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A method of calculation is developed and general expressions are obtained for the spin-Hamiltonian 
constants of a paramagnetic center (PC) in the presence of an external electric field. A comparison 
of the theoretical and experimental results makes it possible to determine the sign and magnitude of 
the ion displacements near the PC-the local deformation. A method is proposed for determining the 
wave functions of the excited state of the PC from data on the shift of the ENDOR line under the ac­
tion of an external electric field. The methods are illustrated for the example of F-centers in alkali­
halide crystals. The displacements of the ions and the values of the square of the modulus of the 
excited-state wave function are determined at the sites where the ions are located for the first, 
second, and fourth coordination spheres in crystals of KCl and KBr. 

INTRODUCTION 

UTILIZATION of the method of electron nuclear 
double resonance (ENDOR) appreciably facilitates the 
investigation of paramagnetic centers in crystals _Pl It 
turned out to be possible to measure the square of the 
modulus of the ground-state wave function at sites 
where the nuclei of many coordination spheres are 
located and to use this data in order to investigate the 
structure of the energy bands.[ 2•3 l 

The nuclei of a paramagnetic center (PC) are lo­
cated at sites which are devoid of a center of inversion, 
independently of whether the PC as a whole possesses 
inversion symmetry or not. 1> Therefore one can expect 
shifts of the ENDOR lines which are linear in the elec­
tric field, and spin-nuclear transitions due to the effect 
of the electric component of the radiofrequency 
field. [4- 71 The first electric effect in ENDOR was ob­
served by Reichert et al.:[s,g] they observed a shift of 
the F-center lines in alkali-halide crystals due to the 
effect of a constant electric field, which is described 
as a change of the constant a, i.e., as the function 
(aa/aE). 

Investigation of electric effects in ENDOR opens up 
new possibilities for studying PC (including centers 
with inversion symmetry) and, in particular, their ex­
cited states. 

The influence of an external electric field on the 
hyperfine interaction constants is considered below. A 
method is proposed for determining the wave function 
of the excited state of the PC at different lattice sites 
from data on the shifts of the ENOOR lines due to the 
effect of a constant external electric field. Specific 
calculations are carried out for F-centers in KCl and 
KBr crystals. 

!)The nucleus of the impurity ion (atom) constitutes an exception 
if it is located at a center of inversion of the crystal. By PC we under­
stand a region of the crystal near the defect, with which the interaction 
of the localized electron is substantial. 

1. CALCULATION OF THE SPIN-HAMILTONIAN 
CONSTANT FOR THE INTERACTION OF A PC 
WITH AN EXTERNAL ELECTRIC FIELD 

Since the electric effects are relatively small, it is 
convenient to interpret their effect as a change of the 
spin-Hamiltonian constant due to the influence of the 
external electric field. One can calculate this change 
if a term -d · E is added to the initial Hamiltonian, 
where d denotes the effective dipole moment of the 
PC. [ 101 In similar calculations one usually has to keep 
terms of higher order (than the first) in perturbation 
theory, thus taking excited states into account. 
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In connection with this, the change of the hyperfine 
interaction constant due to the presence of a 6-function 
in the initial operator is of special interest. The latter 
will include in the spin-Hamiltonian constant the elec­
tric effects associated with the values of the excited­
state wave functions at the site where the nucleus is 
located. 

We carry out an explicit examination for F-centers 
in alkali-halide crystals since for the time being the 
required experimental data exists only for them. A 
similar investigation for other PC's does not present 
any difficulties in principle. 

In order to calculate the spin-Hamiltonian constant 
let us choose the initial operator in the form 

W = r, T1~1l1 S- dE, 
I 

16n 1-111-1 
't'l=----, ~~=1\(lr-Rd), 

3 II 

(1) 

where r, 1J., S and Rz, IJ.l, Iz denote the radius vector, 
magnetic moment, and spin of the electron and of the 
l-th nucleus. The summation over l involves the 
nuclei of the entire crystal. Since an F-center posses­
S«;!S a center of inversion (the group Oh), corrections 
which are linear in the electric field appear in second 
order perturbation theory: 

{2) 
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where <tk. denote the energies of the unperturbed 
states of the system. In order to carry out the calcula­
tions it is convenient to express each of the a-functions 
appearing in Eq. (1) in terms of combinations of a­
functions which transform according to certain irreduc­
ible representations of the group Oh· One can find the 
latter by the method of actual decomposition of a re­
ducible representation into irreducible representa­
tions, (uJ although in a number of cases it is easier to 
determine the coefficients of the linear combinations if 
the generating elements of the group operate directly 
on combinations of a -functions. 

Since the experimental data are given for the first, 
second, and fourth coordination spheres, we carry out 
the appropriate calculations for these spheres. For the 
six nuclei of the first and fourth coordination spheres 
we have 

6t;2=±1/2<Pt+···, 6a,4=±'h<P2+···, lls,s=±1hrpa+···, (3) 

where 'P1 = a1- a2, 'P2 = a3- a4, and cp3 =as- a6. 
Here and below we denote by dots combinations of a­
functions which are the bases of irreducible represen­
tations different from r 4u and whose explicit form is 
not essential in what follows. The point is that the 
polar vector d is a basis of the irreducible represen­
tation r 4u; therefore, in accordance with Eq. (2) only 
those combinations which transform like the vector d 
under the symmetry operations of the group will lead 
to nonvanishing matrix elements. Their explicit form 
is written down. 

The directions of the coordinate axes x, y, z are 
chosen along the crystallographic directions (100], 
[010), and (001]. The following correspondence exists: 
'P1 -x, cp 2 - y, and cp 3 - z. Nuclei 1 and 2, 3 and 4, 
and 5 and 6 lie on straight lines passing through the 
origin of coordinates, where the first (1, 3, 5) lie on 
the positive directions of the axes. For the twelve 
nuclei of the second coordination sphere we have 

ilt,2=±'/s(<Pt-<P2) +···, 
lls,s=±1/s(q>t+<Pa) +···, 
6s,to=±(-<Pt+<Pa) +···, 

where 

6a,4F ± 1/s(q>t + <P2) +· · ·, 
67,s=±1/s(q>2+<Pa) +· · ·, (4) 
llu,12 = ± 1/s( -q>2 + <pa) + · · ·, 

q>t = b, - 62 + 6a- 64 + lls- bs - 6s + 610, 
q>2 = -b, + 62 + lla- 64 + 61- 6s- 6u + 612, 
rp, = /l, - .S, + 6, - b, + 6, - 610 + llu - /l,,, 

The nuclei are numbered in the following way: 

1.2 (Rx =±a, Ru = +a, R, = 0), 3.4 (±a, ±a, 0), 5.6 (±a, 0, ±a), 
7,8(0, ±a, ±a), 9,10(+a, 0, ±a), 11,12(0, +a, ±a), 

where a is half the lattice constant. 
Since the wave function of the ground state is a 

basis of the irreducible identity representation r lg, 
and the vector d is an irreducible representation of 
r 4U, the summation in (2) only includes the terms r 4u. 
Let Px, Py, Pz be the wave functions of the excited 
state belonging to the irreducible representation r 4U 
so that the correspondence Px - x, Py - y, Pz - z 
holds. Let us represent them in the following form: 
Pi = Pqi, where qi = Pi/P and P = -J P2 + p2 + p2 is 
the cubically symmetric part. x Y z 

Using the matrix method of perturbationsr 12] one 
can represent the matrix elements of a product of two 
arbitrary polar vectors A · B, where B does not de­
pend on the coordinates over which the integration is 

carried out, in the form 

(AB)r1g ,Pi= aB;, (5) 

where a = ( Az ) r 1 Pz. Substituting (1) into (2) and g, 
taking relations (3) and (5) into account, we obtain the 
spin-Hamiltonian for the first and fourth coordination 
spheres, linear in E: 

(6) 

where 

here the index m labels the spheres (I or IV), and dV 
is the volume element. 

Using the law governing the transformation of basis 
functions of the irreducible representation r 4u, we ob­
tain 

so that 

q,(O, 0, -a)= -q,(O, 0, a), 

qx(O, 0, ±a)= qy(O, 0, ±a)= 0, 

U2nm=21Jfr1g (m)P"~m)'. 

For the second coordination sphere we have 

~(2) = 1/4 -rS[Ex(lt,2 + la,4 + ls,s- ls,to) 

+ Eu( -11,2 + la,4 + l1,s- lu,t2} + 

where 
U2n = J 1Jfr1g<PaP;n) dV. 

From symmetry considerations we obtain 

a2n = 4 J 1Jfr 1g(61- 6s)P," dV; 

furthermore 
q,(O, -a, -a) = -q,(O, a, a), qx(O, ±a, ±a)= O, 

q,(O, a, a)= qy(O, a, a). 

so that 
8 

a2n=--=1Jfr (7)P"(7). 1'2 lg 

(7) 

(8) 

In an experiment the external electric and magnetic 
fields are directed along an axis passing through the 
vacancy and two nuclei whose ENDOR lines are ob­
served. Assuming Ex= Ey = 0, Ez = E for the first 
and fourth coordination spheres and Ex = 0, Ey = Ez 
= E/ ..f2 for the second coordination spheres, and 
averaging the operators (6) and (8) over the electron 
spin, we obtain the following result for the spin-nuclear 
Hamiltonian 

~( 2) ~n'\1 a,n'I'"r1g(m) Pn(m) (9) 
(ltm )s = 't'mEI 56 l...J /). , 

n n 

~(2) [~ H 1 ~ H ~ H H H ] '\1 Utn ty rlg (7) pn (7) 
(~ )s=-rE 1,,8 +'2(/3, 4 -/1,2 +Is,6 +19,10} ~ 1:1 , 

n n {10} 

where l:H denotes the projection of the vector I on the 
direction of quantization (the direction of the magnetic 
field). Formulas (9) and (10) pertain to the two types of 
coordination spheres under consideration. 

Comparing (9) and (10) with the effective Hamilton­
ian introduced inr 9 l, we obtain an expression for the 
parameter aajaE fromr 9 l, measured experimentally: 
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(.!!..) =2-r '¥ (m) \"1 a 1,.P"{m) {11) 
iJE m m r1g ~ 1\n • 

The index m labels the coordination spheres. To a 
good approximation one can write {11) in the form 

(iJa\ = 2-r,..'l'r,g(m) ~ a1~P"(m), {12) 
aEJ,.. fl. ,...ru 

where ~ is the average distance between the energy of 
the ground state and the energies of the excited states. 
One can show that 

L UtnP"(m)=Rm'¥r1q (m). 
.... 1 

{13) 

In fact, let us consider an expansion in terms of eigen­
functions of the PC : 

z'¥r (r) = \"1 Cn'¥ n(r), 1g .l...l .. 
where 

Cn= j'¥r 1g(r)z'¥ .. (r)dV, 

and Cn = 0 if n ¢ r4U• Then 

z'l'r1g(r) = E a,,.P~">. 
n:;i:r18 

(14) 

{15) 

Assuming Zm = Rm for the first and fourth coordina­
tion spheres, Zm = Rm/12 for the second sphere, and 
taking the symmetry of the wave functions into account, 
we arrive at expression {13). Substituting {13) into {12) 
we obtain 

(16) 

If it is assumed that the lattice is not deformed by 
either the external electric field or by the presence of 
a defect, formula {16) can be directly evaluated and 
compared with the experimental parameter {aajaE)m. 
The values of ¢f. are known from the ENDOR data, 
- Ig 
A can be approximately replaced by the distance be-
tween the ground and the first excited levels. The re­
sults of the calculations and the corresponding experi­
mental data[sJ are presented in Table I, from which it 
is seen that there is good agreement between theory 
and experiment for the second and fourth spheres. The 
discrepancy {- 30 to 40%) for the first sphere is ap­
parently associated with a displacement of the ions due 
to the presence of a defect in the crystal. The magni­
tude and sign of this displacement can be determined. 
From Table I and formula {16) it is seen that the sign 
of the displacement of the ions of the first sphere is 
the same for both crystals {the ions move away from 
the vacancy). The magnitude of the displacement is of 
the order of 1 .A. 

In these discussions we have not considered the ef­
fect of a displacement of the ions due to the action of 
the external electric field. [to] Taking this effect into 

account would make it possible to determine the value 
of the effective dipole moment d at the lattice sites. 
Once again it must be emphasized that the investigation 
carried out here may serve as a method of investigat­
ing the lattice's deformation in the region of a crystal 
where a PC is located. 

2. DETERMINATION OF THE WAVE FUNCTION OF 
THE EXCITED STATE 

Let us also consider PC's for which one can limit 
one's attention to the first term in the sum (11}. A 
discussion of this approximation will be carried out in 
Section 3. In this case we obtain the following result 
for the wave function of the excited state at a lattice 
site: 

P(m) 1\ ( oa ) 
2Tm'¥(m)a fijj m• 

(17) 

From {17) it follows that in order to determine P(m) 
it is necessary to know the optical absorption fre­
quency, the ground-state wave function at the lattice 
site, and the matrix element for the dipole transition 
from the ground state to the excited state. 

For the majority of PC's the optical absorption fre­
quency is usually known, and the ground-state wave 
functions are determined from ENDOR data. The situ­
ation with regard to the determination of the matrix 
element of the dipole transition is more complicated. 
For its determination one can use a comparison of the 
theoretical and experimental values of the integrated 
intensity of light absorption by the PC. In this connec­
tion, of course, it is impossible to manage without 
making certain approximations in the theory of optical 
transitions. 

A. One can avoid this by considering the ratios of 
P{m) at different lattice sites. In this case the matrix 
element of the dipole transition and the absorption fre­
quency vanish: 

P(m) Tm•'¥(m') ( oa) ( oa )- 1 (18) 
P(m') = Tm'¥(m) iJE m iJE m' 

Using the data taken fromr 13• 141 for lfl{m) and the 
parameters aajaE taken fromr 9l, we evaluated the 
ratio {12) for F-centers in crystals of KCl and KBr. 
The obtained results are tabulated in Table II. The 
ratios of the ¢-functions of the ground state are also 
given for comparison. 

B. In order to determine the absolute values of the 
excited-state wave function of an F-center we used the 
experimental data for the optical frequency { t::r 4u- t::r J.g) 
and the integrated intensity T 12 /N of the light absorp­
tion calculated at a single absorbing center, which is 
cited inr 15 • 16l, and a very general theoretical expression 
for T 12 /N derived inr17l. The parameter a was deter­
mined from a comparison of theory and experiment. 

Table I. Theoretical and experimental values of (a a/ a E >m, 
Hz/V. cm- 1 

Crystal I Number of I I 11 coordination Theory Experiment Crystal 
sphere I / I Number of I 

coordination Theory Experiment 
sphere 

KCI I { I I 0.591 0.9+0.05 II II 0.28 0.25+0.03 KBr 
IV 0.059 0.05+0.005 

I { I I 0.61 I 1.0+0.05 
II 2.00 2.0+0.05 
IV 0.38 0.33+0,02 
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Table n. Ratio of the squares of the wave function 
at a lattice site of the first coordination sphere to 
the square of the wave function at sites ofthe sec-

ond and fourth coordination spheres 

Crystal d" roun Number of I G d 
~oor ma- term I Excited 

term 
Crystal coordina- Ground Exctted I INumbero:l I. 

• tion sphere term term tton sphere 

KCI I { II ,6.31 
IV 41.0 I 9.09 

34.8 I KBr I { II ,2.50 I 3.37 
IV 18.4 16.8 

The results of a calculation of the functions P(m) are 
given in Table III. 

We note that in [9J certain data are also given for the 
crystal NaCl. In contrast to the other parameters, the 
parameter (aajaE)Na was determined in the region of 
a quadratic dependence of the line shift on the field E. 
In the range of fields where the shift of the lines is 
smaller than or of the order of the interaction energy 
between nuclei, the ENDOR spectrum is complicated 
and a determination of the parameters presents con­
siderable difficulties. Therefore the parameter 
(aa/BE)Na was determined to an accuracy ~ 25%. 
Keeping this in mind and taking into account that the 
authors of[9 J did not present values of the parameters 
aajaE for the crystal NaCl in the fourth coordination 
sphere, we did not carry out calculations for this 
crystal. 

In conclusion we note that if in Eq. (13) we confine 
our attention to the first term in the sum, then for 
P( m) we obtain the expression 

(19) 

which makes it possible to estimate the wave functions 
of the excited states even in those cases when no ex­
periments exist concerning the effect of an electric 
field on the ENDOR spectrum. 

3. DISCUSSION OF THE RESULTS 

1. Let us present the arguments which indicate that 
the approximation made in Sec. 2 may be realized in a 
number of PC 's. In connection with the fact that in 
expression (11) the matrix element of the dipole transi­
tion plays an essential role, one can surmise that the 
approximation we have made is valid in crystals in 
which the oscillator strength of the optical transitions 
from the ground state to the first excited state is close 
to unity. In particular, the F-centers in alkali-halide 
crystals, where according to the data the oscillator 
strength may be ~o.9, belong to such PC's. 

In the effective mass approximation one can derive 
certain quantitative criteria whose fulfilment ensures 
the validity of the approximation which was made. Let 
us write the wave functions of the ground state and of 
the first excited state in the form 

v''• 'I'r =Nouo(r.)-=e-vr 
Ig -yn (20) 

[:1'1• 
'I'r = Nouo(r)---::.ze-P•, 

4u 1/tr. 
where uo( r) denotes the Bloch function at the bottom 
of the conduction band; the factors associated with 
uo(r) are the "smoothed" wave functions of the F­
center; No is a constant normalization factor. Then 

Table m. Values of the wave functions at lattice 
sites (A-3 ) 

'

Number of I 
Crystal coordina- Ground 

tion sphere term I Excited IICrystaii N:::::.;f I Groond I Excited 
term tion sphere term term 

I {I ,0.67 KCI II 0.106 
IV 0.016 

I 2.3 II I { I I 0.59 11.95 0.25 KBr n o:235 0.58 
0.066 IV 0,032 0,116 

Eq. (19) can be rewritten in the form 

e<H>lRm == 32x5 / (1 + x) 5, (21) 

where K = {3/y. Equation (21) is exactly satisfied for 
K = 1. If one of the theorems about sums is used, which 
for the wave functions (20) is written in the form 

.E a1n2 = 1/y2, 

then in order to confine our attention to the first term 
in this sum it is necessary to satisfy the equation 
210«5/(1 + K) 10 = 1, which also holds for K = 1. From 
here it follows that the approximation we made in Sec. 
2 may be valid provided y and {3 do not differ very 
strongly from each other. 

The values obtained by us for the ~/~-functions of the 
ground and excited states are given in Table III. Using 
these values we estimated the parameters y and {3 
(from the ratios of the ~/~-functions at sites of the same 
kind), and it was found that the difference does not ex­
ceed 10%. Then from Eq. (21) it follows that our ap­
proximation is valid for Rm ;$ 10 A.. 

2. In Table II the inequality 

(22) 

attracts our attention since, at first glance, it contra­
dicts the idea that the excited-state wave function 
should be attenuated more slowly than the ground-state 
wave function. At the same time inequality (13) indi­
cates that the wave function P, having cubic symmetry, 
can be "stretched" along an axis of the type [100] 
more strongly than the 1/1-function of the ground itate. 

The concept of damping can give the inequality 

(23) 

because the nuclei of the first and fourth coordination 
spheres are located on a single axis. The fact that in­
equality (14) is not strong may indicate that the maxi­
mum of the 1/1-cloud is located near the vacancy so that 
the ratio 1/II/1/Irv corresponds to a region of a smoother 
decrease of the 1/1-function. This property is confirmed 
by the data in Table III, according to which P~ > l/1~. 

Thus, one can make two basic conclusions: 
a) There is a strong localization of the 1/1-cloud near 

the vacancy, where its maximum is located at a dis­
tance which is smaller than half the lattice constant. 

b) The P-cloud is deformed more strongly than the 
1/1-cloud. 

3. The values of the wave functions of the excited 
state obtained in this work may serve as additional 
reference points for the construction of a microscopic 
theory of PC, and also for an investigation of the struc­
ture of the conduction band by the method proposed 
in( 3J. 

4. If in addition to an isotropic constant there are 
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other spin-Hamiltonian constants influencing appreci­
ably the electric effects (the case of distant spheres, 
other PC's), one can extract the parameter aa/aE by 
using the dependence of the splitting of the ENDOR 
lines under the action of the field E on the orientation 
of the external magnetic field with respect to the 
crystallographic axes. 

Let us illustrate what has been said for the example 
of the anisotropic constant b in the coordination 
sphere with six nuclei distributed along an axis of the 
type [100]. The constant b appears in the expression 
for the ENDOR frequency together with the angular 
factor ( 3 cos 2 e - 1 ), where e is the angle between the 
direction of the magnetic field and the direction [100]. 

Choosing e such that 3 cos 2 9 = 1, one can eliminate 
the constant b and together with it the parameter 
ab/ a E. 

In conclusion we note that together with an investi­
gation of the effect of an external electric field on the 
ENDOR spectrum, the effect of the pressurer1a] has 
also been studied experimentally. A theoretical calcu­
lation of this effect, analogous to the calculation car­
ried out in the present article, would be of interest. 
The results of the calculation and of the experiments 
might serve as an additional method for investigation 
of the excited states. 
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