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An expression is obtained for the correlation energy of a relativistic atom in the second order of 
perturbation theory with respect to the electron interaction. The Gell-Mann and Low formula is used 
to calculate the energy level shift. 

1. INTRODUCTION 

THE traditional problem of the theory of atoms is to 
find better methods of calculating energy levels. The 
present status of this problem is as follows. For the 
lightest atoms we can assume the exact solution of the 
nonrelativistic problem to be known, and the matter 
reduces to calculation of the relativistic corrections of 
different orders, and also corrections for the motion 
and structure of the nucleus[ 1- 4l. For light atoms, with 
Z :s 10 electrons, the principal problem is to obtain as 
exact a solution of the Schrodinger equation as possible, 
or else to take into account the electron correlation[sJ. 
Beyond Z Rl 10, the relativistic effects become com
parable with the correlation[6J. For internal electrons 
in heavy atoms, the nonrelativistic approximation is in 
general unsuitable, and the interaction, to the contrary, 
is small, of the order of 1/ Z. Methods of calculating 
relativistic corrections in this case are discussed 
in[7- 10l, The corrections for the motion and structure 
of the nucleus for heavy atoms are negligibly small, 

It follows from the foregoing that for a consistent 
refinement of the calculations of the energy levels of 
multielectron atoms it is necessary to take into ac
count simultaneously the correlation and the relativis
tic corrections. The principal scheme of such calcula
tion is the topic of the present article. 

2. FORMULATION OF PROBLEM 

We consider an atom as an aggregate of electrons 
interacting with one another and moving in the field of 
a nucleus, which is assumed to be infinitely heavy. The 
Hamiltonian of the atom is of the form 

ll = llo + H;nt, 

lfo= J1f+(x)h(x)'l'(x)dx, 

h(x) =up+ ~m- cU(x), 

(1) 

(2) 

(3) 

where Hint is the Hamiltonian of the interaction with 
the electromagnetic field, p = - iV, a and f3 are Dirac 
matrices, m is the electron mass, and U(x) is the 
potential of the nucleus. We use a system of units with 
n=c=l. 

As the initial approximation, it is convenient to use 
a relativistic variant of the Hartree-Fock self-consist
ent field method[ u-ssl. To this end, we represent H in 
the form 

11 =--== llo' + 1/;~1 =(llo +II')+ (Hint -If'), (4) 

94 

where 
H' = J'¥+(x)eVX"'(x)'¥(x)dx, 

N 2 

VHF(x}f(x)= LJ .Pn•(x') lx ~ x'l 'i'n(x')dx' /(x) 
nd 

N e2 - .E J 'i'n•(x') lx-x'l /(x')dx''IJn(x), 
n=l 

where f(x) is an arbitrary function. The function 
1/Jn(x) are the eigenfunctions of the operator 

hX"'(x) = h(x) + VX"'(x), 

(5) 

(6) 

(7) 

hX"'(x)'IJn(x)= En'l'n(x). (8) 

The wave function of the atom cl> 0 represents at the 
zeroth approximation an antisymmetrized product of 
the first N eigenfunctions of the operator (7) (N-num
ber of electrons in the atom), and the zeroth-approxi
mation energy is 

The operator hHF is self-adjoint and has a com
plete system of eigenfunctions, which will henceforth 
be used as the basis system. 

2. SHIFT FORMULA 

(9) 

We shall calculate the atomic energy-level shift 
under the influence of a perturbation directly in terms 
of the S matrix using the formula of Gell-Mann and 
Low[l6l: 

"' 
Sa.= _Et.,nS~> 

n=O 

~ 1 ~ ~ 

= .E"'"(- il" ';IS at, ... J dtn T(H,,.(t,), ... ,H,,.(tn)), 
n=O -oo -oo 

(12) 

Here A denotes the coupling constant. We shall con
fine ourselves henceforth to calculation of corrections 
up to A 4 inclusive. We therefore expand the numerator 
and the denominator in formula (10) in powers of A and 
confine ourselves to terms of fourth order: 

t:.E= lim '/2ia{(«ll"IS~lill>o)t.,+[2(«ll"ISti«ll")- («ll"IS~lill>o)2]"-2 
a.~o 
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+ [3( <I>o I s!a)l <t>O) - 3(<1>0 Is<;) I <I>O)( <I>o I s<~l I <I>o > 
+ (<I>o 1 s~41 <I>o>aw + [ 4<<I>o 1 s~l 1 <t>O) _ 4<<I>o 1 s~l 1 <t>O)(<I>ols<~) 1 <t>O) 

+ 4( <I>o I s~2) I <I>O) < <I>o I s~l I <1>0)2 - 2(<I>o Is~) I <t>0)2 

- (<I>ols~tli<I>o)4]J.4 + ... }. {13) 

4. CLASSIFICATION OF DIAGRAMS 

To calculate corrections of different orders, we can 
now use the usual Feyrunan technique in the Furry 
representation for a system of N electrons interacting 
with one another and with an additional external field 
with potential -vHF. It is convenient in this case to 
use also a mixed gauge for the photon lines: a Coulomb 
gauge for photon lines beginning and ending at different 
electron lines, and a Lorentz {Feynman) gauge for 
photon lines beginning and ending with the same elec
tron line or touching with at least one end a closed 
electron ring. We shall denote graphically the Coulomb 
interaction by means of a dashed line, and the interac
tion with the external field by a dashed line ending with 
a cross. It can then be stated that the effects of the 
electron with relativistic theory of the atom correspond 
to diagrams containing only Coulomb lines and interac
tion with the external field. These diagrams will thus 
be the subject of our study. We shall calculate all 
these diagrams up to fourth order (in the coupling con
stant ..\. = e2) inclusive, which will yield us the first 
nonvanishing correction to the energy of the atom in 
the Hartree-Fock approximation, i.e., the correlation 
energy. The remaining diagrams give the properly
relativistic and also the mixed correlation-relativistic 
corrections. 

We agree to represent every time on the diagram as 
many electron lines (out of the total number N) as 
there are particles participating in the interaction 
process under consideration. Then in first order in e 2 
we shall have one diagram (Fig. 1), in second order 
three diagrams (Fig. 2), in third order five diagrams 
(Fig. 3), etc. By virtue of the choice of the external 
potential V = -vHF, the diagram of Fig. 1, as well as 
the diagram of Fig. 2a, is a diagram of first order of 
smallness in the interaction between the electrons. 
Among the diagrams of second order in the interaction 
are those in Figs. 2b, 2c, 3a, 3b, and also the series 
of fourth-order diagrams shown in Fig. 4. It is these 
diagrams which give the energy of the correlation of 
the electrons in the atom in second in the interaction. 
The diagrams of Figs. 3c-e and also the remaining 
diagrams of fourth order in e 2, give correlation cor
rections of higher orders. 

5. FORMULATION OF THE MATRIX ELEMENTS 

To determine the matrix elements from the dia
grams, we can use the following correspondence rules: 

•,f 
~ 

FIG. 1 

A 8 A A 8 

~,~-+· :~~~: ~-~ ~-~ 
r1 8 A A 8 

a b 
FIG. 2 

c 

FIG. 3 

to each external incoming fermion line there corre
sponds a function 1/JA(x) = 1/JA(x)e-iEAt, where 1/JA(x) 
is the solution of Eq. (8). To each incoming fermion 
lines there corresponds the function lPA(x) = I/JA_(x)y4. 
To each internal fermion line there corresponds the 
Pf"Opagator 

S(XtX2)=-1 jdweiw(t,-t,)'""' 'iln(Xt)¢"n(x2) (14} 
2nt ~ ~ En(f- iO)+w · 

The summation in (14) is carried out over the entire 
system of eigenfunctions of the operator (7). The 
Coulomb photon line corresponds to the propagator[17l 

1 
Dj<v•(k) = k2 6!<41lv40 

or in the coordinate representation 

(15) 

D~<v•(xtX2)=- i~ 6(tt- t2)6~<46v4, (16} 
r12 

where r 12 = I X1 - x2l· The external photon lines corre
spond to the potentials 

V~<(x) = -ieVHF(x)6~<4, 

and the vertices of the diagrams correspond to the 

factors eilve -al t 1. 

a b c d 
FIG. 4 

(17} 

6. CALCULATION OF THE CORRELATION DIAGRAMS 

We begin with the calculation of the diagram of Fig. 
1. The corresponding matrix element, in accordance 
with the correspondence rules, is of the form 

M1 =e Jdx1(iliA(xt)wV"(x1)¢A(x1))e-altd. (18} 

Substituting here (17) and integrating with respect to 
t 1, we obtain 

where 

2i 
M 1 =--e2(VHF) AA, 

a 

(F)AB= f¢A•(x)F(x)¢B(x)dx. 

We now consider the diagram of Fig. 2a: 

M2a=e2 Jdx,dx.(ijiA(xt)y.¢A(xt)) 

X (i!iB(X2)'\MJlB(x2) )D"v' (x1x2) e-altd-<>lt.l. 

(19) 

(20) 

(21) 

Substituting (16) and integrating with respect to t1 and 
t2, we obtain 

i 2 ( 1 ) M2a=--e -
U T12 ABA; 

(22} 
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(F)A'B'AB = J ¢A,' (x!)¢u.' (x2)F(x1x2)¢A (xi)'¢u(x2)dx1 dx2. (23) 

Finally, let us calculate also the diagram of Fig. 4a: 

M,. = e4 J dx1 ... dx,(ifA(xa)y.,S(xaxi)y.,¢A(x!)) 

X (ifu(x,)y.,S(x,x2)V•,¢u (x2) )D~,.,(x1x2)D~"'(XaX4) 

xexp(-altd -alt21-altal-alt•ll· (24) 

Substituting in (24) formulas (14) and (16), we arrive at 
the expression 

I ~1) 12 
- 1 4 Ja df d d ~ (7!2 n,n,AB 

JJ.l,a- (2n)2e 11 3 Ol! w2L.[En,(1-i0)"+wJ][En,(1-iO)+w2] 
n1n2 

X exp {i(EA +Eu+illJ +w2)ta} exp {- i(EA +Eu+wl +w2)t1} 

X exp {- 2al tJ! - 2al tal}. (25) 

Integration with respect to t 1 yields 
~ 

Jat1exp {-i(EA +Es+ w1 +w2)t1-2altd} 

4a 

(w1 + w2+EA +Ea) 2 +(2a) 2 
(26) 

A similar factor is obtained from the integral with 
respect to t 3 • It remains to integrate with respect to 
the frequencies: 

"" ~ 

Jawl Jdw2[(w1 + w2 + EA +Eu) 2 +(2a) 2]-2 

X [En,(1- iO)+ WJ]-1[En,(1- iO)+ ltl2]-l 

={2rti)2{[En, +En, -EA -E8 ) 2 +(2a)2]-2 

-(4ia)-2(En, +En,-EA -Eu+ 2ia)-2 

- 2(4ia)-3 (En, +En, -EA -E8 + 2ia)-1}. (27) 

The other diagrams are calculated in similar fashion. 

7. CALCULATION OF THE LEVEL SHIFT 

We consider first the level shift in first order in 
the electron interaction. To this end it is necessary to 
take into account in formula (13) the diagrams of Fig. 
1 and Fig. 2a. The contribution of the diagram of Fig. 
1 to .O.Eh with allowance for all the occupied single
electron states, is 

N 

!'J.E{=-e2 L.(VHF)AA· 
A= I 

(28) 

The contribution of the diagram of Fig. 2a with allow
ance for all the occupied single-electron states and 
exchange diagrams is 

where 

11 1 N(1) 
!'J.EI =-e2 - ' 

2 I: 7!2 AB; .<B 
A,B=I 

(29) 

(F) A'B'; AB = (F) A'B'.<B- (F) A'B'BA• (30) 

Taking into account the definition of yHF and Eq. (8), 
we obtain 

N f N 1 
E 0 +!'J.E1= ~ (h)AA+- ~ (-) =EHF, (31) 

""-' 2 LJ TJ2 AB;AB 
A=l A,B=l 

We thus arrive at the following result, which is known 
from nonrelativistic theory: the Hartree-Fock energy 
is obtained in first order of perturbation theory in the 
interaction. 

We proceed to calculate the level shift in second 
order in the interaction. In this order there are dia
grams (Figs. 2c and 4d) which give divergences of the 
type 1/ a on going to the limit as a - 0. Similar 
divergences are obtained also from certain terms of 
formula (13), due to the expansion of the denominator, 
and also the diagrams of Figs. 2b, 3a, 4a, and 4b when 
the intermediate electronic states coincide with the 
initial (final) ones. In particular, for the diagram of 
Fig. 4a, this is seen from formula (27) when En1 

+ Ne2 = EA +Ea. It can be verified directly that all 
these divergences cancel each other. Leaving out the 
cumbersome calculations, we now present a final ex
pression for .O.E 1 , obtained by going to the limit with 
respect to a from the diagrams of Figs. 2b, 2c, 3a, 3b, 
and 4a-d, with allowance for all the topological and 
exchange variants. In this expression, account is taken 
also of certain cancellations that result from the choice 
of the potential V = yHF. We have 

At> 1 
- (-;;;-) ABnC ] (-;;-) ABCn ' 

(32) 

where A c±> represents the projector on the state with 
positive (negative) energy. 

In formula (32), the first term corresponds to the 
usual expression of second order of nonrelativistic 
perturbation theory£ 181, while the remaining terms, 
which contain summation over the intermediate states 
with negative energy, arise in the relativistic theory. 
When e2Z << 1, these terms play the role of small cor
rections. On the whole, expression (32) gives the cor
relation energy of the relativistic atom in second order 
of perturbation theory and the interaction between the 
electrons. We note that in the relativistic variant of 
the Hartree-Fock method, the Brillouin theorem is no 
longer satisfied, namely, singly excited configurations 
with transition of the electrons to states with negative 
energy give a nonzero contribution to the correlation 
energy. 

The author is grateful to N. A. Braun for a discus
sion of the article. 

1 H. Bethe and E. Salpeter, Quantum Mechanics of 
One and Two Electron Atoms, Springer, 1957. 



ELECTRON CORRELATION IN THE RELATIVISTIC THEORY OF ATOMS 97 

2 H. Araki, Progr. Theor. Phys. 17, 619 (1957). 
3 J. Sucher, Phys. Rev. 109, 1010 (1958). 
4 M. A. Braun and L. N. Labzovskii, Zh. Eksp. Teor. 

Fiz. 53, 1776 (1967) [Sov. Phys.-JETP 26, 1017 (1968)]. 
5 0. Sinanoglu, Multielectron Theory of Atoms and 

Molecules and of their Interactions) (Russ. transl.), 
Mir, 1966. 

6 A. Froman, Rev. Mod. Phys. 32, 317 (1960). 
7 G. E. Brown, Phil. Mag. 43, 467 (1952). 
8 E. Wichmann and N. M. Kroll, Phys. Rev. 101, 843 

(1956). 
9 G. E. Brown, J. S. Langer, and G. W. Schaefer, 

Proc. Roy. Soc. A251, 92 (1959). 
10 M. A. Braun, Yu. Yu. Dmitriev, and L. N. 

Labzovski1, Zh. Eksp. Teor. Fiz. 57, 2189 (1969) [Sov. 
Phys.-JETP 30, 1188 (1970)]. 

11 S. Cohen, Phys. Rev. 118, 489 (1960). 
12 I. P. Grant, Proc. Roy. Soc. 262, 555 (1961); Proc. 

Phys. Soc. 86, 523 (1965). 
13 J. L. Schonfelder, Proc. Phys. Soc. 87, 163 (1966). 
14 Yong-Ki Kim, Phys. Rev. 154, 17 (1967). 
15 T. C. Smith and W. R. Johnson, Phys. Rev. 160, 

136 (1967). 
16 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 

(1951). 
17 W. Heitler, The Quantum Theory of Radiation, 

Oxford, 1954. 
18L. N. Labzovskir, Vestnik, Leningrad State Univ. 

No.4, 1967. 

Translated by J. G. Adashko 
20 


