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It is shown that allowance for anharmonicity appreciably affects the local oscillation spectrum of an 
imperfect crystal. In particular, under conditions when local oscillations with the fundamental fre­
quency are absent, anharmonicity may result in the appearance of local overtones. It is shown for a 
one-dimensional semi-bounded chain that similar effects are also encountered in the theory of sur­
face oscillations. 

1. INTRODUCTION 

THE theory of local oscillations of a crystal with de­
fects in the harmonic approximation has been the sub­
ject of a large number of papers (see, for example,fl, 2l). 
The influence of the anharmonicity on the width and 
level shift of the local oscillations was also discussed 
earlier (see, for example,f3l). In this paper we con­
sider some new effects resulting from the presence of 
anharmonicity in the region of overtones in the presence 
of impurities in the crystal. These effects are due to 
the fact that the anharmonicity of the intramolecular 
oscillations can lead to the appearance of excited 
states of a crystal, which are bound states of quasi­
particles- vibrational1> excitons. If the anharmonicity 
is sufficiently large, these bound states correspond to 
energy bands whose width turns out to be much smaller 
than the width of the band of the free quasiparticle 
(seef4 l). Therefore in a crystal with defects this cir­
cumstance can, generally speaking, lead to the occur­
rence of local and surface states in the region of multi­
ple frequencies of local and surface overtones, even in 
those cases when there are no local and surface states 
for the individual quasiparticle. 

With respect to local overtones, this circumstance 
was already pointed out in[4 l. In the present paper we 
develop a more general approach than inr4 J in the 
theory in the local overtones in a crystal with impurity. 
In addition, using as an example a one-dimensional 
semi-bounded chain, we discuss the states of surface 
overtones. In both cases, the analysis is limited only 
to that region of the spectrum of the crystal, which 
corresponds to the presence in it of only two elemen­
tary excitations. Therefore to determine the spectrum 
of the local states in the vicinity of the defect it is 
necessary in fact to solve a three-center problem 
(quasiparticles and a defect all interacting with one 
another), whereas for surface states the situation, 
generally speaking, is more complicated, since it is 
necessary to take into account the interaction of the 
quasiparticles not only with one another, but also with 
all the atoms of the surface. Only in the simplest one­
dimensional case, which is precisely the one considered 
below, can the problem again be reduced to a three­
center problem. 

!)"Vibrational" excitons are called here, as m [4], collective ex­
cited states lying in the infrared region of the spectrum. 

We note that the excited states of a crystal are con­
sidered each time at a specified number of quasiparti­
cles. As already indicated inr4l, such an approach is 
justified if the problem involves quasiparticle-interac­
tion energies and bandwidths that are small compared 
with the energy of the individual quasiparticle. There­
fore the results obtained in that paper pertain more 
readily to crystal optical oscillations of sufficiently 
high-frequency, of the type due, for example, to intra­
molecular or valence oscillations when the crystal is 
made up of molecules or atoms. 

2. THEORY OF LOCAL OVERTONES 

Let us consider, for simplicity, a crystal with an 
isotopic impurity (we shall call an isotopic impurity a 
molecule that has a different frequency 0 and a differ­
ent anharmonicity constant A' than the molecule of the 
host substance). We assume, just as inr4l, that the 
crystal is made up of molecules that are linear an­
harmonic oscillators, whose energy is determined by 
the relation (see, for example,r5l) 

Eh = hwo'k- A(k2 + k), (1) 

where w~ is the frequency of the intramolecular oscil­
lations when no account is taken of the anharmonicity, 
A is the anharmonicity constant, and k is the quantum 
number of the oscillator, k = 0, 1, ... We introduce 
the Bose operators B~ and Bn for the creation and 
annihilation of a quantum of oscillations in the n-th 
molecule. 

Then the Hamiltonian of the molecule n can be 
represented in the form 

where 
Hn = hwoBn+Bn -A(Bn+) 2B.,2, 

roo= mo'-2A. 

(2) 

We now take into consideration the fact that for intra­
molecular oscillations the energy of the anharmonicity 
A and the energy of the interaction between the mole­
cules are much smaller than fiw 0 • Then the operator 
of the interaction between the molecules can be repre­
sented in the following mannerr4l: 

(3) 
n,m 

where Vn,m is the matrix element of the energy of 
molecule interaction connected with the transition of 
one quantum from the molecule m to the molecule n. 
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Taking (2) and (3) into account, the Hamiltonian of an 
ideal crystal is 

flo= .L,nwoBn+Bn+ .E Vn,mBn+Bm-A .E (Bn+) 2 Bn2• 

n,m n 

We shall assume that the isotopic impurity is 
located at the site n = 0. Then, obviously, the Hamil­
tonian of the crystal with isotopic impurity can be 
represented in the form 

(4) 

if= flo+ if', Ji' = MwBo+Bo- ilA (Bo+) 2Bo2, (5) 

where Aw = n - Wo and AA = A' - A. We denote by 
l 0) the ground state corresponding to the Hamiltonian 
H. The wave functions of the crystal, with one and two 
vibrational quanta respectively, can be represented in 
the form 

11)= _E'¢(n)Bn+IO), (6) 

12) = .E '¢(n, m)Bn+Bm+IO). (7) 
n,m. 

For the states 11 ) , the contribution of the anharmon­
icity is equal to zero. For these states, the energy E 
of the oscillation localized at the isotopic impurity is 
determined, as is well known[l,aJ, by the equation 

1_Mw\""l 1 (8) 
-N ""-'E-E(k)' 

k 

where k is the wave vector of the exciton and E(k) 
corresponds to the energy of the vibrational exciton in 
an ideal crystal. Here and below, we confine ourselves 
to a crystal with one molecule per unit cell. Equation 
(8) has a solution corresponding to a local level only 
when tiAw >A, where A is the width of the exciton 
band (see[11). 

We now obtain the dispersion equation for the local 
oscillations corresponding to the states I 2 ). Substi­
tuting (7) in the Schrodinger equation HI/! = El/J, where 
H is given by relation (5), and using the Bose commu­
tation relations for the operator Bn, we obtain an equa­
tion for 1/J(n, m): 

(E- 2nw0 + 2A6mn)'¢(n, m)- .E ['¢(n, n') Vm, •• + '¢(m, n') V ••• ] 

•' 
=[M{J)(i\mo + bno)- 2M.Smobno]'¢(n,m). (9) 

We introduce the Green's function for Eq. (9) without 
the right-hand side, corresponding to an ideal crystal. 
It can be represented in the form . 

.E 'V~"(n m)'V~"(n' m') 
G(n m·n' m')= " ' " ' 

' ' ' E-E~(k) ' 
"" 

where EIJ.(k) and x!-Lk(n, m) are respectively the 
eigenvalues and the normalized functions of Eq. (9) 
without the right-hand side. 

(10) 

The vector k determines the irreducible representa­
tion of the translation group, in accordance with which 
the functions x are transformed, and 1J. represents the 
aggregate of the remaining quantum numbers charac­
terizing the state of the crystal with two excitation 
quanta. Thus, for example, in the case of two free ex­
citons, the quantity 1-L includes, besides the numbers of 
the two exciton bands, also the continuous quantum 
number determining the wave vector of relative motion 
of the excitons. Bearing in mind only local oscillations, 

we rewrite Eq. (9) in a form convenient for future 
analysis: 

'¢(n,m)= _L,G(n,m;n',m')<p(n',m'), 
n'm' 

(11) 

where cp(n', m') is the right-hand side of (9). Putting 
m = 0, we obtain 

'¢(nO)= \""l2X""(n,O)~""(n',O)[Mw-~A6 ••. o].,,(, O) (12) 
' ""-' E-E.,(k) "'n, . 

J,tk, n' 

The equation determining the spectrum of the local 
oscillations can be obtained from the condition for the 
vanishing of the determinant of the system of equations 
(12), which is linear and homogeneous with respect to 
1/J(n, 0). This condition obviously has the following 
form: 

detj() •• ,-2\""l x~"(n,O)x~"(n',O)(Mw-~Ab.·o) I= (13) 
""-' E-E (k) O. 
~· " 

In the general case Eq. (13) determines the local 
states that are split off both from the band of the two 
free excitons and from the band of the so-called biex­
citons-the band of two bound excitons E< 2>(k). 

We confine ourselves below to examination of a local 
level lying near a biexciton band. In the case when the 
distance from the local level to the biexciton band is 
small compared with the anharmonicity constant, i.e., 
when IE - E< 2 >(k) I «A, we can confine ourselves in 
(12) to the contribution of the biexciton band only. If, 
in addition, we assume that the anharmonicity is strong, 
i.e., that A/ A« 1, then, as follows from[ 4l, accurate 
to small O(A/ A) the wave function of the biexciton is 
determined by the expression 

x"" (m, n) = .:_ .s •• m· 

1N 
In this approximation we obtain from (12) an equa­

tion for the determination of the energy of the sought 
local level (see also[ 4 l): 

l = 2(Mw- M) \""l 1 (14) 
N ~E-£<2>(k) 

In[ 4 l the energy of the biexciton was calculated only 
at k = 0. However, it is possible to obtain in similar 
fashion also an equation for E< 2>(k) for arbitrary k. 
It is easy to show that this equation is of the form 

1 = _ 2A \""l 1 
N ""-'E- 21iwo- f(k + k')- r(k- k')' (15) 

where r(k) = :0Vnmeik(n-m). When lr(k)/AI 
n ' 

~ A/ A « 1 it follows from (15) that 

E<2>(k)= 21iw0 - 2A- 2~A .L, (f(k + k')-!- f(k- k') ). (16) 
k' 

In particular, it follows from (16) that the width of the 
biexciton band, and incidentally also the splitting of the 
term of the biexciton in a crystal with several mole­
cules per unit cell (see[4 l ), have an order of magnitude 
r 2/ A ~ A 2/ A «A (with A/ A« 1). Therefore, for 
analogy with the investigation with the states of local 
excitons (see[ 1• 6 l), a local state with E < E< 2>(k) is 
realized for a biexciton if I tiAw - AA I > yA :Y A, 
where the coefficient y depends on the structure of the 
lattice and is of the order of y ~ 1. When I AA I 
< I Aw I, the indicated inequality can be satisfied even 
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if fi I 6.w I < 6., when the no local states are formed 
near the fundamental tone. Thus, the anharmonicity 
leads under the conditions in question to the formation 
of a local state-a "local over~one," which is missing 
when no account is taken of the anharmonicity. In the 
case of strong anharmonicity (A> 6.) it is easy to 
show that there appear also higher "local overtones." 

We note one more feature of Eq. (14) (see also[41). 
It follows from this equation that when I 6.A I~ fi ltJ.w I, 
in the case when 21 titJ.w - 6.A I< y6. 2/ A, the local 
states in the region of 2tiw 0 are not realized, although 
a local state in the region tiw 0 can exist. Thus, the 
anharmonicity can lead not only to stabilization of the 
local states in the region of the overtones, but also, 
generally speaking, to their suppression. 

Finally, as follows from the analysis of (14), the 
single-pole approximation used above is valid if 

l!iAw-MI{A«f.1, since IE-Et21 l-lli~w-MI. 

3. SURFACE OSCILLATIONS IN THE REGION OF THE 
OVERTONES 

Let us consider for simplicity a semi-infinite linear 
chain of molecules. We assume that on the "surface" 
there is a molecule of the host substance with a fre­
quency modified by the average field, or else a mole­
cule of a different species. 

We consider first surface oscillations in the region 
of the fundamental tone. Assuming, as before, that the 
Hamiltonian is of the form (5), we seek the wave func­
tion of the surface oscillation in the form (6}. In this 
case we obtain for the coefficients 1/J(n) the equation 

1jl(n)(E-Iiwn)- EVnt¢(1)=0, n,1;;;;.0, (17} 
I 

where Wn = w' at n = 0 and wn = w at n ¢ 0, while E 
is the energy of the surface oscillation. The solution of 
the system (17) (see also, for examplePl, Ch. VIII), is 
of the form 1/J(n) =A exp ( -Kan), Re K > 0, where K is 
determined, in the nearest-neighbor approximation, 
from the relation 

e-••=r/tl.w. (18} 

Here tJ.w' = w' - w and r = Vn n+l• For the surface-
' oscillation energy we then obtain 

E = liroo + 2rchY.a. (19} 

It follows from (18} that the surface oscillation exists 
in the region of the fundamental tone if 

lrJ tl.rol < 1. (20} 

We now proceed to consider surface oscillations in 
the region of the overtones. We shall show that, when 
account is taken of the anharmonicity, the formation of 
surface oscillations-surface overtones-is possible in 
this region of the spectrum even in the case when there 
are no surface oscillations in the region of the funda­
mental tone. The wave function of the first surface 
overtone obviously satisfies the following system of 
equations (see for comparison Eq. (9}}: 

1jl(m, n) (E- 21iwo + 2AIIm,n)- E [Vmt¢(1, n)+ Vnt¢(1,m)] 
r;;.o 

In order to simplify the analysis, we shall take into 
consideration only the interaction between the nearest 
neighbors. In this case the solution of Eq. (21) for the 
surface states will be sought in the form 

1jl (n, m) = e-><(n+m)IV (In- m I) 
Assuming that · · ' 

le-xl < 1. 

(22} 

(23) 

It is convenient to distinguish in the system (21} be­
ween the equations with ( m, n) = (0, l), l:::: 0, which 
play the role of boundary conditions, and the "interior" 
equations with m :::: 1 and n s 1. In the approximation 
considered here, and also when 6.A = 0, these two 
groups of equations have the following form: 

and 

(e+M-2!!.ro)cp(O) =2re-•cp(1) (m=O,n=O), 

(e- tl.ro)cp(l)- r{e-Mcp(l + 1) + 2chxcp(l-1)} = 0, 

m=O, n;;;.1, 1=1,2, ... 

(24a) 

(24b} 

(e + 2A)cp(O) = 4r ch "cp(1), n = m > 0, (25a) 

cp(l+1)+cp(l-1)=acp(l), 1;;;.1, n=l=m, n;;;.1, m;;;.1,(25b} 

where € = E - 21iw0 , a. = €/2r cosh K, and r 
= Vn,n+l• From (24a} and (25a) it follows that 

e = -2A + 4!!.ooe-><chY., 
!!.{1) 

cp(1)=re-Xcp(O), 

(26} 

(27) 
and this pair of relations is identically equivalent to 
the aggregate of Eqs. (24a) and (25a). Equation (25b} 
can be satisfied for all l :::: 0, if the function cp ( l) is 
sought in the form 

(28} 

Substituting (28} in (25b}, we find that the quantity e-q 
must satisfy the equation 

eq+e-q=-8-. 
2rchY. 

At the same time it follows from (28) and (27) that 

tl.m e-q=re....,., 

(29} 

(30) 

so that (29) can actually be used to determine the pos­
sible values of K. Using (26} and (30) and solving (29} 
with respect to the quantity e-2 K, we get 

1 ( A r2 
e-2•=- -1 +-+--} ± 2 tl.ro (tl.ID) 2 

1 1/( A r 2 )2 4r2 (31} 
±2f 1-tl.ro-(tl.oo)2 +(tl.ro)2" 

Before we proceed to analyze this relation, we note that 
if relations (26), (28}, (29}, and (30) are satisfied, then 
Eq. (24b} is satisfied automatically and becomes an 
identity. Consequently, the wave function in the form 

1jl(n,m)=cp(O)e-><(n+m)(tl.; e-•t-ml (32} 

satisfies exactly the system of equations (24} and (25} 
at a value of the energy 

(26a} 

and at a value of K determined from relation (31). In 
this case a physical meaning is possessed only by such 
values of K for which, besides inequality (23}, there is 
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satisfied also the inequality 

I~; e-xl,.;;; 1, (33) 

which ensures a finite norm for the wave function of 
the relative motion of the quasiparticles in the surface 
overtone. 

If anharmonicity is not taken into account, i.e., if 
A= 0, it follows from (31) that the inequalities (23) and 
(33) can be satisfied only when I aw I > I r I, the only 
value of K being determined in this case from the 
relation 

so that 
e--21< = (r f l\<o) 2, 

e-"=±lf/~wl. 

(34) 

(35) 

Using (35) and (32), we find that in this case the wave 
function 1/J(m, n) is equal to the product of wave func­
tions of two surface excitons that are not coupled with 
each other and whose wave functions and energies are 
determined by relations (17), (18), and (19). Then the 
energy of the state l/1( m, n) is equal to double the 
energy of the surface exciton (19), and is determined 
by the relation 

E = 2(/iwo + 2fch%). (36) 

When A ;o! 0, Eq. (31), generally speaking, leads in the 
region of E Rl 2liw 0 to the occurrence of two surface 
states, one of which can be genetically connected with 
the surface state at A = 0, which was considered above, 
while the second can split from the biexciton band. In 
the case when 

(37) 

i.e., when no surface state is produced in the region of 
the fundamental tone, the second surface state, which 
splits away from the biexciton band, may turn out to be 
the only one. Let us consider this situation in greater 
detail and let us assume that besides (37) there is also 
satisfied the inequality 

(38) 

which ensures, with a large "margin," the formation 
of the state of two bound excitons (i.e., a biexciton), in 

an ideal crystal (for more details see[4 l). For this 
case it follows from (31) that the only root from which 
the inequalities (23) and (33) are satisfied is deter­
mined by the relation 

e-2x=f2/A~w+O(~:). (39) 

This value of e-2K turns out to have a modulus smaller 
than unity, provided only that 

l~wl > P/A, (40) 

which, of course, can take place if the inequality (38) is 
satisfied, in spite of the fact that the inequality (37) is 
satisfied. Thus, in the situation in question, the only 
surface state is the state that splits away from the 
biexciton band, and is thus entirely due to the anhar­
monicity. 

In conclusion we note that although the foregoing 
discussion of the role of the anharmonicity was based 
on a consideration of very simple crystal models, 
there is no doubt that the effects indicated above should 
take place also for more realistic models. In addition, 
these effects should take place in the region of the 
spectrum corresponding to higher overtones. 
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