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The question of the existence of second sound in uniaxial antiferromagnetic substances of the "easy 
plane" and "easy axis" type is considered, taking the interaction between the magnon and phonon 
subsystems into account. In the majority of cases the contribution of the magnon subsystem to the 
second sound is found to be important in antiferromagnetics with small values of the ratio of the 
Neel and Debye temperatures: ®N/®n < 1. But in certain situations, e.g., in magnetic fields 
close to the effective fields of the first- or second-order phase transition, such a contribution can 
be found in antiferromagnetics with any value of ®N/en up to ®N/en » 1. The temperature de
pendence of the second sound velocity is studied in a broad range of magnetic fields. It is shown, 
in particular, that in antiferromagnetics of the "easy axis" type in the critical field for 
"inverting" the magnetic moments of the sublattices (a first-order phase transition), a discontinuity 
in the second sound velocity should be observed at sufficiently low temperatures. 

1. INTRODUCTION 

IT is well known that second sound consists of slowly 
decaying oscillations of the density of thermal excita
tions. For its existence it is necessary that normal 
collisions between quasi-particles be much more prob
able than collisions with loss of quasi-momentum; this 
condition is usually fulfilled in dielectrics at sufficiently 
low temperatures. Only under this condition is it pos
sible for such temperature oscillations, analogous to 
elastic oscillations of the density of matter, to arise in 
a system of quasi-particles. 

The possibility of the existence of two types of os
cillation of different nature (ordinary sound and tem
perature waves) in superfluid helium was first pointed 
out by LandauYl Mter this, a large number of papers 
appeared in which the possibility of similar oscillations 
in solids was considered. In the larger part of these 
papers second sound in a phonon gas was investigated, 
and only a few papers[2- 4 1 are concerned with the study 
of second sound in a magnon gas. In the latter papers, 
which are devoted to second sound in ferromagnetics, 
an isolated system of magnons was considered without 
taking account of the coupling with the phonon system. 
Results of a calculation performed with allowance for 
the interaction of the magnon and phonon subsystems 
are given in the monograph, [s] whence it is clear that 
it is extremely important to allow for this interaction 
when the subsystems are in a state of local equilibrium. 

In the present paper the question of the existence of 
second sound in antiferromagnetics is investigated. 
The temperature and magnetic field dependences of the 
second sound velocity in a coupled system of magnons 
and phonons are obtained when these subsystems are in 
a local equilibrium state. Similar results are also ob
tained for the isolated magnon subsystem. In this case 
the damping constants of the temperature waves are 
also calculated, in the r-approximation. The calcula
tions are performed for uniaxial antiferromagnetics of 
the "easy plane" (EP AFM) and "easy axis" (EA AFM) 
types. 
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We shall consider an antiferromagnetic in a variable 
and non-uniform temperature field If( r, t) 
=T[1 + J(r, t)], where IJI « 1. The magnon distribu
tion function ni ( i = 1, 2 corresponds to the two mag
netic subsystems) and that for the phonons Nj ( j is 
the polarization index) will obey the following kinetic 
equations: 

iJn· iJn· 
-'+v;-'=L; {n,N} +.2"; {n,N}, at iJr 

iJN; iJN; 
--+s;--=L; {N,n} +.2"; {N,n}, 

iJt iJr 
(1) 

where L and .2" are respectively the collision integrals 
for the quasi-particles with and without conservation 
of the quasi-momentum. It is assumed that L >> 9!. It 
is known (see, e.g.,[ 5 1) that in this case the initial dis
tribution functions are the local-equilibrium magnon 
and phonon distribution functions 

(OJ={ [e;(k)-uk]-t}-1 !l.o'={ex lw;(k)-uk]-t}-1 

n,, exp T(1 + ti) ' ' p T(1 + ti) ' 
(2) 

which depend on the local temperature J(r, t) and on 
the local velocity u(r, t) of the ordered motion of the 
quasi-particles. The functions J and u are determined 
by the local conservation laws for energy and momen
tum, which, starting from (1), can be represented in 
the form 

L { :t [.Ee;(k)n;(O) (k)+ L,w;(k)Nj0l (k)] 

• 

+ :r [L,e;(k)v;n/0'(k)+ L w;(k)s;M0' (k)]} = 0, 

i ' 

I> { 0~ [ L n~0) (k)+ LN~o) (k)] 
k 

iJ [ \"1 <Ill \"1 (0) ] + Tr ,{...j v;n; (k) + ,{...js;N; (k) 
. j 

_ .E :J:;{n!Ol,N!OJ} _ L,.P;{N!Ol,n(O)} }=0, 
i j 

where E:(k) and w.(k) are the energies of a spin wave 
and a phonon with wave-vector k; Vi = 8E:i/8k, Sj 
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= Bwi/Bk, fi = 1 and the temperature is given on the 
energy scale. 

Since I .1 I < 1 and I k · u/T I « 1, these equations 
can be given in a simpler form: 

(c,+ c1}-& + 1/ 3 (a,+a1)divu = 0, 

(B, + B1)u"+ (a,+ a1} V'it + (A,+ A1)u = 0. 

Here the spin parameters are: 

1 I: 2 {Jii; c,=-- e; (k)-, 
TV ih; 

i,k 

B = __ 1 ~ k• an1 
' TV~ fJe;' 

i,k 

the phonon parameters are: 

1 I: on; a,=-- e1(.k)v1k-, 
TV fJe; 

i,k 

A __ 1 ~k2 .-ton;. 
s- TV~ Tzvih;' 

i,k 

C!=--1-~w/(k) oN;= 2n2 ~(!...) 3 ~ 2n2 (.!._) 3
, 

TV~ ow; 15 ~ s; 5a3 Bn 
j,k j 

1 E aN; a1=-- w;(k)s;k-=cl, 
TV' ow; 

j,k 

(3) 

(4) 

(5) 
1 fJN; 2n2 1 ( T ) 3 2n2 ( T ) 3 

B~--- k2---- - - ~-- -
- TV I: ow;- 15 I: s;2 Sj 5a58n2 8n 

jk j 

cs and cz are the spin and phonon specific heats, re
ferred to one atom, ni and Nj are the usual Bose mag
non and phonon equilibrium distribution functions, rlj 
is the frequency of quasi-particle collisions with loss 
of quasi-momentum, en= s/a is the Debye tempera
ture, and a is the lattice constant; the approximate 
equality signs in (5) correspond to the approximation 
St1 = St2 =S1 =S. 

Assuming that " and u are proportional to 
exp[i( q · r - wt)], we can obtain from (3) the dispersion 
equation relating the frequency w to the wave-vector q 
of the second sound in the system under consideration. 
The solution of this equation has the form 

w = vq-ir, 

where 

v = (a,+ a1) fl'3(B, + B1)V. + c1) 

is the second sound velocity, and 

r = (A, + A1) I 2 (B, + B1) 

is the damping constant of the second sound. 

(6) 

(7) 

{8) 

The formulas given above are valid if there is local 
equilibrium between the spin and phonon subsystems 
(i.e., when the parameters .1 and u are the same for 
both subsystems). In the case when we can regard the 
magnon subsystem as isolated from the phonon sub
system (assuming, however, that, although there is no 
local equilibrium between these subsystems there is 
such an equilibrium between the two magnon sub
systems), for the velocities and damping constants of 
the second sound for each subsystem we have 

a, 
Vs=~, 

Y3B,c, 

V--;-
vl= 3B,' 

A, 
fs=-; 

2B, 
(9) 

(10) 

2. ANTIFERROMAGNETICS OF THE "EASY PLANE" 
TYPE 

A. Weak Magnetic Fields (H «HE) 

In this case, when H is considerably smaller than 
the effective exchange field HE, for an EP AFM with 
weak ferromagnetism the following relations are valid 
for the two spin-wave energy branches: 

8t = [8N2 (ak) 2 + JJ,2H(H +Hv)J'I•, 
82 = [8N2 (ak} 2 + JJ,2HAE2 + JJ,2Hv(H +Hv)J'h, (11) 

where ®N is the Neel temperature, Hn is the 
Dzyaloshinski1 field, HAE = v'HAHE, and HA is the 
uniaxial anisotropy field. 

The spin parameters defined by the formulas (4) in 
this case take the form: 

c =-- -- J' 
1 T )3 

8 2n2a3 ( 8N I: lz, 
i 

where 

1 ( T )s 
a,= 2n"a3 8N I: J2i, 

f 

n = ( exp x- 1) -', i = 1, 2. 

We shall consider the possible special cases. 

(14) 

1. X1 « 1, X2 « 1 (T >> J.LH, T » J.LHE; we as
sume that Hn ~ HAE). In this case, J 1i = J 2i = 41T4/15 
and the second sound velocity is 

(15) 

If no account is taken of the magnon-phonon coupling, 
the second sound velocity vs and damping constant rs 
in the magnon gas have the form: 

v,=_;_aeN, r,= 1 /,(-r~~+-r~~). {16) 
1'3 

2. For a) X1 « 1, X2 » 1 (T >> J.LH, T » J.Lv'HHn, 
T « J.LHAE), or for b) X1 » 1, X2 « 1 (T » J.LHAE, 
T » J.Lv'HHn, T « J.LH), the second sound velocity is 

V=~a8N[..!_j-3(9N/8n)8 ]'" 
13 1+3(8N/8n) 5 

(17) 

Without allowing for the magnon-phonon interaction, 

v, = aeN I y3; a) r. = 1/2TIU-I; b) r. = 1/2T2v-1. {18) 

3. xl » 1, x2 » 1 (at least the condition 
T « J.Lv'HHn must be fulfilled). Putting X1 < X2 for 
simplicity, we obtain 

where 
10 X 

Y•(X)=--X''•e- . 
(2n)''• 

(19) 

(20) 

Here the following limiting cases are of interest (see 
Fig. 1). 

a) (eN/en)3 « Y1 (region I in Fig. 1): 
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1 -- T''• 
V=Vs=--=.a8Nl'YIIY2=a8N (21) 

13 ll''•(Ji2 + HHn) ''• ' 

b) (®NI®D)5 » Y1 (region II): 

V = V! = ~ v1 + 112(stfst)8;::::: ~a8n. (22) 
l'3 1+1/2(stfsz) 5 l'3 

It is clear from these formulas and from Fig. 1 that 
on change of H and T the character of the second 
sound also changes. On increase of the magnetic field 
or decrease of the temperature, the second sound 
passes over from purely magnon second sound in 
region I to purely phonon second sound in region II. In 
the transition region III, the change in the velocity v 
has an exponential character: v ~ exp{JJ.v'H(H + HD)/T}. 

The approximate dependence of the velocity v on the 
magnetic field for an EP AFM is shown in Fig. 2 for 
the following parameter values: ®NI®D = 0.2, 
T = 0.13°K, HD = 104 Oe, HAE = 6 X 104 Oe, HE = 106 Oe. 
The regions marked with Roman numerals are identical 
with the corresponding regions in Fig. 1. 

It is clear from Fig. 1 that for an EP AFM in the 
case of sufficiently low temperatures and with H « HE 
a contribution of the magnons to the second sound can 
be found only for low values of the ratio ® N I® D, not 
exceeding 0.5. For purely magnon second sound, 

(23) 

B. strong Magnetic Fields (H ~HE) 

In this case the main contribution to the phenomenon 
under consideration is made by the low-frequency 
branch of the spin oscillations 

where 
e = Y62(ak) 2 + eo2, (24) 

8 = 8Nl'1- (HI HJ?), eo= flHAE"J'.1- (HI HE) 2• (25) 

The second branch has an activation energy ~JJ.H >> T 

e • .-----r---,------, 
a;; 

FIG. 1 

u ---------------, 

' ' ' 
"!J9. 1----------r 

I imiD 
2 3 6 lgH 

FIG. 2. Dependence ofv on H in an EP AFM. 

and therefore does not make an important contribution 
either to the spin parameters (4) or, consequently, to 
the second sound velocity. 

The spin parameters for this case can be determined 
from the formulas (12), (13) if in these formulas we re
place ®N by ® and retain in the sums only one term, 
corresponding to the energy branch (i = 1) with small 
activation; the quantity 

X1 == X=eol T. 

1. For X« 1 (T » 10 0 ): 

v=~ae [ 1 +3(8/8n) 3 ]'''. 

)'3 1+3(8/8n) 5 

In an isolated magnon system, 

(26) 

(27) 

v,=~a8, 1',=~-r~J. (28) 
13 2 

2. For X» 1 (T « 10 0), the velocity v is deter
mined by the expression (19) after making the replace
ments ® N- ®, X1 -X in it. Corresponding to region 
I in Fig. 1 (where for this case the ratio ®I® D must 
be plotted along the ordinate axis) we shall have the 
following expression for v: 

V= v, = a8N(1- H2/HE2)'1•l'TfflHAE, 8/8n < Y1'1•. (29) 

We see that in strong magnetic fields the theoretical 
possibility arises of finding a magnon contribution to 
the second sound in an EP AFM with any value of the 
ratio ®NI®D, even when ®NI®D ~ 1. The damping 
constant rs in this case is expressed by formula (28). 

3. ANTIFERROMAGNETICS OF THE "EASY AXIS" 
TYPE 

It is known that EA AFM's can be found in three 
phase states, which we shall consider below, depending 
on the magnitude of the applied magnetic field (along 
the easy axis). 

A. The Antiparallel Phase ( 0 s H < HAE) 

In this case the spin wave spectrum has the form 

(30) 

At high temperatures ( T >> JJ.HAE), we have the 
same picture as in the EP AFM case; the quantities v, 
vs and rs are defined by the formulas (15) and (16). 

Under the condition JJ.H « T << JJ.HAE· the velocity 
v is given by the expression (19) in which the replace
ment X1 - Xo = JJ.HAE IT must be made. Under the 
condition tJ.H ~ T « tJ.HAE, the analogous replacement 
in (19) appears thus: YiCX1)- Yi(Xo)cosh (JJ.HIT). 
The qualitative pattern in these latter two situations 
does not differ from case 3 in the EP AFM (for 
H « HE). In particular, corresponding to the region I 
in Fig. 1 is the following expression for the second 
sound velocity: 

(31) 

We shall consider now the case of low temperature 
and the case of fields close to the field HAE of the 
first order phase transition, i.e., when the condition 

(32) 
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holds. In this case the velocity v takes the form 

V = _;_aSN ____ .,:2.;,;Zt:..C(X:::.o::..!:)...;+_(:_:6..:;N:.:.../..:_6D;::)~3--~~ 
l"3 {[ z2(Xo) + (6;/6v) 5] [zt (Xo) +(E>N/6D) 3]}'/' 

(33) 

where 

(34) 

The approximate boundary between the regions of 
magnon and phonon second sound is given here by the 
curve zi13( X0 ) = aX~12 ( a ~ 0.5 ). With the condition 
T « J.LHAE(®DI®N)2, which follows from the inequality 
(®NI®n)3 « z 1(X0 ), we have 

11 5~(512} 11 T (35) 
V=Vs= f 3~(3/2) a8N f JlHAE. 

U the temperature T > J.LHAE(®DI®N)2 , which can 
be so, as is clear from a comparison of this inequality 
with inequality (32), only under the condition ®n « ®N, 
the second sound will be of purely phonon character 
(see formula (22)). In passing over from one limiting 
case to the other, the velocity v varies with tempera
ture in accordance with a power law. 

We see that in the case under consideration the 
region of existence of magnon second sound is greatly 
extended: it can be observed at any value of ® N I® D 
right up to ®NI®n » 1. 

B. The Phase of "Collapse" of the Magnetic Moments 
(HAE < H <HE) 

In this phase one of the spin wave energy branches 
is acti vationless: 

e, = l'El'(ak)' +8c'(H) (ak)', (36) 

where the quantity ® is determined by formula (25) and 
®c, unlike ®, remains finite at H =HE and is close 
to ®N in order of magnitude. The second energy 
branch has an activation, equal to J.L(H- HAE), and 
consequently, in fields H ~ HE will give no contribu
tion to the spin parameters (4). 

In fields close to the field HAE for the first-order 
phase transition, degeneracy ( € 1 = € 2 ) sets in and the 
two branches make the same contribution to the second 
sound velocity. In this case (T » J.L(H- HAE)) the 
quantities v, Vs and rs are determined by the formu
las (15) and (16). 

From a comparison of the expressions for v to the 
left and to the right of the point H = HAE (formulas 
(35) and (15)), it is clear that, at sufficiently low tem
peratures, a discontinuity l:!..v should be observed in 
the second sound velocity at the first-order phase 
transition point (see Figs. 3 and 4). 

With the conditions ® N < ® D and T « J.L HAE: 

~V=aE>N{t-[ 5~( 5/2) _T_]'"}· (37 ) 
l"3 Wh> JlHAE 

U ®N > ®n and T « J.LHAE(®ni®N)2 , then 

~V=aE)N{t-~[ 5!;(5/2) _T_]'''}. (38) 
f3 8D \;(3/,) JlHAE 

At high temperatures ( T » J.LHAE• when ® N < ® n, 
or T » J.LHAE(®ni®N)2 , when ®N > ®n), the dis
continuity in the second sound velocity at the point 
H = HAE will be absent. 

In fields H ~ HE the expressions for the second 

FIG. 3. Dependence ofv on H in an EO AFM for the case eN 
<eo. ForT 4: 1-1HAE we have the solid line curve; forT~ 1-1HAE 
we have the dashed curve for the antiparallel phase and the solid line 
curve for the other phases. 

FIG. 4. Dependence of von 
H in an EO AFM for eN > eo 
and T 4: !-1HA£(eo(eN)2 • 

~1\;h. F\{1. i I Jc 

i ! 

sound velocity v and for vs and rs coincide with 
those given in formulas (27) and (28). 

The case H =HE is completely identical with the 
case of a ferromagnetic in a field H = 0 (see, e.g.,r 5 l); 
for T « ®bi®N the velocity v ~a v'®NT. 

C. The Ferromagnetic Phase (H >HE) 

U H exceeds the critical field HE, the magnetic 
moments of the sublattices take up a parallel alignment 
and the antiferromagnetic passes over to a phase with 
ferromagnetic ordering. The dependence on T and H 
of the second sound velocity in this phase is no differ
ent from the analogous dependence of v in a ferro
magnetic. As H increases, the velocity v, for 
T » ® D I® N, will change from v s to v 1, approaching 
v 1 in accordance with the exponential law 
exp{-J.L (H - HE)IT}. 

The dependence of v on H for an EA AFM is shown 
schematically in Figs. 3 and 4. 

We are grateful to V. G. Bar'yakhtar, P. S. 
Zyryanov and G. G. Taluts for discussion of the work 
and comments. 
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