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An experimental and theoretical investigation of light scattering near the critical point of a pure mate
rial with allowance for the gravitational effect has been carried out. An analysis of experimental data 
on critical opalescence inn-pentane has been used to show that the critical indices of isothermal com
pressibility are y± = 1.2 ± 0.1. A method is put forward for the determination of the index o of the 
critical isothermal, whose value has been found to be 4.9 ± 0.3. The scaling method is used to deter
mine the density of the material and the scattered-light intensity in the immediate neighborhood of the 
critical point as functions of height. 

IN the near-critical state of single-component systems, 
which is characterized by an unbounded increase in the 
isothermal compressibility as one approaches the liq
uid-vapor critical point, gravitational forces lead to a 
substantial spatial inhomogeneity of microscopic prop
erties (fluctuations in various parameters, the corre
sponding correlation radii, and so on) as well as mac
roscopic parameters (density, scattered ability, and so 
on) of the medium. The most rapid variation in the dis
tribution of these properties occurs in the thin layer 
which coincides with the level of the meniscus in the 
subcritical region, where the approach to the critical 
state is possible both in temperature and in density. 

The gravitational field was investigated inc 2 - 5 J with
in the framework of the classical theory.c 1J There
sults reported in these papers have been used to analyze 
the scattering of light by density fluctuations near the 
critical point of a pure material in the Rayleigh-Ein
stein approximation.c 5 - 7 l The density variation and the 
variation of the scattered-light intensity near the criti
cal point predicted by the theory have been qualitatively 
confirmed by an experimental study of the gravitational 
effect and light scattering performed at the Kiev Univer
sity.c4' 5 ' 7 - 9 l We note that the use of the gravitational ef
fect in measurements of the distribution of scattered in
tensity with height should enable us to approach the 
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critical point in pressure much more closely than by 
other methods (in fact, closer by two orders of magni
tude). 

It must be noted, however, that a consistent analysis 
of critical opalescence with allowance for the gravita
tional effect in the immediate neighborhood of the criti
cal point cannot be based on the classical theory of crit
ical phenomena, which does not agree with model calcu
lations and the e~erimental results obtained near the 
critical point.c 10 - l 

Moreover, owing to the recent development of scaling 
methods,C15 - 19 l it has become possible to deduce correct 
predictions for the thermodynamic properties of matter 
at the critical point and in its immediate neighborhood. 

These methods are used in the present paper in a 
theoretical and experimental study of the gravitational 
effect and the scattering of light in the immediate neigh
borhood of the critical point of a pure material. 

DENSITY DISTRIBUTION IN THE IMMEDIATE 
NEIGHBORHOOD OF THE CRITICAL POINT 

We shall use the theory of scaling transformations 
to find the variation of density (vvlume) with height un
der the influence of the gravitational field. If we pro
ceed by analogy with the classical theory to calculate 
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the gravitational effect we obtain the following equation 
for the variation of volume with height and temperature: 

a 6 
v6 + 6-t>v=-h b h . 

( 1) 

This expression is obtained by integrating the equa
tion for the hydrostatic pressure dp = -dh in terms of 
the dimensionless variables defined in l3l: 

V-Vc 
V=---, 

Vc 

T-Tc 
t=---, 

Tc 

where Pc, Vc, Tc, and Pc are, respectively, the criti
cal pressure, volume, temperature, and density in the 
system, and H is the height measured from the level 
with maximum density gradient. It is assumed in the 
derivation that 

- (ap I av)r =at'+ bv'-', (2) 

which is the analog of the expression for (ap/av) in the 
classical theory.[l 1 This means that the coefficients a 
and b do not change during the transition from the 
single-phase region (t > O) to the two-phase region 
(t < 0). The indices y and li are the critical indices in 
the temperature dependence of the isothermal compres
sibility (J3T ~ t exp -y for v = 0) and are used to de
scribe the shape of the critical isothermal (p ~ v exp li) 
for t = 0. 

If we solve Eq. (1) by the method of successive ap
proximations we obtain the following expressions: 

a) when t ~ 0 

( 6 ) 1/6 a j ( 6 ) P-21/~ 
v(h,t)= b/h/ signh-bjtj>signt b/h/ signh, (3) 

b) when h ~ 0 
/hi . 

v(h,t)=~stgnh for t>O, (4) 

a '1<'-'1 /h/ 
v(h,t)=[(o--jti') + II ]signh for t<O. (5) 

b a(b -1) t ' 

Analysis of Eqs. (3)-(5) shows that by studying the 
density distribution 

~p(h,t)= p(h,t)- Pc - v(h,t) [1 +v(h,t)]-l 
Pc 

in the immediate neighborhood of the critical point we 
can directly determine the critical index li in the re
gion where It lv/ I hI exp (li- 2)/li << 1, and the critical 
exponents y and J3 = y /(li- 1) ( J3 is the index of the co
existence curve) in the region where /h///t!Y << 1. 

We note that in the classical case, when y = 1 and 
li = 3, whereas a= -(a 2p/atav)c and b = -%(a 3p/av3)c, 
the formulas given by Eqs. (3)-(5) become identical with 
the expressions obtained earlier for v(h, t) and A 
Ap(h, t).l 2- 5 1 

CRITICAL OPALESCENCE WITH ALLOWANCE FOR 
THE GRAVITATION EFFECT 

In the theory of scaling transformations the scattered
light intensity is given by 

I 

where IRE is the intensity obtained in the Rayleigh
Einstein approximation, R is the correlation radius, 

(6) 

k = 4rr/~) sin (J/2), and T/ is the critical index of the 
correlation function. 

Equation (6) contains two quantities that vary in a 
singular fashion as we approach the critical point, 
namely, 

1) isothermal compressibility 
1 

~T~ at>+b~pO-l. (7) 

2) correlation radius which, when the gravitational 
effect is taken into account, is naturally assumed to de
pend not only on t but also on Ap, i.e., 

(~p=O) 

(t = 0), 
( 8) 

where v is the critical index in the temperature depend
ence of the correlation radius, and ~ is the critical in
dex which must be introduced to characterize the ap
proach of the system to the critical density along the 
critical isothermal. 

Let us now establish the relation between the critical 
index ~ and the parameters of the theory of scaling 
transformations. The general solution of the well-known 
functional equation for the correlation function 
G(R, t, h)l 17 ' 181 is 

G(R, t, h)= jhj'<'-•il'g(R/hl''', h/ /t/'1•), (9) 

where d is the dimensionality of the space, and x and 
y are the parameters of the theory of scaling transfor
mations. Hence, rc (0, /hi)~ I hi exp 1/x. On the other 
hand, if we use Eqs. (3) and (8), we find that rc(O, /hi) 
~/hi exp -~/li. Hence, if we use the expression li 
= x/(d- x) we obtain 

£=1/(d-x). (10) 

Let us now consider the scattered intensity as we 
approach the critical height along the critical isother
mal. From Eqs. (3), (6), (7), and (8) we have 

!(0, jhl) ~ jhj[('-,)H+tJt', (11) 

where, in view of the above relation between li and ~ 
and the parameter x, and the well-known formula T/ 
= d + 2(1- x), the exponent in Eq. (11) must be equal to 
zero. 

A similar situation obtains at the h = 0 level: 

(12) 

Using the well-known formulas v = 1/y and y 
= (2x- d)/y, we can readily verify that the exponent in 
Eq. (12) is also zero. 

Hence, we conclude that the scattered intensity at 
the critical point remains finite. In fact, the same rela
tionships between the critical indices can be obtained 
from the physical hypothesis 

0 < liml(h, t) < oo. 
t~o 

h~o 

(13) 

Table I gives the values of ~ = (li- 1)(2 -17)- 1 and of 
the ratio ~/li, which characterizes the height dependence 
of the correlation radius for density fluctuations along 
the critical isothermal (rc(O, /hi)~ /hi exp -Uii) for 
different theories of critical phenomena. 

We note that, according to l 19J, the above relation
ships between the indices remain valid for scattering of 
arbitrary multiplicity. 
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Table I 

Theory 

Oassical theory and Omstein
Zernicke approximation 

Two-dimensional Ising model 
Tluee-dimensional Ising model 

I 
Values of critical 

exponents 

--e-· I 1\f& 

1/3 

8 8/15 
2.16±0.09 0.42±0.03 

0 0 
0 0 
0 

FIG. l. Extinction coefficient T of 
n-pentane as a function of height for A = 
546 nm and t = 6 X 10-5 • 

DETERMINATION OF CRITICAL INDICES BY LIGHT 
SCATTERING IN n-PENTANE 

The apparatus described earlier in [51 1> was used to 
investigate the height dependence of the scattering inten
sity inn-pentane at 25 different temperatures above and 
below the critical value (Table II summarizes some of 
these results). The height dependence of the scattered
light intensity is also given in. [ 51 • The approach of the 
system to the critical state, i.e., the difference T- Tc, 
was measured with platinum resistance thermometers 
to within 0.1 o. The anomalously high density gradients 
near the critical point complicated the visual determina
tion of the temperature at which the meniscus disap
peared. The critical temperature was therefore taken 
to be the temperature at which the scattering intensity 
in the region of the meniscus was a maximum. 

Our measurements have shown that the critical tem
perature of n-pentane is 196.82 o. The critical density 
of n-pentane was measured by Toepler's method and 
the microfloat method to within 0.5%, and was found to 
be Pc = 0.232 g/cm3• The refractive index was deter
mined at 20°C and was found to be n = 1.3575 for the 
yellow sodium line. 

The properties of n-pentane near the critical point 
were analyzed by using measurements of the scattered 
intensity in a layer with maximum density gradient for 
t > 0 and t < 0 at two wavelengths, namely, A.1 =436nm 
and A.2 = 546 nm. To obtain the singly-scattered inten
sity, the experimental data were corrected for the at
tenuation of the incident radiation and the effect of sec
ondary scattering. All these calculations were per
formed on a computer, using the formulas derived in 
[ 5 l • It was found that the proportion of secondary scat-

1) A detailed description of the apparatus, the working chamber, the 
method of thermostating and temperature regulation (the temperature 
was kept constant to within 0.005°), the experimental method, and the 
method used to analyze the experimental results is given in [ 5]. 

tering in the overall flux of scattered light at height 
h = 0 did not exceed 5% at A. = 546 nm throughout the 
temperature range which we investigated. This rela
tively small percentage is connected with the sharp in
homogeneity of the extinction coefficient T as a func
tion of the height H of the system (Fig. 1). 

It is clear that the maximum extinction coefficient 
is reached at h = 0, but T rapidly decreases on either 
side of this level. The overall error in the measured 
singly-scattered intensity was, on the average, 4-6%. 
The main contribution to this error was due to the un
certainty in the calculated intensity of secondary scat
tering, the uncertainty in the corrections for the attenu
ation of light in the system as a function of height, and 
the attenuation of scattered light along the path between 
the scattering volume and the lateral wall of the cham
ber, as well as the uncertainty in the photoelectric 
method of detection of the scattered light. 

The accuracy with which the scattered intensity was 
measured was insufficient to enable us to determine ex
perimentally the critical exponent 71 in Eq. (6).(numeri
cal calculations based on the three-dimensional Ising 
model give 71 R~ 0.06/ 17 ' 181 ), so that we must use the 
Ornstein-Zernicke formula for the scattered intensity 
at 90° :[6 1 

!0R-• = /Rif' + &r.'f" I k,p'l.:, (14) 

where IRE = k1 p 2 f3t is the scattered intensity given by 
the Rayleigh-Einstein formula, 

n2V (iJe) 2 
k1=lo-- - kBT 

2A.4R2 iJp T ' 

and f* is a constant representing the contribution of 
correlation effects to the scattered intensity. We note 
that the use of the assumption that 71 = 0 will lead to an 
increase in the uncertainty in the subsequent determina
tions of the critical indices using Eq. (14) in the region 
where the correlation effects are important. 

At the critical point itself the back-scattered inten
sity is known to be determined by the second term in 
Eq. (14), which corresponds to the intercept cut by 
curves 1 and 2 on the vertical axis at t = 0 (Fig. 2). The 
size of this intercept was determined by interpolation on 
a computer. 

The height dependence of the intercept at t = 0 is of 
considerable interest. It should enable us to calculate 
the index ~ which determines the correlation radius rc 
as a function of density in accordance with Eq. (8). 
However, reliable determination of this functional de
pendence encounters the following difficulties. It is 
clear from the form of the scattered-intensity isother
mal which is closest to the critical temperature (T - T c 
= 0.03"; Table II) that the scattered intensity decreases 
rapidly with even small departures from the h = 0 level. 
This behavior of I(h) is connected with the fact that for 
h * 0 the density is not equal to the critical value, and 
the compressibility falls sharply. The result is that the 
contribution of correlation effects to the scattered in
tensity is substantially reduced. For example, the con
tribution of the second term in Eq. (14) to the overall 
back-scattered intensity at h = 2 rom and T - T c 
= 0.03° is only 10-12%. On the other hand, for I hi 
< 2 rom this contribution increases and may even be
come predominant (it reaches 90% at h = 0 and the 
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Table II. Height Dependence of the Scattered Light 
Intensity in n-Pentane (A. = 546 nm) Expressed in Terms 
of Millimeters on the Scale of the Measuring Instrument 

t·l~ f-~~ 1-121-IO 1 -81 ~61-4/~:j o 1 2 1 6 16 1 8 1~0 1~211~ 
2.61 107 128 147 164 193 230 260 280 270 245 210 166 135 109 8$ 
2.25 105 126 150 174 212 255 310 328 322 284 235 182 140 108 114 
1.81 96 116 144 180 230 302 375 430 390 326 255 180 137 106 82 
1.21 86 102 132 170 244 370 480 670 500 372 253 175 126 98 78 
0.87 77 90 106 145' 199 334 620 910 670 360 235 151 118 88 72 
0.47 63 75 93 121 163 295 650 1695 780 320 202 135 107 86 67 
0,21 58 65 82 104 138 238 510 2620 590 265 175 115 92 74 62 
0.06 57 63 78 98 130 216 380 3580 530 235 167 107 86 69 57 

-0.06 58 66 78 95 122 183 320 2860 450 214 148 102 85 69 56 
-0.19 57 65 75 97 120 167 275 1350 380 200 135 94 78 63 53 
-0.49 55 63 72 86 110 146 230 640 310 173 120 90 73 60 51 
-0.76 52 59 68 78 97 121 180 375 218 140 104 78 65 55 43 
-1.12 47 53 62 73 87 110 133 208 155 108 83 

65154 
45 38 

-1.51 43 49 56 63 74 90 HO 164 125 93 73 61 51 42 36 
-1.94 38 40 47 51 59 72 84 HO 89 72 58 48 41 36 30 
-2.48 34 37 40 44 49 59 69 82 70 58 48 41 36 31 28 

r'·to~mm·• l.giRE ·...,....-
8 

-z -' 1 J ~ t-T03 

FIG. 2. Temperature dependence of the back-scattered intensity on 
the critical isochore for t > 0 (curve 1) and on the phase separation 
boundary fort< 0 (curve 2). I is the scattered intensity in millimeters 
on the scale of the measuring instrument. 

same temperature). Consequently, it is, in principle, 
possible to investigate the correlation radius as a 
function of height in a very small neighborhood of the 
critical density region. However, since the height reso
lution of our apparatus was 0.6 mm,C 51 we did not suc
ceed in establishing this dependence in any reliable 
way. To ensure reliable data the resolution would have 
to be increased by at least an order of magnitude. 

If we subtract the intercept from the total backscat
tered intensity we can isolate the Rayleigh contribution 
and then use it to investigate the compressibility on the 
critical isochore for t > 0 and on the phase-separation 
boundary for t < 0. Near the critical point the pressure 
and density (volume) of the isothermal system are func
tions of the variable h (if special measures are not 
taken to eliminate the gravitational effect). Our experi
mental method corresponds to these conditions. Ac
cordingly, 

IRE_ av = av / ap 
ap ah oh · 

Next, in view of the obvious relation op/oh = -1, we ob
tain the following relation between the scattered inten
sity and the density (volume) gradient: IRE~ -ov/oh. 
Using this, and differentiating Eqs. (4) and (5) with re
spect to h, we obtain the following expressions for the 
scattered intensity for h R~ 0: 

k,(Jc1 1 (15) 
IRE(t > 0) = ---p;-'"it'• 

I k1p 02 1 
RE(t<O)=--p;- a(ll-1)iti• (16) 

-z 

FIG. 3. Back-scattered intensity as _3 
a function of temperature plotted on 
a double logarithmic scale fort> 0 
(line l) and t < 0 (line 2). 

I 
-) 
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l.g ltl 
-3 -z 

These formulas describe the temperature dependence 
of the scattered intensity at h = 0, which corresponds 
to the critical isochore for t > 0 and the coexistence 
curve for t < 0. 

We must note that these formulas can also be ob
tained without using the gravitational effect. From the 
relationship between the scattered intensity and com
pressibility we have 

(17) 

On the critical isochol'e v = 0, which leads immediately 
to Eq. (15). Equation (16) follows by substituting in 
Eq. (17) the expression for the deviation of the volume 
(density) on the binodal v = ±(oltiYa/b) exp 1/(o- 1), 
which can be obtained in a similar way by calculating 
this quantity on the basis of the classical theoryc 1 1 but 
with (op/ov)t given approximately by Eq. (2). 

It is clear from Eqs. (15) and (16) that experimental 
data on the scattered intensity can be used to determine 
the index y which represents the temperature depend
ence of the isothermal compressibility. By plotting 
Eqs. (15) and (16) on a logarithmic scale, we find from 
the slope of the corresponding straight lines (Fig. 3) 
that y+ R~ y- = 1.2 ± 0.1 (y+ andy- are, respectively, 
the temperature indices of the isothermal compressi
bility for t > 0 and t < 0). 

Equations (15) and (16) can also be used to determine 
the critical index o: 

II=~RE(t>O) +1. (18) 
[RE(t < 0) 
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The index 0 was found from the da~1shown in Fig. 3 
using the formula log (O- 1) =log IRE (t < 0) 
-log IRE (t > 0) and was shown to be 0 = 4.9 ± 0.3. 

The above calculations of the critical indices y and 
0 show that, in the temperature range which we have 
investigated, the numerical values of these parameters 
are in agreement with the predictions of the three
dimensional Ising model. 

CONCLUSION 

We may thus conclude that light-scattering studies 
near the critical point have enabled us to determine the 
critical values of the isothermal compressibility index 
y and the critical-isothermal index 0. 

Moreover, by taking into account the influence of the 
gravitational effects on critical opalescence, it is found 
that the intensity of light scattered by density fluctua
tions depends also on the other critical indices v, TJ, 
and ~.which are introduced in the scaling theory to de
scribe the temperature dependence of the correlation 
radius, the spatial dependence of the correlation func
tion, and the dependence of the correlation radius on 
the closeness of the density to its critical value. 

Experimental studies of the gravitational effect and 
its influence on light scattering near the critical point 
are thus capable of producing essential data for the de
termination of the range of validity of the classical the
ory of critical phenomena and the additional verificatior 
of the predictions of the theory of scaling transforma
tions. 

We are grateful toM. Sh. Giterman, A. Z. Golik, 
Y. I. Shimanskii, and N. P. Krupskii for useful sugges
tions. 
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