very suitable 
object for the study of relaxation processes in inhomo
geneously broadened lines, and correspond well to the 
mathematical model treated in the theoretical part. 

The paramagnetic relaxation was studied on a super
heterodyne spectroscope in the temperature region 
1.7-14°K, both by the usual method of pulse satura
tion[uJ (of the center of the line) and in conditions of 
quenching of the cross-relaxation (on saturation of the 
whole inhomogeneous line). Thus latter was attained by 
a rapid magnetic sweep of the line during the satura
tionr101. 

It was found that the relaxation curves obtained by 
the usual pulse saturation method are not described by 
a single-exponential law for all durations Ts of the 
saturating pulse (right up to TS > T 1 ); the shape of 
these curves depends on Ts (see Fig. 2, lower curve). 

l)The quantity Tl: depends parametrically on x: Tl:(x) = 

Tl:N(O)/N(x). 

FIG. 2. Quenching of the cros~rrelaxation in the inhomogeneously 
broadened EPR line ofNd3 + in Ca5 (P04 hF. The lower relaxation 
curve was obtained bt the usual pulse saturation method and the up
per curve in conditions of quenching of the cross-relaxation. The con
centration ofNd3 +was 0.15 at.%, and T = 4.2°K. 

FIG. 3. Temperature depen
dence of the relaxation rate of Nd3 + 
in Ca5 (P04 h F. Curve 1 was ob- 1//2 

tained by the usual pulse saturation 
method, and curve 2 in conditions 
of quenching of the cross-relaxation. , 
The concentration ofNd3+ was 0.68 til 

at.%. 

1,/l 

In most cases it was found that the relaxation function 
can be represented with satisfactory precision in the 
form of a sum of two exponentials (for the technique 
for treating the relaxation curves, seel 11l). The char
acteristic times T 1 and T2 of the rapid and slow ex
ponentials respectively display dependence on tempera
ture. For a sample with concentration 0.68 at.% Nd3+, 
the temperature dependence of T2 follows the law r;/ 
= 0.21 T2 + 5.2 x 10-7 T9 (Figs. 3, curve 1). Analogous 
dependences have been obtained for samples with other 
Nd3+ concentrations£81. 

We must note that the dependence T2 1 ~ T2 found in 
the region of temperature from 1. 7° to ~ 4 o is appar
ently not related to the phonon-heating effectl13l. Evi
dence for this is provided by the fact that the measured 
relaxation times are not affected by direct contact of 
the sample with liquid helium, and also by the relatively 
small concentrations of Nd3+ in the sample and the 
actual form of the concentration dependencel8l, 

The anomalous temperature dependence of the char
acteristic relaxation times can be explained on the 
basis of the theory given above; it is related to the 
essentially non-exponential character of the relaxation 
and to the fact that the initial form of the "hole" is 
largely determined by the relation between the times 
T1 and TI; (see e.g., the formulae (15) et seq.). Ap
proximating the relaxation curve by exponentials leads 
to distortion of the temperature dependence and to ap
preciable errors in the determination of the time T 1 

by the usual pulse saturation method. 
For the correct determination of the spin-lattice 

relaxation times and an elucidation of the true charac-
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ter of the temperature dependence, we carried out ex
periments in conditions of quenching of the cross-re
laxation within the inhomogeneous line. 

In Fig. 2 are shown oscillographs of the relaxation 
processes in a sample with a concentration of 0.15 
at.%Nd 3+ at 4.2°K. (The two curves were obtained con
secutively on the screen of a long-persistence oscillo
scope and, for clear representation, were photographed 
on one frame.) The lower curve corresponds to the 
usual pulse saturation method and can be approximated 
by a sum of two exponentials with characteristic times 
T1 = 83 msec and T2 = 420 msec. The upper curve was 
obtained in conditions of quenching of the cross relaxa
tion and is a good exponential with time T 1 = 710 msec. 
Thus, the usual pulse saturation method gives a time 
constant that differs by a factor greater than 1.5 from 
the spin-lattice relaxation time (T1 = 1.7T2). 

The study of spin-lattice relaxation for a sample 
with concentration 0.68 at.% Nd3+ in conditions of 
quenching of the cross relaxation leads, in the region 
from 1. 7° to ~ 4°K, to a temperature dependence T11 

= 0.29T, which is characteristic for the direct process, 
in contrast to the anomalous temperature dependence 
T21 ~ T2 obtained by the usual pulse saturation method. 
We note that the conditions for obtaining the effect of 
quenching of the cross relaxation within the line de
teriorate with increase of the relaxation rate: these 
conditions require that the sweep of the line during the 
action of the saturating pulse be rapid compared with 
the rate of the relaxation processes. Therefore, the 
true temperature dependence in the region T > 4°K is 
still not completely clear. 

We have also studied the dynamics of the "hole" 
burnt out in an inhomogeneous ly broadened line. The 
experiment was set up as follows. 

The magnitude of the constant magnetic field corre
sponding to the centre of the EPR line was determined 
and a saturating UHF pulse of duration Ts was applied. 
An angular magnetic sweep of the line ( cf. r to]) was 
switched on by the trailing edge of the pulse, and the 
change in time of the EPR lineshape was recorded on 
the screen of an oscilloscope. In Fig. 4 is shown the 
oscillogram of the recovery of the line for a sample 
with concentration 0.68 at.%Nd3+ at 4.2°K. The parallel 
shift of the curves is due to a reduction in the constant 
component of the signal by means of an input capacitance 
in the oscilloscope. (The horizontal straight line corre
sponds to the absence of scanning in the period before 
the saturating pulse was switching on). The duration of 
the saturating pulse was 7 msec and the time interval 
between neighboring curves was 10 msec. 

4. DISCUSSION OF THE RESULTS 

Analysis of the formulae (6) and (7) shows that taking 
account simultaneously of spin-lattice and cross-re
laxation results in the relaxation curves having an es
sentially non-exponential character. Processes of 
population recovery in conditions of quenching of the 
cross relaxation within the line are an exception. In 
those cases when a large number of spin packets take 
part in the cross-relaxation process, the redistribution 
of energy within the inhomogeneous ly broadened line 
can be characterized by the parameter 11;. This 

FIG. 4. Oscillograms of the recovery process in the inhomogene
ously broadened EPR line of Nd 3+ in Ca5 (P04 hF. The concentration 
of Nd3+ was 0.68 at.%, and T = 4.2°K. 

w(z)·fO-; sec"1 

10 

0 4 8 X 

FIG. 5. Graph of the function w(x) for a sample with concentration 
0.68 at.% Nd3+. For comparison the form of the inhomogeneous EPR 
line is given, on the same scale along the x-axis and in arbitrary units 
along the ordinate axis. 

L 

t,Z 

FIG. 6. Experimental plots of L =In [u(y, 0)/u(y, t)] against t for 
different y for a sample with concentration 0.68 at.% Nd 3 +. The scat
ter in the points for y;;;. 1.6 is associated with the imprecise determi
nation of the wings of the inhomogeneous line and of the form of the 
"hole" from Fig. 4. 

parameter is determined by comparing the experimental 
relaxation curves with the functions (11), (12), (15) and 
(19) (the time T 1 occurring in these formulae is deter
mined experimentally in conditions of quenching of the 
cross relaxation). 

The function w(x) characterizes more fully the 
processes within an inhomogeneous line; in addition, 
this function contains information about the shape of 
the spin packets and their overlap. The theory given 
above enables us to find the function w(x) at consecu
tive moments of time from the observed forms of the 
"holes," and to compare it with the results of micro
scopic calculation. 

On the basis of the experimental data on the dynam
ics of the ''burnt-out hole" (see Fig. 4), we have deter
mined the function w(x) for a FAP sample with con
centration 0.68 at.% Nd3+ by means of a Fourier trans
formation performed numerically; the value T~ = 2.5 
1.0 msec was obtained. The error is associated with 
an imperfection in the experimental technique used to 
observe the dynamics of the "hole," which leads to 
distortions in the wings of the inhomogeneous bulk of 
the spectrum. We hope in the future to improve signif
icantly the accuracy of the determination of ~ and of 
the construction of w(x). This function has been deter-
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mined from (8) for different moments of time. In Fig. 
5 an average result is given. 

The extent of the deviation from the averaged func
tion depicted in the Figure of the w(x) which we have 
constructed can be judged from Fig. 6, in which are 
shown values of the function L = ln [u(y, 0)/u(y, t)] 
calculated from the experimental data. According to 
(8), if the variable y is fixed, this function must be 
linear in t. We see that, on the whole, the theory 
given above corresponds well with the experimental 
results, although the error, especially in the wings of 
the function w( y ), is fairly large. Since the value of 
T~ is actually determined from the wings of w(y), an 
exact determination of this parameter is difficult. 

The quantity T~ was also obtained by comparing 
the initial part of the relaxation curve for the same 
sample (on saturation by a pulse of duration Ts > T 1) 

with the functions (11a) and (19a). We note, incidentally, 
that the initial part of the relaxation curve is practically 
independent of the form of the function w(x): the ex
pansions (lla) and (19a) and those analogous to them, 
are equivalent. We have obtained T~ = 3.8 ± 0.5 msec, 
which agrees well with the value given above for this 
parameter. (To make the above comparison possible, 
the limiting slope of the relaxation curve as t - 0 was 
determined). 

As has already been mentioned, the function w(x) 
carries information on the shape of the spin packets. 
Since the distribution of the latter is assumed to be 
continuous, the time for establishing equilibrium within 
a spectral component can be established from the width 
of this function; however, analysis is required for such 
an estimate to be possible. 

We see from Fig. 5 that the assumption of small 
variation in the intensity of the inhomogeneous line 
over spectral distances of the order of ax0 is satis
factory in the central part of the spectrum, and, there
fore, the most accurate results of a comparison with 
the functions (11) and (12) and with the functions ana
logous to them can be obtained by studying the relaxa
tion curves for the central spin packets. In all calcu
lations, we should, of course, bear Remark 1 in mind. 

In the preceding treatment the function w( x) was 
assumed, essentially, to be averaged over the spatial 
distribution of the spins. It is clear that such a treat
ment is admissible in those cases when there is no 
correlation between the spatial and spectral distances. 
Analysis of relaxation processes with allowance for 
the spatial distribution of the paramagnetic impurities 
is also, evidently, of considerable theoretical interest. 

APPENDIX 

Determination of the Function w(x) in the Case of an 
Arbitrarily Broad "Hole" 

We shall examine in more detail the technique for 
calculating w(x). If we take account of Remark 1, 
formula (8) is, strictly speaking, valid when the follow
ing two assumptions are satisfied with sufficient ac
curacy: 

1) the function N( x) varies insignificantly over 
spectral intervals ax0 in which the function w(x - x') 
differs appreciably from zero; 

2) one can neglect the variation of the function N(x) 
over the width of the "hole." 

The second condition is usually much stronger. 
We denote by a(y, t) and b(y, t) the Fourier trans

forms of the functions u'(x, t) and u'(x, t)N(x) re
spectively. If we keep only the first assumption and 
Fourier-transform Eq. (27), we obtain 

lJa (y, t) =- _!_a(y, t)- Tf b (y, t) + y2n w(y) b (y, t). 
lJt T1 :o: 

From this equation we can find the function w(y), since 
a(y, t) and b(y, t) can be determined from the experi
mental data. We write: 

- 1 [ 1 I w(y)=-;- a(y,t)-a(y,O)+-J a(y,t')dt~ 
l'2n TI o 

1 I t 

+r"~b(y,t')dt'](Ib(y,t')dt'(. (29) 

which is in a form convenient for numerical calcula
tions. For N(x) =canst., formula (29) reduces to the 
results (8) obtained earlier. 

The authors are grateful to L. V. Keldysh and E. A. 
Shapoval for useful discussion and advice, and also to 
V. S. Borodacheva and V. K. Konyukhov for assistance 
in performing the computer calculations. 
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