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An analysis of the evolution of the metric in the oscillatory mode of approach to a singularity in 
homogeneous cosmological models is carried out in the asymptotic region of arbitrarily small 
times. It is shown that in this region the successive interchange of the "Kasner epochs" depends 
in each case on a single "perturbation" (in other words, the case when two types of perturbations 
are operative never arises). This permits one to carry out analytic and statistical investigations 
of the evolution of the model with a high degree of completeness. Recurrent formulas are derived 
for the oscillation periods and the amplitudes during a single era (series of Kasner epochs). 
Formulas relating successive eras are also derived. The statistical properties of alternation of 
successive eras are analyzed and statistical distribution functions are obtained for the quantities 
characterizing the process. The law governing the probability of increase of density of matter on 
approach to a singularity is found. 

IN preceding communications by two of us and V. A. 
Belinski1, we discovered an oscillatory mode of ap
proach to a singularity in time in the cosmological 
solutions of Einstein's equations r 1- 31. The particular 
cases of homogeneous Bianchi models of type IX and 
VIII were considered (the former was considered also 
by Misner[ 41 ), and arguments were advanced indicating 
that this should be precisely the character of the singu
larity in the general solution of the gravitational equa
tions. 

The present communication is devoted to a further 
study of the homogeneous models. We shall show that 
in the asymptotic limit of times t that are arbitrarily 
close to the singularity it is possible to carry out ana
lytic and statistical investigation of the evolutions of a 
model with appreciable density. 

We leave aside here the question of the possible 
connection between the parameters of this evolution 
and the time scale of a real world. It may turn out that 
the asymptotic limit lies in the region of such high 
densities of matter that the use of the existing gravita
tional theory may not be realistic. In this connection, 
however, it is appropriate to recall that although the 
physical applicability of Einstein's equations in their 
present form can be clarified under the indicated 
"singular" conditions only by a future synthesis of 
physical theories, the existing gravitational theory 
itself does not lose its logical cohesion (it does not 
lead to internal contradictions) at any density of 
matter. In other words, this theory is not limited by 
any conditions that follow from the theory itself and 
can make its application at very high densities logically 
incorrect and contradictory; the limitations can arise 
only as a result of factors that are extraneous with 
respect to the gravitational theory itself. This circum
stance makes it valid, at any rate formally, and in our 
opinion necessary, to consider the question of the 
singularities in cosmological models even within the 
framework of the existing theory. 
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1. GENERAL CHARACTER OF THE EVOLUTION OF 
THE MODEL 

Let us recall the main properties of the considered 
solution of the gravitational equations in the form 
needed for the subsequent investigation. 

The spatial metric of the homogeneous model is 
written in the form 

dJ.2 = (a"l"lp + b2m"mp + c2n"np)dx"dxP, (1.1) 

where 1, m, and n are three-dimensional reference 
vectors that are definite functions of the spatial coordi
nates. The concrete form of these functions is imma
terial. It is only important that for metrics of types IX 
and VIII the quantities 

1 1 1 
/;=-(lrotl), J.t=-v (mrotm), v=-(nrotn) (1.2) 

v v 

(where v = 1· m x n) are constant, and all the remain
ing products of the type 1 curl m, 1 curl n, ... are 
equal to zero. The numbers ~. JJ., and 11 are none 
other than the structural constants of the group of 
motions of space. For a space of type IX, all three 
coordinates have the same sign and we can put ~ = JJ. 
= 11 = 1. On the other hand, for a space of type VIII, 
one of the constants has a sign opposite to that of the 
two others; we can put ~ = -1 and JJ. = 11 = 1. The en
tire analysis that follows pertains to an equal degree 
to both models, 

The quantities a, b, and c in (1.1) are functions of 
the world synchronous time t, and determine the scales 
of the spatial distances in the directions 1, m, and n. 
The temporal evolution of the model is described in 
terms of these functions. 

The key to the understanding of the character of the 
evolution of the metric on approaching the singular 
point is the interchange of the "Kasner epochs," during 
the course of which the functions a, b, and c vary like 

(1.3) 
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where the three numbers pz, Pm, and Pn coincide with 
the numbers of any one of the triads P1o P2, p3 satisfy
ing the condition1, 

(1.4) 

These triads, arranged once and for all in a definite 
sequence p1 < p2 < p3, can be parametrized in the form 

-u u+1 u(u+,1) 
PI(u)= l +u+u2' f!2(u)= 1+u+u2' pa(u)= 1+u+u2 (1.5) 

where the parameter u runs through values in the 
region u 2: 1. On the other hand, values u < 1 can be 
reduced to the same region in accordance with the 
formulas 

PI( ~)=Pl(u), P2( :)=pa(u), Ps( ~)=p2(u). (1.6) 

The function P1(u) is always negative, and P2(u) and 
p3( u) are positive; I P1( u) I and P2C u) decrease mono
tonically, while p3( u) increases monotonically as u 
increases from 1 to co. 

When t decreases, one of the functions a, b, or c 
increases, and the two other decrease. Let, for exam
ple, 

J!' =PI (u), Pm = P2(u), Pn = p,(u), (1. 7a) 

so that the function a(t) increases and the function 
b( t) decreases with the smaller of the two positive ex
ponents. This process leads to a replacement of the 
Kasner regime with indices (1.7a) by a regime with 
exponents 

p;'=p2(u-1), Pm'=pi(u-1), Pn'=pa(u-1). (1.7b) 

The function a( t) acquires a positive exponent and be
gins to decrease, the function b(t) acquires a negative 
exponent and begins to decrease, while the functions 
c ( t) continue to decrease. 

The transition region between the interchange of 
regimes is described by the formulas 

a2 2lpdA b2=to2e2A(p,-lpdf<ch(2lpdAt), 
ch(2lpdAt) ' 

c2= c02e2"\(p,-lpd)'ch (2lpJ!At), (1.8) 
where T is a variable connected with t by the equation 
dt = abcdr, and the point T = 0 is arbitrarily chosen to 
coincide with the instant of the maximum of the function 
a( r). The asymptotic forms of these expressions as 
T - +co and T - -co correspond to the initial and 
final Kasner regimes with exponents (1.7a) and (1.7b) 
respectively. In the former 

abc= At, 't = A-1 ln t + const, (1.9a) 

and in the latter 

abc=A't, ,;=A'-'lnt+const, A'=A(1-2IpJ!). (1.9b) 

The maximum value of the function a( r) is 

(1.10) 

and it is assumed that this value is large compared 
with b 0 and c0 (more accurately, we should have a 2 
» b2, c2 ). 

1lThe law (1.3)-(1.4) is a solution of Einstein's equations for a ho
mogeneous (but anisotropic) Euclidean space (the Kasner solution-see 
[ 5], Sec. I 03), and is exact for all time. 

Further evolution with increasing function b( t) 
leads in analogous fashion to the next alternation of 
Kasner epoch, etc. The successive alternation in ac
cordance with the rule (1.7), with exchange of the nega
tive exponent between the functions a and b (i.e., be
tween the directions 1 and m), continues until the in
teger part of the initial value of u is exhausted and we 
get u < 1. The value u < 1 is transformed into u > 1 
in accordance with (1.6), and Pn becomes the smaller 
of two positive numbers ( Pn = p2 ). The next series of 
interchanges will now transfer the negative exponent 
from c to a or from c to b. At an arbitrary (irra
tional) initial value of u, the process of interchanges 
continues without limit. 

The process of evolution of the metric on approach
ing the singular point consists, consequently, of a 
successive periods (which we shall call eras), during 
each of which the distance scales oscillate along two 
spatial axes, and decrease monotonically along the 
third axis. On going from one era to another, the 
direction along which the monotonic decrease of the 
distances takes place is transferred from one axis to 
another. 

To each (s-th) era there corresponds a series of 
values of the parameter u, starting with a certain 
largest one, u~~X' and reaching the smallest one, 
umin < 1, via the values u~~x- 1, u~h- 2, ... we 
put 

(1.11) 

i.e., k(S) = [u~kl (the square brackets denote the 
integer part of a number). The number k<S) determines 
the "length" of the era, measured in terms of the num
ber of Kasner epochs it contains. For the next era 

u~'!I)= 1/x<·'), kf..s+I)=[1/x(s)j. (1.12) 

In the exact solution of the equations, the exponents 
pz, Pm• and Pn lose, of course, their literal meaning. 
We note that a certain "fuzziness" introduced by this 
circumstance in the definition of these numbers (and 
with them also of the parameter u), albeit small, makes 
it meaningless to consider some selected (say, 
rational) values of u. This is precisely why the only 
laws with any real meaning are those pertinent to the 
general case of arbitrary (irrational) values of u. 

In an infinite sequence of the series of numbers u, 
made up in accordance with the rules (1.11)-(1.12), 
there will be observed arbitrarily small (but never 
vanishing) values x<s, and accordingly arbitrary large 
lengths k<S+l). Large values of the parameter u cor
respond to Kasner exponents 

1 1 
PI~--, 

u 
P2~-, 

u 
(1.13) 

close to the values (0, 0, 1). Two exponents that are 
close to zero are by the same token close to each 
other, and therefore the laws governing the variation 
of two of functions a, b, or c are also close. If at the 
start of such a "long" era these functions at the instant 
of interchange of two Kasner epochs turn out to be 
close to each other also in absolute magnitude (or if 
such are arbitrarily specified in accordance with the 
initial conditions), then they will continue to stay close 
also during the greater part of the duration of the era; 
the evolution of the metric requires in this case a 
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special analysis, which was carried out in[ 2l, Sec. 4. 
We shall see, however, that during the process of 
spontaneous evolution in the asymptotic region of arbi
trarily small times t, such cases cease to appear: 
even in "long" eras, both oscillating functions remain 
so different in magnitude during the instants of inter
change, that the interchanges themselves will be de
scribed, as before, by the described rules. 

The presence of matter does not influence the evolu
tion of the metric of space near the singularity[6 l. In 
other words, the matter can be "written in" into the 
specified metric, and its reaction on the metric can 
be neglected. During each of the Kasner epochs, the 
density of matter € varies like 

(1.14) 

where p3, by agreement, is the larger of the numbers 
P1> p2, and P3 (seer61 , Sec. 3, or[7 l). The density of 
matter increases monotonically during the entire evo
lution to the singular point. 

The law (1.14) corresponds to matter "written in" 
with an arbitrary initial velocity distribution. On the 
other hand, if matter is written-in into the considered 
model, understood as an exact solution of the Einstein 
equations, then the resultant picture of the evolution of 
matter would have no general character at all, and 
would be unique only for the high symmetry possessed 
by this mode 1. Mathematically this unique character 
is connected with the fact that, for the considered 
homogeneous spatial geometry, the components R~ of 
the Ricci tensor are identically equal to zero, and 
therefore Einstein's equations would not admit of mo
tion of matter (which would lead to the appearance of 
nonzero components Tl;l of the energy-momentum ten
sor). In other words, the synchronous reference sys
tem should be also co-moving with respect to the 
matter. We would then obtain for the variation of the 
density of matter the formula € ~ t 413. 

2. EVOLUTION OF THE MODEL DURING ONE ERA 

For further analysis it is convenient to introduce 
in place of the functions a, b, and c the logarithms a, 
f3, andy: 

(2.1) 

During each Kasner epoch we have in accordance with 
(1.9) a + f3 + y = ln A + ln t. Changing over from one 
epoch to another, the constant ln A changes (in accord
ance with (1.9)) by an amount of the order of 1. But in 
the asymptotic region of arbitrarily large values of 
lln t I, we can neglect not only these changes, but also 
the entire constant ln A. In other words, the employed 
approximation corresponds to neglecting all the quanti
ties whose ratio to lln t I tends to zero as t - 0. We 
then have 

a+~+'V=-Q, (2.2) 

where n denotes the "logarithmic time": 

Q=-lnt. (2.3) 

In the same approximation, we can consider the 
processes of interchanges of epochs as instantaneous. 
We can also neglect the constant in the right side of 

the condition (1.10), etmax = Y2n( 21 P1l A), which de
termines the instants of the interchanges, i.e., to as
sume as this condition the equality a = 0 (or similar 
equalities for f3 or y, if the initial negative exponent 
pertains to the functions b or c). We thus put 

Umax ,= 0, ~max = 0, )'max = 0, (2.4) 

so that the quantities a, f3, and y run only through 
negative values that are connected with one another at 
each instant of time by the relation (2.2). 

Regarding the interchange of epochs as instantaneous, 
we neglect the widths of the transition regions between 
epochs compared with the durations of the epochs 
themselves; this condition is act~ally satisfied (see 
footnote 5 below). On the other hand, replacement of 
(1.10) by (2.4) requires that the quantity lin (I P1l A) I 
be small compared with the amplitudes of the oscilla
tions of the corresponding functions a, f3, and y. But 
on going from one era to the next there can appear, as 
was noted in Sec. 1, very small values of I P1l, and 
these values and the probability of their appearance are 
not connected in any way with the value of the oscilla
tion amplitudes reached by that instant of time. One 
can therefore not exclude, in principle, also the ap
pearance of such small values of I p1l, for which the 
required condition would be violated2>. Such a strong 
lowering of etmax can lead to different specific situa
tions, in which the joining together of the Kasner epoch 
in accordance with the rule (1. 7) becomes incorrect 
(for example in a situation in which two of the functions 
a, f3, and y are close during the entire era). These 
"dangerous" cases call for a special analysis, and at 
any rate would violate the laws employed for the statis
tical analysis in Sec. 4 below. It can be shown, how
ever, that the probability of such violations tends 
asymptotically to zero; we shall return to this question 
at the end of Sec. 5. 

Let us consider an era that contains k Kasner 
epoch corresponding to the parameter u running 
through the values 

Un=k+x-1-n, n=0,1, ... ,k-1 (2.5) 

and let the oscillating functions during that era be a 
and f3 (see Fig. 1 )3>. 

During the instants of the start of the Kasner epoch 
with parameters un by nn. At each of these instants, 
one of the quantities, a or f3, is equal to zero, and the 
other has a minimum. The values of a or f3 at the 
succeeding minima, i.e., at the instants nn, will be 
denoted by 

(2.6) 

(without distinguishing between the minima of a and f3). 
The quantities on, which measure these minima in units 
corresponding to nn, can have values between 0 and 1. 

2lThis danger was pointed out to us by A. G. Doroshkevich and 
I. D. Novikov. 

3lThe definition of the limits of the era in accordance with (2.5) is 
natural in that sense that it combines all the epochs during which the 
third function -y(t) decreases monotonically. Were we to define the era 
in accordance with the sequence of values of u from k + x to I + x, 
then the monotonic decrease of -y( t) would continue also during the 
first epoch of the following era. 
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FIG. 1. Schematic representation of the course of variation of a, 
{3, and 'Y as functions of the logarithmic time n during one era. The 
vertical dash lines note the instants of interchanges of the Kasner 
epoch, corresponding to the linear segments of the curves between the 
dashed lines. On the top are indicated the values of the parameter u 
which determine the Kasner exponents. The last epoch has a longer 
duration if xis small. In the first epoch of the next era, 'Y begins to 
increase and a becomes a monotonically decreasing function. 

On the other hand, the function y decreases monoton
ically during the course of the given era; according to 
(2.2), its value at the instant Un is 

(2.7) 

During the course of the epoch that beings at the 
instant On and ends at the instant On.1, one of the 
functions, a or {3, increases from - onOn to zero, 
and the other decreases from zero to - on.1 on.1, in 
accordance with the linear laws const + I P1( un) In and 
const- p2(un)O, respectively. From this we obtain a 
recurrence relation 

and for the logarithmic duration of the epoch we get 

f. = Q _ Q _ f(un) 6 Q _ f(un) (1 + Un-t) f. {2,9) 
n+l- n+l n- Un n n- f(Un-t}Un n, 

where we put for brevity f( u) = 1 + u + u2 • For the 
total duration n of the epoch we can obtain the formula 

[ nf(un-1) ] 
Qn-Qo= n(n-1)+ 6oQo. 

Un-1 
(2.10) 

It is seen from (2.8) that I an•1l > I an J, i.e., the 
swing of the oscillations of the functions a and {3 
increases during the entire era (whereas the coeffi
cients on may be also small). If the depth of the mini
mum at the start of the error was large, then it will no 
longer be small in the succeeding minima; in other 
words, the difference I a - f31 at the instants of the 
interchange of the Kasner epochs remains large. We 
emphasize that his statement does not depend on the 
length of the era k, so that for long eras the inter
changes of the epochs will be determined by the usual 
rule (1. 7 )41 • 

The amplitude of the last oscillation of the function 
a or {3 in the given era is connected with the amplitude 
of the first oscillation by the relation I ak-1l 
=I aol (k + x)/(1 + x). Even at lengths k that amount 
to only several units it is already possible to neglect x 
compared with k, so that the increase of the amplitude 

4) As already indicated, the investigation reported in [ 2), Sec. 4, per
tains to the inverse case of a long era during the entire length of which 
la-{31 ~ I. 

of the oscillations of the functions a and {3 will be 
proportional to the length of the era. For the functions 
a = ea and b = ef3 this means that if the amplitude of 
their oscillations at the sta~t of the era with A0 , at the 
end of the era it will be Ak < l+X>. 

In the approximation in question, the maxima of the 
oscillating functions a and {3 remain at a constant 
level (condition (2.4)). Actually these maxima decrease 
somewhat in the successive oscillations during the 
course of the era. Consequently, we get from the con
dition (10) 

(a!a,Jn+t/(amax)n2 =/Pt(Un+!) /An+ti/Pt(Un) /An, 

According to (1.9), An.1/ An= 1 - 21 Pl(un) 1. From 
this we get 

(Umax) n+l 

(amax)n 
Vi- 1. 

Un 
(2.11) 

This lowering of the maxima, of course, is small com
pared with the lowering of the minima; thus, at un 
» 1 we have from (2 .11) 

/ ('Umax) n+l - (Umax) n / ~ 1 / 2un, 

whereas the lowering of the minima amounts to, ac
cording to (2.8), 

I ( Umin) n+1 - ( Umtn) n I ~ I ( Um!n} n / /Uno 

where I ( amin)n is already assumed to be large. 
During the era, an increase takes place also in the 

duration (in logarithmic time) of the successive Kasner 
epochs; it is easy to conclude from (2.9) that ~n.1 
> ~n51 • The total duration of the era is 

(2.12) 

(the term with 1/x is the result of the last k-th epoch, 
which is large at small values of x-see the figure). 
The instant Ok of the termination of the k-th epoch of 
a given era is at the same time the instant n~ at the 
start of the next era. 

In the first Kasner epoch of this new era, the func
tion y begins first to grow from the minimal value 
Yk = -Ok( 1 - Ok) attained by it in the preceding era; 
this value will play the role of the initial amplitude 
o~n~ of the new series of oscillations. It is easy to ob
tain for it 

6o'Qo' = ( 610 
+ k 2 + kx- 1) lloQo. (2.13) 

Obviously o~O~ > o0 0 0 • Even at not very large lengths 
k, the growth of the amplitude is quite appreciable: the 
function c = e Y begins to oscillate from the amplitude 
A~~ A~2 • (We leave aside the "dangerous" cases, 
mentioned in Sec. 1, of very strong lowering of the 
lower limit of the oscillations.) 

According to (1.14), the growth of the density of 
matter during each of the first ( k - 1 )-st epochs is 
given by the formula 

In (en+!/ En)= 2[1- P3(un)]L'.n+l· 

5>We note also that these durations are large compared with the 
widths of the transition regions between the epochs. According to 
(1.8), these widths are large at small lp 1 I (i.e., large u) and amount to 
-I/Ip 1 1- u. But even in this case L>n- Un lanl ~ Un. 
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For the last, k-th epoch of a given era, on the other 
hand, it is necessary to recognize that when u = x < 1 
the largest exponent is p2(x) (and not p3(x)). As a 
result we obtain for the growth of the density during the 
entire era 

In (ek I eo)== In (eo' I eo)= 2(k- 1 + x)lloQo. (2.14) 

Already at not very large values of k we have, conse
quently, f.~/f- 0 ~A~. During the next era (with length 
k'), the increase of the density will be even faster, by 
virtue of the increase of the initial amplitude A'0 : 

~;.gj~;.~ ~ A~2k' ~ A~k2k' etc. These formulas illustrate 
the vigorous character of the growth of the density of 
matter. 

In concluding this section, let us make one more 
remark of methodological character. Misner has pro
posed, for the description of the considered solution of 
Einstein's equations, a mechanical model in which a 
"particle" moves in the field of a time-dependent po
tential[4l. It seems to us that this model can reflect 
only some of the most general properties of the solu
tion, and is not convenient for a more detailed investi
gation. The very introduction of the potential is con
nected with difficulty-estimated approximations (for 
example, the quantity A introduced in[4J should be re
garded in one case as a constant and in one case as a 
variable); it is in any case not suitable in regions near 
the corners of the diagram. By way of a condition de
termining the boundaries of the motion of the "particle," 
Misner proposes the equality of the potential of the 
kinetic energy of the free motion, which does not de
pend on its direction: by the same token, for example, 
effects connected with the dependence of amax on P1 
in (1.10) drop out. Yet, as seen from the foregoing, an 
analytic consideration based on the exact Einstein 
equations for the functions a, b, and c makes it possi
ble to trace the evolution of the model in a rather sim
ple and lucid manner (and this analysis can be carried 
out without particular difficulty, and with greater ac
curacy than in the present paper). 

3. STATISTICAL PROPERTIES OF THE NUMERICAL 
SEQUENCE OF VALUES OF THE PARAMETER u 

The sequence of the lengths k<S> of the successive 
eras (measured in terms of the number of the Kasner 
epochs contained in them) acquires asymptotically the 
character of a random process. The same pertains 
also to the sequence of the interchanges of the pairs of 
oscillating functions on going over from one era to the 
next one (it depends on whether the numbers k<S> are 
even or odd). 

A source of this statistical behavior is the rule 
(1.12), according to which the transition from one era 
to the next is determined in an infinite numerical se
quence of the values of the parameter u. This rule 
states, in other words, that if the entire infinite se
quence begins with a certain initial value u<o> c: k<o> 
+ x<o>, then the lengths of the series k<o>, krf>~ .. , are 
the numbers in the continuous-fraction expansion 

k(O) + X(O) = k(O) + __ 1 __ :0 

k(l) ' 1 
T k(2)+ ·• • 

(3.1) 

It is possible to change over to a probabilistic de-

scription of such a sequence by considering not a defi
nite initial value x<o> but the values x<o> = x distributed 
in the interval from 0 to 1 in accordance with a certain 
specified law w0 (x). Then the values of x<s> terminat
ing each series will also have distributions that follow 
certain laws. Let ws(x)dx be the probability that the 
s-th series terminates with the value u~tn = x lying 
in a specified interval dx. 

The value x<S> =x, which terminates the s-th series, 
can result from initial (for this series) values u<S> 
= x + k, where k = 1, 2, ... ; these values of u1b.kax 
correspond to the values x<s-1> = 1/(k + x) for the 
preceding series. Noting this, we can write the follow
ing recurrence relation, which expresses the distribu
tion of the probabilities ws(x) in terms of the distribu
tion Ws-1(x): 

or 

~ 1 1 
w,(x)= L, (k + x) 2 Ws-1 ( k + x}. (3.2) 

h=l 

If the distribution ws(x) tends with increasing s to 
a stationary (independent of s) limiting distribution 
w(x), then the latter should satisfy an equation which 
we obtain from (3.2) by dropping the indices of the 
functions ws- 1 and ws. This equation has indeed a 
solution 

w(x) = 1/ (1 + x) In 2 

(normalized to unity), as can be readily verified 
directly 61 • 

(3 .3) 

In order for the s-th series to have a length k, the 
preceding series must terminate with a number x in 
the interval between 1/ (k + 1) and 1/k. Therefore the 
probability that the series will have a length k is equal 
to (in the stationary limit) 

11" 1 (k+1) 2 
W(k)= J w(x)dx=-ln . (3.4) 

11<•+1> ln2 k(k+2) 

At large values of k 

W(k) ~ 1 I k2ln2. (3.5) 

An idea of the rate at which the stationary distribu
tion sets in is obtained from the following example. Let 
the initial values x< 0 > be distributed in a narrow inter
val of width ox<o> about some definite number. From 
the recurrence relation (3.2) (or directly from the ex
pansion (3.1)) it is easy to conclude that the widths of 
the distributions ws(x) (about other definite numbers) 
will then be equal to 

/)x(s) ~ /),x(Q). k(1)2k(2\2 ••• k(s)2 

(this expression is valid only so long as it defines 
quantities ox<S> « 1). 

(3.6) 

The mean value of k calculated from the distribu
tion (3.4) diverges logarithmically. For a sequence cut 

6lFormula (3.3) was known already to Gauss, and an equation of 
type (3.2) was considered in this connection by R. 0. Kuz'min (see, 
example, [8 ] ). Without claiming originally, we have deemed it advan
tageous to present here a simple derivation in a form appropriate to the 
problem formulation of interest to us. 
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off at a very large but finite number N of these num
bers we would obtain 1{ ~ ln N. However, the meaning 
of a mean value in this case is very limited in view of 
its instability: the slowness of the decrease of W{k) 
causes the fluctuations of the number k to diverge even 
more rapidly than its mean value. A more adequate 
characteristic of the properties of the considered se
quence is the probability that a number selected from 
it at random turns out to belong to a series with length 
k :s K, where K is large. This probability is equal to 
ln K/ln N. It is small if 1 « K « N. In this sense one 
can say that a number randomly selected from the se
quence turns out to belong, with large probability, to a 
long series. 

In the next section we shall find it convenient to 
average expressions that depend simultaneously on 
k<S> and x<S>. Since both these quantities are derived 
from the same quantity x<S- 1> {which terminates the 
preceding series), in accordance with the formula 
k<s> + x<S> = 1/x<S- 1>, their statistical distributions 
cannot be regarded as independent. The joint distribu
tion W s { k, x) dx of both quantities can be obtained 
from the distribution Ws- 1{x)dx by making in the latter 
the substitution x - 1/ {x + k). In other words, the 
function Ws{k, x) is given by the very expression un
der the summation sign in the right side of the equa
tion {3.2). In the stationary limit, taking w from {3.3), 
we obtain 

W(k, x) 1= 1 I (k + x) (k+x+ 1) ln2. {3.7) 

Summation of this distribution over k brings us back 
to {3.3), and integration with respect to dx to {3.4). 

4. STATISTICAL ANALYSIS OF THE EVOLUTION OF 
THE MODEL UPON APPROACHING THE SINGULAR 
POINT 

Proceeding to investigate the statistical properties 
of the evolution of a model, we write out again the 
initial recurrence formulas that determine the rules 
for the transition from one era to the next. The index 
s will now number successive eras {and not Kasner 
epochs in one era!), starting from a certain era {s = 0), 
taken to be the initial one. n<S> and EO<S> denote re
spectively the initial instant of time and the initial 
density of matter in the s-th era; 6<s>n<S> is the initial 
amplitude of the oscillations of that pair from among 
the functions a, {3, and y, which experiences oscilla
tions in the given era; k<SI is the length {number of 
Kasner epochs) of the s-th era, and the quantity x<s> 
determines the length of the next era, in accordance 
with k<S• 1> = [1/x<S>]. According to {2.12)-{2.14) we 
have 

(4.1) 

I)(•+ I)= 1-' (k<•>jx<•> + 1)6(s) == k<•> x(s) /)(s) (4,2) 
1 + /)(s)k(s) ( 1 + x(s) + 1/x<•l) f ( ' ' ) ' 

In ( e<•+•) / e<•>) = 2 ( k<'> + x<•> - 1) I)<•>Q<•> ( 4. 3) 

(in (4.1)-(4.2) we introduce, for future use, the symbols 
~<s> and f). 

In the probabilistic approach described in Sec. 3, 
the quantities 5<S> {which run through values between 

0 and 1) also have their own statistical distributions 
that tend with increasing s to a definite stationary 
{independent of s) distribution; we denote it by P(6). 
It satisfies the integral equation 

~ 1 1 

P(z)= LJ J ll[f(k,x.y)-z]W(k,x)P(y)dxdy, (4.4) 
k=1 0 0 

which expresses the fact that the quantities 5<s> = y 
and 5<S•1> = z, connected with relation {4.2), have the 
same distribution; W(k, x) is the distribution function 
(3.7); the 6 function in the integrand is eliminated by 
integration with respect to dy. n In view of the absence 
of any singularities in {4.2), the distribution defined by 
(4.4) has a perfectly stable character, namely, the 
mean values of 6 raised to any power, as calculated by 
means of this formula, will be definite finite numbers. 
Figure 2 shows a plot of the function P( 6 ), obtained by 
numerical integration of Eq. {4.4) {using several itera
tions) with the aid of an electronic computer8>. The 
mean value of 6 turns out to be ~ = 0.5. 

Let us examine the statistical connection between 
the large time intervals n and the number s of the 
eras that have become interchanged during that time. 

A second application of formula (4.1) yields 
s-1 

Q<•>jQ<O> = exp ( L/;<P>). (4.5) 
p=O 

Direct averaging of this equation, however, would be 
meaningless, for by virtue of the slow decrease of the 
function W(k) (3.5), the average values of the quantity 
exp~<S> are unstable in the sense indicated in Sec. 3-
the fluctuations increase even more rapidly than the 
mean value itself with increasing region of averaging. 
This instability is eliminated by taking the logarithm: 
the "doubly-logarithmic" time interval 

FIG. 2. Plot of the distribution func
tion P(ll). 
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7) Strictly speaking, this equation is approximate. The approxima
tion corresponds to termination of the correlation chain between the 
values of the succeeding x<•> and k<•>, making it possible to assume that 
the statistical distribution of l)(s) is independent of the distributions of 
x(s) and k(s). 

8)It is seen from (4.2) that l)(s + I)--> 0 is possible only when x(s) 
--> 0; therefore the region of integration with respect to dx in (4.4) 
tends to zero as z--> 0; so that P(O) = 0. On the other hand, the value 
l)(s + I)= I is possible only when l)(s) = 0; it therefore follows from P(O) 
= 0 that also P(l) = 0. 
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.s-1 

Ts""' ln(Q<•ljQ(O))= L. s(P) 

p=O 

(4.6) 

is expressed by the sum of the quantities ;<Pl having 
a stable statistical distribution. The mean values of 
the quantities ;<s>, 

co I I 

~= L, J Jm[ 1 + ( k + x + ~) k6] P(6} W(k,x)dxd6, 
k=l 0 0 

and also of their powers, are finite. A numerical cal
culation yields ; = 2.1 and "P = 6.8. 

Averaging (4.6) for a given s, we obtain 

i.s == In (.Q<•l I Q<0l) = 2.1s, (4.7) 

thereby determining the mean doubly-logarithmic time 
interval necessary for the occurrence of s successive 
eras. 

On the other hand, to calculate the mean square of 
the fluctuations of this quantity we write 

s~l s-1 

(r.- :r,J' =- ~ <s<P>s•q>- s<P> s<q>> = s 2: <s<•>s<P>- ~·). 
P, q=O P=O 

In the last equation we have taken into account the fact 
that in the stationary limit the statistical correlation 
between ;<Sl and ;cs'> depends only on the difference 
I s - s' 1. In view of the existence of a recurrence 
relation between x<Sl, k(Sl, I)CSl and x<S+ll, k<S+ll, OCS+l), 
the correlation, strictly speaking, differs from zero. It 
decreases very rapidly, however, with increasing 
Is - s' I, and already at Is - s' I = 1 a numerical 
calculation yields ~s~s+1 - ; 2 = - 0.4. Retaining the 
first two terms in the sum over p, we obtain 

[(t,- 1:,)'1"'= 1.4}'S: (4.8) 

When s - oo, the relative fluctuation (i.e., the ratio 
of the mean-square fluctuation (4.8) to the mean value 
(4.7)) tends, consequently, to zero like s-112 • In other 
words, the statistical relation (4.7) becomes almost 
certain at large s. Of course, this certainty is a conse
quence of the fact that in accordance with (4.6) Ts can 
be represented by a sum of a large number of quasi
independent terms (i.e., it has the same origin as the 
certainty of the additive thermodynamic quantities of 
a macroscopic body). It follows from this that the 
probabilities of different values of Ts (at a specified 
s) have a Gaussian distribution: 

p(t,) roexp {-(-r,-2.1 s} 2 /4s}. (4.9) 

The certainty of relation (4.7) makes it possible 
also to invert it, i.e., to represent it as the dependence 
of the average number sr of the eras that are inter
changed in a given interval of the doubly logarithmic 
time T: 

s, = 0.47·-r (4.10) 

The corresponding statistical distribution is given by 
the same Gaussian distribution, in which the random 
quantity is now sr at a specified r: 

p(s,) roexp {-(s,-0.47-r} 2 /0.43-r}. (4.11) 

From this point of view, the source of the statistical 
behavior is the arbitrariness in the choice of the start
ing point of the interval T superimposed on the infinite 
sequence of the interchanging eras. 

Returning to the density of matter, we rewrite (4.3) 

with allowance for (4.5) in the form 
e(s+l) s-1 

lnln--=TJ(s)+ ~ s<Pl, T)(•l=ln(26(•l(k<•l+x(•l-1)Q(O)) 
e<•> ~ 

p=O 

and then we have for the total change of energy during 
s eras: 

(s) s-1 p 

In In :<o> = In L, exp { .E s<q> + TJ<Pl} . (4.12) 
p=O q=O 

The main contribution to this expression is made by 
the last term of the sum over p, containing the expo
nential with the largest exponent. Retaining only this 
term and averaging (4.12), we obtain in the right side 
of this equation an expression for st coinciding with 
(4.7); all the remaining terms in the sum (and also the 
terms 71<pl in the exponents) lead only to corrections 
of relative order 1/s. Thus, we have 

(4.13) 

By virtue of the almost certain character of the con
nection between Ts and s, which we have established 
above, relation (4.13) can be written in one of the forms 

ln In ( e, /E<'f) = T or In In ( e<•> I e<'>) = 2,1 s, 

in which it determines the double logarithm of the 
growth of the density, averaged over a specified doubly 
logarithmic interval of time T or over a specified 
number of eras s. 

We emphasize once more that stable statistical re
lations are obtained just for the double logarithmic 
time intervals and density increments. On the other 
hand, for quantities such as o<Sljo<ol = expTs the 
relative fluctuation increases exponentially with in
creasing averaging region, by the same token depriving 
the mean-value concept of a stable meaning. 

The origin of the statistical connection (4.13) can be 
traced already from the initial law governing the vari
ation of the density during the individual Kasner epochs. 
According to (1.14), during the entire evolution we have 

In In e(t) = const +In Q + ln2(1- p3 (t) ), 

with 1 - p3(t) changing from epoch to epoch, running 
through values in the interval from 0 to 1. The term 
ln 0 = ln ln ( 1/ t) increases monotonically; on the other 
hand, the term ln 2( 1 - p3 ) can assume large values 
(comparable with ln 0) only when values of p3 very 
close to unity appear (i.e., very small I pd). These 
are precisely the "dangerous" cases mentioned in 
Sec. 2, which violate the "regular" course of the evolu
tion expressed by the recurrence relations (4.1)-(4.3). 

It remains for us to show such cases actually do not 
arise that in the asymptotic limiting regime. We trace 
the spontaneous evolution of the model, starting with a 
certain instant at which definite initial conditions are 
specified in an arbitrary manner. Accordingly, by 
"asymptotic" is meant here a regime sufficiently far 
away from the chosen initial instant. 

Dangerous cases are those in which excessively 
small values of the parameter u = x (and hence also of 
I P1 I Rj x) appear at the end of the era. Let us assume 
by way of a criterion for the selection of such cases 
the inequalities 

(4.14) 
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where I a<S> I is the initial depth of the minima of the 
functions oscillating in the s-th era (it would be more 
appropriate to choose the final amplitude, but this only 
would intensify the selection criterion). 

The value of x101 in the initial era is specified by 
the initial conditions. The dangerous values are those 
in the interval 1lx101 ~ exp (-I a 101 1), and also in the 
intervals that lead to a dangerous case in the succeed
ing eras. In order for x<S> to fall in the dangerous in
terval ox<S> ~ exp (-I a<S> I), the initial value of x101 

should, according to (3.6), lie in an interval of width 
1lx101 ~ 1lx1 s 1/k(l)~< 212 ••• k<s> 2 • Altogether, consequently, 
from the initial single interval of all the possible values 
of x101 , a dangerous case will result from values lying 
in a fraction ). of this interval, with 

;. - ( I (OJj ~ ~ exp(- Ia<•> I) 
- exp - a ) + .l..J l...J k(IJ2/((2J2 ... /((sJ2 (4.15) 

s=l (k) 

(the internal sum is taken over all the values k< 11 , 

k121 , ••• , k1s 1 from 1 to oo ). It is easy to see that this 
series converges to a value X « 1, the order of mag
nitude of which is determined already by the first term 
in (4.15). 

It is easy to demonstrate this by strongly majoring 
the series, for which purpose we put I a'S> I 
= ( s + 1) I a 101 I, regardless of the lengths of the eras 
kw, k121 , ••• (Actually, the I a<S> I increase much more 
rapidly; even in the most unfavorable case k111 = k< 2> 
= ••• = 1 the values of I a<S> I increase more readily 
like qs I a 101 I, where q > 1). Noting that 

we then obtain 

as required. 

.E 1/k<IJ2k(2J2 ... k<•>2 = (n2/6)', 
(k) 

If the initial value x1 01 lies outside the dangerous 

section X, then no dangerous cases arise at all. On the 
other hand, if it lies in this section, then a dangerous 
case arises, but after emerging from it the model be
gins a "regular" evolution with a new initial value of 
x101 , which may only accidentally (with probability X) 
turn out to be again in the dangerous interval. Repeti
tions of such cases can lead to a dangerous situation 
only with probabilities ). 2 , ). 3 , ••• , which tend asymp
totically to zero. This reasoning proves indeed the 
statement above. 

We are grateful to A. G. Doroshkevich and I. D. 
Novikov for a useful discussion, and also to V. Mil'man 
and G. Kargopolova for help with the numerical calcu
lations. 
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