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The problem of Newtonian analogies for homogeneous anisotropic models with shear in general 
relativity is considered. As shown by Milne and McCrea, for isotropic Friedmann relativistic 
models there exists a close analog in Newtonian cosmology. It is shown in the present paper that 
within the framework of Newtonian hydrodynamics with a Newtonian gravitational potential and 
under certain assumptions regarding the shear tensor structure, solutions with homogeneous 
deformation can be obtained which are Newtonian analogs of relativistic anisotropic models with 
shear of Bianchi type I and also of Bianchi type V in the case when transitivity hypersurfaces are 
orthogonal to the 4-velocity. Newtonian solutions for dust-like matter and for matter with an 
ultra-relativistic state equation are considered, as well as the Newtonian analog of vacuum solu­
tions and model with a magnetic field. 

IN relativistic cosmology, within the framework of 
general relativity theory (GRT), there are known homo­
geneous anisotropic models characterized in the gen­
eral case by the presence of isotropic extension, shear, 
and rotation in the matter. In this paper, we consider 
homogeneous models with expansion and displacement 
without rotation, with metrics admitting groups of mo­
tion of Bianchi type I, and also of Bianchi type v[l-3 \ 

acting on transitivity surfaces that are orthogonal to 
the four-velocity. 

Relativistic homogeneous isotropic Friedmann 
models have an analog, as shown by Milne and 
McCrea[ 4- 8l, in Newtonian cosmology (Newtonian hydro­
dynamics with gravitation). 

For anisotropic models, the general analysis of the 
co-moving space in the quasi-Newtonian approximation 
is given in[ 9 • 101 • It is shown in(lo,ul, that a number of 
GRT solutions (in particular, the Heckmann-Schucking 
and the Kasner solutions) remain valid in the Newtonian 
approximation. 

In this paper we formulate the assumptions under 
which the Newtonian approximation for the aforemen­
tioned general-relativistic Bianchi models of types I 
and V, which consider their essential properties, can 
be derived within the framework of Newtonian hydro­
dynamics with gravitation. The aforementioned as­
sumptions with respect to the structure of the shear 
tensor in Newtonian theory are made ad hoc, as neces­
sary supplementary relations[ 9J from the general rela­
tivistic solutions. In GRT these relations, which are 
considered in Sec. 1, are an automatic consequence of 
the gravitation equations for a metric with definite 
structure. 

In Sees. 2-4 we consider the Newtonian solutions 
for matter with an equation of state p = 0 and e = 3p, 
the Newtonian analog of the vacuum solutions, and the 
Newtonian analog of the axially symmetrical (with 
group G4 ) model with magnetic field. 

The Newtonian approximations are considered here 
for general-relativistic homogeneous anisotropic 
models with groups of motions acting on the transitivity 
hypersurfaces T = const (with zero and negative con-
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stant curvature), which are orthogonal to the four­
velocity. For such models, the synchronous reference 
frame with metric (we use the notation of Landau and 
Lifshitz[ 121) 

ds2 = (cdr)'- "/a~dx«dx~, x" = cr, a,~= 1, 2, 3, i, k = 0, 1, 2, 3 (1) 

is also co-moving (u0 = 1). The tensor Ui·k- uk. i 
vanishes (there is no rotation), and the inv'ariant break­
down of Ui; k into an expansion tensor ( ®-expanf:!iOn 
scalar) and a shear tensor qik with zero trace ( ql = 0) 
takes the form [ 11 

B=cu;,,/3. (2) 

1. NECESSARY RELATIONS IN HOMOGENEOUS 
ANISOTROPIC BIANCHI MODELS OF TYPES I AND 
V IN THE GRT 

In the model that admits of an Abelian group of 
motions G3 (type I after Bianchi[ 2• 3 l), considered first 
by Heckmann and Schucking[ 13l, the metric (1) has the 
following form (the three-space x01 is Euclidean 

ds'= (cdr)'- {[RI(r)dx1J2+ [R,(r)dx'P+ [R3(r)dx'l]'}. (1.1) 

The nonzero components of Ui. k are equal to the 
Hubble constants h01 ( T): ' 

cu/ 1=h1, CU;22 =h2, CU;33 =h3, 

38 = h1 + h, + h3, ha = dIn R2/ dr:. 

The Einstein equations without the cosmological 
term) 

R~- 1/2Rb~ =(8nk/c4)T~ (1.2) 
with an ideal-gas energy-momentum tensor Tik 
= (e + p)uiUk- pgik (p-pressure, e-density of in­
ternal energy) give expressions for R01 ( T) in (1.1) 
and e for dust like matter ( p = 0) and for matter with 
an equation of state e = 3p in the following form[1• 14 l: 

1) Pressure p = 0: 
R13 (r) = L1c2(r- r:1) 1-1-«• (r- r2) I-a,, 

R23 (r) = L 2c2 (r- ri) I+a, (,;- r 2) !-a,, 

R; (r)= L3c'('C- ,;1) 1-t«,(,;- ,;2) 1-a,, 

e = c'/6nk('t-'t1) (1:-r2). 

(1.1a) 
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2) Ultrarelativistic equation of state e = 3p: 

R 1 = L1(sh!.)*•(ch/.) 1-a•, R, = L,(sh/.) 1+"'(ch/.) 1-"'', (1.1b) 
R3 = L3 (sh /.) 1+a•(ch 1.) 1-"'•, C't = Lo(Rh 4/.- 4/.); 

e = 3p = 3c4/ 128nkf4l sh4 21. 

( L1> L 2 , L3 , L0-scale constants). 
The constants a 1 , a 2 , a 3 in (1.1a) and (1.1b) are 

connected by two relations: 

a1 + «2+ aa=O, at+ a2 + u3=6, 

and can be represented in the form 

a1 = 2 sinv, a2 = 2sin ('\' + 2nl3), a3 = 2sin ('y +4n/3), 

(1.3) 

-nl6~v~n/6. (1.3a) 

The calculation of the components of the shear ten­
sor qik> in accordance with (2) for (1.1a) and (1.1b) 
(and in general at e = e(p)), in mixed indices, yields 

(
a1 0 0) qg = q~ = 0, qg = Q(r) 0 a2 0 , 
0 0 a 3 

(1.4) 

where 

Q(r) =A I R1R2R3 =A (-g) -'1·, A= const. (1.5) 

In the model (1.1), the component (1.2) with i = k = 0 
is written in the form 

h,h,+htha+h2h3 =(8nk!c')e. (1.6) 

Relation (1.6) can be treated as the quasi-Euclidean 
condition: the energy density is equal to the "critical" 
value. 

In the case of vacuum Ra(T) in (1.1) is given by the 
Kasner solution[ 2 ' 12' 14l: 

with constants a 1 , a 2 , and a 3 from (1.3) and (1.3a), 
and Eqs. (1.4), (1.5), and (1.6) with e = 0 are retained 
for the Kasner solution. 

There are known Bianchi models of type I, con­
structed under the assumption that there is a homogen­
eous magnetic field in space besides the ideal liquid, 
("magnetic models of the universe")[ 15- 20l. In this case 
we have for matter with p = 0, assuming R1 = R 3 (the 
magnetic field is directed along the axis x2 ), 

R 1 = R3 = A (82 + 1']2) I 2, R 2 = DA ( -38' + 6B21']2 + 1']4 

+ 12EI']) I 12Rt, 
cr =A (3821'] + rJ 3) / 6, (1.8) 

where A, D, E, and B are constants. The densities of 
the energy of the matter (e) and of the magnetic field 
(W) are equal to 

e = c'D I 4nkRtR,R,, W = H2 I 8n = c'A2B2 /3rrkR 14• (1.8a) 

Calculation of qik for (1.8) leads to (1.4) with the 
values 

a,= a3 = -1, a2 = 2; (1.4a) 

the function Q( T), however, now turns out to be 

Q(~) = cAD(-28'1']' + 61']8''- 9E1']' + 3E8') /9(8' + 1'] 2 ) (-g)'h. 

To solve (1.8) we have, in place of (1.6), the rela­
tion [ 15-IBJ 

h,=ha, h,(ht+2h2) = (8nklc')(e+W). (1.6a) 
Formulas (1.4) and (1.6) (as well as (1.10 )) will be used 
essentially in Sees. 2-4. 

In models that admit of the Bianchi group of type 
yP-3 ' 211, the metric reduces to the form 

ds2 =(cdr) 2 - {R~ (r) (dx1 ) 2 + e-2x' [ R; (r) ( dx2) 2 + Rf (r) (dx') '] }. 
(1.9) 

The three-space xa is in this space a constant with 
negative curvature. The component (1.2) with i =k = 0 
yields 

8nk 3c2 dlnRa ( ) 
h1h2 +h1h3 +h2h3 =-;;2e+ R,'(r)' ha=----;j'f" 1.10 

(the energy density is lower than "critical"). 
From Einstein's equations for (1.9) there follows 

T 10 = (co/ 81rk)(- 2h1 + h2 + h3 ), so that in the general 
case (1.9) the matter has a velocity component u 1 ~ 0, 
and the shear tensor is not diagonal. The correspond­
ing formulas in GRT (and their Newtonian analog) will 
not be considered here. 

There is, however, a special case of the metric (1.9) 
(at 2h1 = h2 + h3 ), when T 10 = 0 identically, the syn­
chronous system (1.9) is co-moving, and the transitiv­
ity hypersurfaces T = const are orthogonal to the four­
velocity. In this case we have in (1.9)[ 1] 

R 1 =R(,;) R2 =R(r)S""(r), Ra=R(r)S-""(r). a=i3; 
' (1.11) 

8= R/R. 
The solution of Einstein's gravitational equation with 

the energy-momentum tensor of an ideal gas leads in 
this case to the following formula[ 1 l: 

1) pressure p = 0: 

S(r)=const·exp J R~r) d,;, 
(1.11a) 

e = 1-1c' = 3Mc2 I 4nR3, M = conRt, A = const; 

2) ultrarelativistic equation of state e = 3p: 

R' = (c'R' + 8nkK R' +A')~ 
3c2 R 4 ' 

S(r)=const·expJ R: dr, 
(r) 
(1.11b) 

e = 3p = K I R', K = const > 0, A = ~onst. 

The shear tensor for the solutions (1.11a) and (1.11b) 
is expressed by formula (1.4) with 

a 1 = 0, «2 = -aa = 1'3 (1.12) 

and by the function Q( T) from (1.5). 
The Bianchi type-V model exists also for vacuum[ 2J. 

In this case (1.11) and (1.11a) are valid with M = 0, as 
are (1.4), and (1.5) with the values of the parameters 
in (1.12). 

2. HOMOGENEOUS MODELS WITH SHEAR IN 
NEWTONIAN COSMOLOGY FOR DUSTLIKE MATTER 

The fundamental equations in Newtonian cosmology 
are the equations of hydrodynamics with a Newtonian 
gravitational potential, having in the case of zero pres­
sure ( p = 0) the form 

(2.1) 

pval at+ (v~ava I ax~) = -flcp I ax"", (2.2) 

and the Poisson equation for the gravitational potential 

(2.3) 

(here and below we use rectangular Cartesian coordi­
nates xa in three-dimensional Euclidean space; the 
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upper and lower indices are of equal value; the Greek 
indices run through the values from 1 to 3). 

For motions with homogeneous deformation, the de­
pendence of the velocity v01 on xOI and on the time t in 
"Euler" coordinates is given by 

(2.4) 

with the Rubble-constant tensor hg ( t). 
For motions with expansion and shear without rota­

tion, the tensor h01 j3 is symmetrical and reduces to a 
diagonal form. We denote the eigenvalues of h01 j3 by 
h 1, h2 , and h3 , and introduce R01 ( t) in accordance with 

ha=dlnRa/dt, a= 1,2,3. (2.5) 

The Rubble-constant tensor breaks up into a spheri­
cal tensor ( ® is the ex pans ion scalar) and a shear ten­
sor with zero trace: 

a a " a '/ h" a 0 h~ = Elb~ + q~, u = a a, qa = . (2.6) 

Elimination of cp from (2.2) and (2.3) leads, with 
allowance for (2.4) and {2.6), to the following relation 
(the dot denotes differentiation with respect to t) 

{2.7) 

Expression (2. 7) is the Newtonian analog of the well 
known Raychaudhuri identity in GRT[ 1• 221. 

From the continuity equation (2.1) we have for p(t) 
a relation analogous to the general-relativistic one, 
expressing the mass conservation: 

3M s 3M p=-exp 38dt=--, M =const, 
4n 4nR' 

where R( t) is expressed in terms of the expansion 
scalar ® in the form 

(2.8) 

El =fUR. (2.6a) 

The equations of Newtonian hydrodynamics (2.2) to­
gether with the Poisson equation (2.3) do not suffice for 
a complete determination of h~ ( t). The system (2.2) 

and (2.3) leads only to the Raychaudhuri identity (2.7). 
Thus, within the framework of Newtonian hydrody­

namics, the relation (2.4) in itself does not define the 
motion; there is still a complete leeway in the choice 
of the expression for the shear tensor[ 7J. 

As the supplementary relations that fix the tensor q~ 
(qg = 0), and consequently the entire motion, we shall 
use for the models in question the following two rela­
tions. 

1. In accordance with (1.4), for the shear tensor in 
the general relativistic Bianchi models of type I and 
also for the metric (1.9) and (1.11) of the Bianchi type 
V, we shall consider the Newtonian problem with the 
shear tensor q in the form 

(2.9) 

where the constants 01 1 , 01 2 , and 01 3 , which satisfy as a 
result of q~ = 0 the condition 01 1 + 01 2 + 01 3 = 0, can be 
normalized, without loss of generality, also by the con­
dition 01~ + 01~ + 01~ = 6, so that Eqs. (1.3) and (1.3a) 
hold for them. 

2. Besides (2.9), we shall assume, in accordance 
with the general-relativistic relations (1.6) and (1.10), 

that the following relation holds true in the Newtonian 
problem for dustlike matter 

(2.10) 

The constant 01 2 in (2 .10) can assume values 01 2 = 0 
and 01 2 = 1. Formula {2.10) with allowance for (2.6), 
(2.9), and (2.8) reduces to 

(2.10a) 

which fixes the function Q(t) in (2.9). 
The specification of {2.4), (2.9), and (2.10) deter­

mines the parameters of motion in accordance with 
(2.8) and (2.7), and determines cp in accordance with 
(2.2). The resultant relations are the Newtonian ap­
proximation for the solution in the GRT considered in 
Sec. 1. 

Assumptions other than (2.9) and (2.10) with respect 
to the shear tensor (or, equivalently, with respect to rp) 
lead to other Newtonian solutions with a deformation in 
the form (2.4), which in final analysis is connected with 
the specific character of the problem in infinite space. 

Relation (2.9) means that the eigenvectors of the 
shear tensor do not change their orientation with time, 
and the eigenvalues at each instant are proportional to 
the constants 01 1 , 01 2 , and 01 3 • 

Let us define the function S( t) with the aid of the 
relation 

Q = S/S. (2.9a) 

We introduce "Lagrangian" coordinates ~ 01 and t such 
that v01 = axOt(~f3, t)/at. Then we obtain from (2.4) and 
(2.5) the law of motion of the particles in the form 

(2.11) 

The dependence R01 ( t) in (2 .11) has in accordance with 
(2.6), (2.6a), and (2.9), (2.9a) the form 

(2.12) 

Relation (2.10) generalizes (1.6) and (1.10). The 
value 01 2 = 0 corresponds to the solution in the GRT 
with Euclidean three-space; the corresponding solution 
in Newtonian cosmology will be called the flat model. 
The solution with 01 2 = 1 and the lower sign in (2.10) in 
Newtonian cosmology will be called the open model; it 
corresponds in GRT to a solution with a three-space of 
constant negative curvature. (For completeness, we 
consider also a Newtonian solution with 01 2 = 1 and the 
upper sign of (2.10), corresponding to a closed model.) 

From (2.7) with allowance for (2.6a), {2.8), (2.9), 
and (2.10a) we have 

ltR' + 2R'R- 3.kM ± 2a'c'R = 0. 

After a single integration we get from this 

f:l_2 = (+a2c2R4 + 2kMR3 + A 2 ) I R4, A = const (2.13) 

(the integration constant is denoted A2 in the sense of 
(2.10a)). 

Substitution of (2.13) in (2.10a) yields Q(t) in the 
form 

Q = A/R3• (2.14) 

For S(t) defined by (2.9a), we get from (2.14) 

S(t)=const·exp J :(t) dt. (2.14a) 
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Relations (2.11), (2.12), (2.13), (2.14a) and (1.3), 
(1.3a) with A"' 0 are the Newtonian formulas for a 
homogeneous anisotropic model with expansion and 
shear for dustlike matter. When A= 0 we have S(t) 
= const, and these formulas give the Newtonian analog 
of the flat, open and closed isotropic Friedmann 
models, respectively. 

The expansion scalar ® and Q(t) in (2.9) are deter­
mined by expressions (2.13) and (2.14), (2.14a), which 
coincide with the corresponding general-relativistic 
formulas for the Bianchi model I (formulas (1.1a), 
(1.5)) and for the Bianchi model V with transitivity 
hypersurfaces orthogonal to the four-velocity (formulas 
(l.lla), (1.5); in (2.13) we have a 2 = 1 and the lower 
sign; the constants a 1, a 2 , and a 3 in (2.9) and (2.12) 
are defined in (1.12)). 

According to (2.13) and (2.14), in the plane and open 
models, as R - oo, the value of Q at M "' 0 tends to 
zero more rapidly than ®, so that the asymptotic solu­
tion becomes isotropic at a rate that increases with de­
creasing A2. 

Near the value R = 0, which corresponds to the 
singular state with p = oo, the last term of the right 
side of (2.13) predominates, and for all the models (in 
the isotropic case with A"' 0) we have 

These formulas, which remain in force in the GRT[ 121, 
coincide with the corresponding vacuum solution of 
Kasner (1.7), demonstrating that the presence of 
matter does not influence the asymptotic form near the 
singularity in the principal term[ 23l (unlike the iso­
tropic models with A = 0, in which this asymptotic 
form is determined by the equation of state of the 
matter). 

When A"' 0, near the singularity, R ~ (t- t 0 ) 113, 
and for dustlike matter, in accord with (2.8), the 
density p (in GRT-the energy density e) reverses 
sign on going through t =t0 , this being essentially con­
nected with the equation of state p = 0. For matter 
with e = 3p, in view of the different e(R) dependence 
(formula (3.9)), the transition through the singularity 
is not accompanied by a change in the sign of e. 

In the flat model, according to (2.13) with a = 0 and 
(2.14a), 

R 3 = 9l2kM(t- tJ) (t- t2), t, = const, t2 = t 1 - 2A I 3kM, 

S3 = const· (t-ti)/(t-t2). (2.15) 
Expressions (2.12), (2.15), and (2.8) lead to formulas 

(1.1a) for Ra(t) and p(=e/c 2 ). 

In the open model, introducing the dimensionless 
quantities R = Rc?'kM and A= Aco/(kM)2, we obtain 
from (2.13) (a 2 = 1): 

(fl. I c)2 = (R• + 2R3 + if2) I R'. (2.16) 

When iP > 27(._16 (the right side of (2.16) is larger 
than zero for all R), the value of R changes from - oo 

to + 00 and passes through R = 0, at which p reverses 
sign. When 0 < A2 < 27/16, the numerator in the right 
side of (2.16) has two roots: R1(<0) and R2(<0) and is 
not negative at - oo < R :S R1 < 0 and R2 s R 
< + 00 • In_!:his case, two regimes are possible. In one 
of them R changes from - oo to R1( < 0) and p < 0 
(since R < 0), which is physically unsatisfactory. The 

other regime corresponds, with increasing t, to a 
decrease of R from + oo to R2( < 0) with transition at 
t = to through the singularity R = 0 and subsequent 
growth from R2 to + oo with a second transition at 
t = t1 through R = 0. When t < t 0 and t > t 1 we have 
for the density p > 0, and when t 0 < t < t1 we have 
p < 0. This regime is analogous to the behavior of R 
in the flat model. 

The gravitational potential cp for the considered New­
tonian models is determined from (2.2), and reduces, 
when account is taken of (2.4), (2.6), (2.7), and (2.9), to 
the form 

'f = -'12( -'/,nkp.S., + (Q + 2QEJlA., + Q2 (t)B.,]x"x' + const,(2.17) 

where the matrices Aaf3 and Baf3 (with zero trace) 
are given by 

Aa;= 0 a 2 0 , Ba~= 0 a 2 2 -2 0 (2.18) (a1 0 0) (a12
- 2 0 0 ) 

0 0 a3 0 0 a."- 2 

(the components of Baf3 also satisfy relations of the 
type (1.3 )). 

In expression (2.17) for cp, the sum of the terms 
with Aaf3 and Baf3 forms a tensor with zero trace. 
The isotropic part of (2.17) forms the first term, which 
is represented also in the form (kM/2R 3) (x2 + y2 + z 2 ). 

Its existence is connected with the presence of matter. 
In the case of a completely isotropic model with matter 
(A = 0, Q = 0), only this term remains in (2.17). As is 
well known, in this case the gravitational force -gradcp 
at a given point is equal to the force produced by a 
sphere with the mass M[ ( e)2 + ( e)2 + ( e )2 )3/ 2 of the 
matter inside the sphere passing to this point. This 
leads to a corresponding physical interpretation of the 
isotropic Newtonian cosmological model[4•5• 6 • 8• 19l. It 
should be noted in this connection that in the aniso­
tropic case (2.17) yields for -grad cp an expression 
that differs from the force produced at the given point 
by the mass contained within the ellipsoid passing 
through this point[ 24l. This difference is manifest in 
significant manner in the case of empty space (M = O). 
Equation (2.17) leads in this case to a nonzero expres­
sion for -grad cp, in accordance with the fact that 
vacuum anisotropic solutions exist in the GRT. 

Let us consider the Newtonian analog of the general 
relativistic vacuum anisotropic solutions with shear. 
In accordance with the general relativistic relations 
for the vacuum solutions (1.4) and (1.6) with e = 0, it 
is necessary to assume for the Newtonian analog rela­
tions (2.9) and (2.10) with p = 0. The Newtonian analog 
of the vacuum solutions presupposes the existence of a 
gravitational field in infinite space without sources 
(with zero in the right side of (2.3 )) in the presence of 
trial particles (the presence of which does not distort 
the gravitational field), which move in accordance with 
(2.2) and with relations (2.9) and (2.10) with p = 0. 
Expressions (2.13) and (1.3) with the functions R and 
S satisfying (2.14a) remain in force in this case as 
does relation (2.13) with M = 0, which takes the, form 

(2.13a) 

In the "flat" model (at a = 0) we get from (2.13a) 

R = (3At) 'I•, Q = EJ = 1(3t, 



HOMOGENEOUS ANISOTROPIC MODELS WITH SHEAR IN NEWTONIAN COSMOLOGY 105 

which leads then to (1.7). This solution is the Newton­
ian analog of Kasner's vacuum solution. 

In the "open" model (a 2 = 1 and the lower sign in 
(2.13a)) the value of R2 changes from +"" to 0 and 
from 0 to +"". At the values (1.12) of the constants in 
(2.12), this solution is the Newtonian analog of the 
Bianchi type V vacuum solution in the GRT. 

The gravitational potential cp for the "vacuum" 
Newtonian solutions has no isotropic part, and in ac­
cordance with (2.17) it is expressed, with allowance for 
(2.14), in the form 

q> = _tf2Q[ ( -8)A.,.p + QB.,.p)x".xP + const 

with matrices Aaf3 and Baf3 from (2.18). For the 
Newtonian analog of the Kasner vacuum solution, this 
expression simplifies (since Q = ®) 

q> = (-1/18t2 )D.,.px"xP + const; 

Here the matrix is Daf3 = Baf3 - Aaf3· 
The "vacuum" Newtonian solutions with total iso­

tropy (A = 0) in (2.13a)) can occur only in the open 
model. Then R2 = (ct)2, v = r/t, and cp = const in ac­
cordance with (2.17). This solution, which describes 
the inertial expansion, is the Newtonian analog of the 
Milne modelr 19l. 

3. NEWTONIAN ANISOTROPIC MODELS WITH SHEAR 
FOR MATTER WITH AN EQUATION OF STATE 
e = e(p) 

As before, we start from the Newtonian momentum 
equations with a gravitational potential cp in the form 
(2.2) (the pressure p depends only on the time t and 
its 3-gradient is equal to zero). 

To obtain the corresponding Newtonian equation for 
the gravitational potential cp (similar to the Poisson 
equation (2.3)) in the considered case of matter with 
an equation of state e = e( p), it is necessary to take 
into consideration the fact that this equation can be 
obtained[ 12 l as the limit of Einstein's equation 

R0°=(8nk/c4)(Tg-T/2) (3.1) 

(with an energy-momentum tensor of the ideal gas, Tg 
= z, and T = e - 3p). This leads to the relation 

a•q> Bnk ( e - 3p ) 4nk 
--=- e--- =-(e+3p). a.x"ax.,. c2 2 c2 

(3.2) 

The dependence of va on xet and t is given as before 
by (2.4), (2.6), and (2.6a). 

In the present case of matter with an equation of 
state e = e(p), just as in the preceding case with 
p = 0, we shall use the relation (2.9) and a relation of 
the type (1.6) and (1.10), which generalizes (2.10): 

h 1h2 + h1h3 + h2h3 = (Bnk I c2) e =f 3a2c2 I R2(t). (3 .3) 

Taking (2.4), (2.6), (2.6a), and (2.9) into account, 
the momentum equations (2.2) and (3.2) lead to the 
expression 

3(82 + 8) + 6Q• + (4nk f c2 ) (e + 3p) = 0, (3.4) 

which plays the role of the Raychaudhuri identity for 
the given case, and relation (3.3) yields 

3(8'- Q') = (Bnk/ c')e =F 3a'c' / R'(t). (3.5) 

From (3.4) and (3.5) we get 

R ( R }2 4nk 2a•c• -+2- --(e-p)±--=0 
R R c• R2 · (3.6) 

To obtain the dependence of e on R it is necessary 
to use a relation whose role in the case of dustlike 
matter is played by the mass continuity equation (2.1). 
In this case it is necessary to use the scalar equation 

ui(T;");,.,= 0 

of relativistic hydrodynamics for an ideal gas with an 
equation of state e = e(p) (in the co-moving system it 
is the law of conservation of energy). This equation is 
written in the form [251 

[ (e+p)u"] J dp ( 7) 
!f(p) ;k =0, !f(p)=exp e+p 3. 

and in the considered Newtonian approximation it re­
duces to 

a [e+p] a [e+p ] at !f(p) +a;_;- !f(p) rP = 0, (3.7a) 

where !f is given by (3.7). 
Inasmuch as e and p depend on t (in accord with 

the momentum equation), we get from (3.7a), as are­
sult of (2.4), (2.6), and (2.6a) 

(e + p) I !f(p) = constl Rs. 

Equation (3.8) holds also in the corresponding GRT 
solutions. 

Relations (3.6) and (3.8) determine R(t) for the 
equation of state e = e( p). 

(3.8) 

In the case of the nonrelativistic equation of state 
e = 3p we obtain from (3.8) and (3.7) 

e=3p=KIR', K=const, K>O. (3.9) 

According to (3.9), e and p are always positive. 
Single integration of (3.6) with allowance for (3.9) 

yields 

ct = L 0 (sh411.- 4A), S = const·th11., Lo...: c2V(3/128nkK)'", (3.10) 

Substitution of (3.10) in (3.5) leads to the previous 
expressions (2.14) and (2.14a) for the quantity Q(t) in 
the shear tensor (2.9). 

Just as in Sec. 2, (2.11) and (2.12) remain in force 
in this case, with the sole exception that at e = 3p we 
have Eq. (3.10) for R(t). 

In the case of the flat model, introducing the parame­
ter ;>.. in accordance with 

R?- = =fa•& + BnkK /3c2R2 + A 2 / R&, A2 = const. 

we obtain after integrating (3.10) (with a 2 = 0) 

R = L sh 21.., L...: Ac(3/BnkK)'", 

after which (2.12) leads to formulas (1.1b). 
In the open model, (3.10) (with et 2 = 1 and with the 

lower sign) coincides with the general-relativistic 
relation (l.llb) and takes the following form in terms 
of the dimensionless quantities R = Rc 2 / ( 81rkK/ 3 )112, 

A= Ac/ ( 81TkK/3)112 

(ll/ c)• = (.R& + .R• + if2)/ _RI. 

The quantity R2 decreases monotonically from +"" to 
zero, and then increases. 

When A~ 0, the asymptotic form near the singu­
larity R =0 is R ~ ti13 for all models, just as in (1.7). 
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4. NEWTONIAN ANALOG OF THE COSMOLOGICAL 
MODEL WITH MAGNETIC FIELD 

To obtain the Newtonian analog of the cosmological 
model with dust ( p = 0) in a homogeneous magnetic 
field it is necessary to use as the fundamental equa­
tions', besides (2.1), also the equation for the gravita­
tional potential cp, obtained as the limit of Einstein's 
equation (3.1) with Tg = e +Wand T = e (W--energy 
density of the magnetic field), in the form (cf. (3.2)) 

lAp I fJZC.fJxa = 4nk(p + 2W I c2 ), (4 .1) 

and the equations of magnetohydrodynamics in the 
nonrelativistic approximationr 26l * 

fJv 1 . 
-+(v grad)v=- grad<:p +- [JH], 
fJt pc 

fJH c 
rotE=---, divH=O, i=-4 rotH. 

cfJt n 
In the Newtonian approximation, the magnetic field 

H is not transformed on going over to another inertial 
system. According to the formulatio.n of th; problem, 
in the proper reference frame, the fleld H depends 
only on t', and the electric field is E* = 0. In the refer­
ence frame under consideration, when the matter has 
a velocity v, there arises, in accordance with (2.4), an 
induced electric field 

E=-[vH]Ic. (4.2) 

Since H = H* ( t) and j = 0, the Lorentz force is equal 
to zero and the momentum equation has in this case 
the for~ (2.2). It is necessary to add to the system 
(2.1), (2.2), and (4.1) the induction equation 

rot[ vH] = iJH i fJt. (4 .3) 

Choosing the y axis along H (Hy =H), we obtain 
from (4.2), (4.3), and (2.4): 

h I E -0 E =-Hh,xjc (h,+h,)H=-dH/dt. (4.4) Ex= H 3Z c, y- ' x ' 

Let us consider the case with R1 = R 3 and h1 = h3 
(isotropy in a plane perpendicular to the direction of 
the magnetic field H). Equation (4.4), together with 
(2.5), yields expressions for the intensity H and the 
energy density W of the magnetic field: 

II= K,jR((t), W =li2/8n =K~ /SnRt, K, = const, (4.5) 

which coincide with the general relativistic equations 
(1.8a). As before, we use in the given Newtonian prob­
lem (in accordance with the general-relativistic solu­
tion) the relations (1.4) and (1.4a) for the shear tensor 
and the relation (1.6a) for the Hubble constants (we 
consider the case of a flat model). 

The Raychaudhuri identity, which follows from (4.1), 
(2.2), (2.6), (2.9), (2.8), and (4.5), has in this case the 
form 

3(82 + S)+ 6Q2 + 3Mk/R3 + K~kjc2R14= 0. (4.6) 

Relation (1.6a) leads, with allowance for (2.8) and 
(4.5), to 

3(82 - Q2)= 6kM/R3 + K 12kjc2R/. (4.7) 

As a result of (1.4a), we obtain in accord with (2.12) 

R 1 = R 3 = RS-1, R2 = RS2• (4.8) 

*[jH] =j X H. 

To obtain the final formulas for a(t) = R1 = R3 and 
b(t) = R2 from (4.6) and (4.7), it is necessary to carry 
out an additional transformation (in accordance with 
the form of the GRT equations for the given caser 181 ). 
Namely, we take into consideration th.e fact that accord­
ing to (4.8) we have a/a = ® - Q and b/b = ® + 2Q, 
and setting up 2a/a + (a/a)2 we obtain, after differen­
tiating (4.7) and taking (4.6) and (4.7) into account, the 
following equation (which coincides with the component 
i = k = 2 of Eqs. (1.2)): 

2aii + a2 - (B12c2/a2)= 0, B~ = Kt2k/c4 = const. 

Integration leads to the general relativistic formu­
las (1.8) for a(t), and then also to the relation (1.8) 
for b. 

The gravitational potential cp is expressed in this 
case (in analogy with (2.17) and (2.18) with allowance 
for (4.6)) in the form (the matrices Aaf3 and Baf3 are 
given by (2.18) with the values of (1.4a), and turn out to 
be equal) 

'f = _1_ [ ( kM + K, 2k ) ba~- Aa~(Q + 28Q + Q2)] xax~ + const. 
2 R3 3c2R, 4 

It is possible to construct analogously the Newtonian 
analog of the model with magnetic field at R1 = R3 for 
matter with e = 3p[ 181 . 

I am grateful to L. P. Grishchuk, A. G. Doroshke­
vich, and I. D. Novikov for discussions. 
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