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It is shown that the spatial structure of helical waves[ 2 J is modified in strong magnetic fields (weT 

> 1). As a consequence the excitation threshold for the helical instability depends upon the length of 
the sample, the threshold becoming higher in short samples and strong magnetic fields. The effici
ency of high-frequency-stabilization for this instability increases under these conditions (the modu
lation coefficient required for stabilization is reduced and the stabilization region is expanded). 

J. THE theory of the helical instability in the plasma 
in the positive column was formulated by Kadomtsev and 
Nedospasov (KN)Yl Using this theory, Glicksman[2J 
was able to explain the results of some well-known ex
periments by Ivanov and Ryvkin as well as others[3' 4 l 
in which an instability of the "oscillator" type was in
vestigated, wherein current oscillations are observed 
when sufficiently strong longitudinal electric and mag
netic fields are applied to a semiconductor sample. 

It follows from the KN theory that the helical insta
bility in long discharge tubes develops at an optimum 
value of the wavelength (pitch of the helix), which cor
responds to the minimum value of the critical magnetic 
field at which the instability can be excited (in the posi
tive column the only free parameter is the magnetic 
field, since the electric field is determined by it). The 
existence of an optimum wavelength can be understood 
as follows. At long wavelengths of the helical perturba
tions the drift flux in the wave field, which leads to the 
instability, is small and is dominated by transverse dif
fusion; at short wavelengths, although the drift flux is 
large, a strong role is played by the longitudinal diffu
sion, which quenches the instability. In the KN picture 
the optimum wavelength (or the wave vector k) and the 
excitation criterion are determined from the condition 
that at the threshold of the instability we must have 

Im uJ(k) = F(E, H, k) = 0; dF ( dk = 0, ( 1) 

that is to say, on going through zero the curve F(k) is 
tangent to the wave-vector axis, since the excitation oc
curs at one value of k. 

In the positive-column plasma the optimum values of 
k as determined from (1) correspond to rather long 
wavelengths, of the order of ten tube radii.[lJ Such per
turbations can develop in long tubes. The KN theory 
shows that in short tubes the optimum wavelength can 
be greater than the length of the tube, so that these per
turbations cannot develop, by virtue of the boundary 
conditions. In this case the wavelength of the helical 
perturbation is bounded from above by the length of the 
discharge tube or by appropriate spatial harmonics. 
For this reason the excitation criterion will be more 
stringent in short tubes than in long tubes. 

90 

A similar situation obtains for the excitation of an 
oscillistor. It has been shown by Glicksman[2 J that in 
weak magnetic fields (y =WeT « 1 where We is the 
cyclotron frequency of the carriers while T is the 
relaxation time) the optimum wavelength for the helical 
perturbations, as determined from (1), is independent 
of the magnetic fieid, being approximately 2a in sam
ples with "dirty" surfaces (Da/as << 1) and approxi
mately 8a for a "clean" surface (Da/as >> 1).[2' 5 J 
Here, Da is the coefficient of ambipolar diffusion, s is 
the rate of surface recombination, and a is the radius 
of the sample. 

When there are nodes at the ends[5 J the fine structure 
of the wave is modulated by a long-wave envelope with a 
period equal to the length of the sample and appropriate 
harmonics. In strong magnetic fields the period of the 
fine structure increases with increasing magnetic field, 
and when y >> 1 this period becomes comparable with 
the length of the sample L. Under these conditions the 
spatial structure of the wave is determined completely 
by the sample geometry. In samples with clean surfaces 
this situation arises at lower values of the magnetic 
field. Hence, the criterion for excitation of the oscillis
tor in samples of finite length will be appreciably 
stronger than the corresponding criterion derived for 
samples of infinite length; [2 J this is the case because 
longitudinal diffusion starts to play an important role, 
since the wavelength is independent of the magnetic 
field. Thus, a strong magnetic field leads to a reduc
tion of the "effective length" of the sample and effects 
associated with the boundary conditions (with longitudi
.nal diffusion) become important. The dependence of the 
threshold for the oscillatory perturbations on the length 
of the sample in strong magnetic fields was first ob
served in experiments by Dubovoi and Shanskii, [61 who 
investigated the oscillistor in samples of Ge. It was 
shown by Shanskii [7 l that in strong magnetic fields the 
dependence of the threshold electric field (Eth), at which 
the oscillistor is excited, on the magnetic field exhibits 
a minimum due to the increasing role of the longitudinal 
diffusion, which is independent of the magnetic field in 
finite samples. 

Actually, at reasonably modest magnetic fields the 
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basic factor in the appearance of the instability is the 
transverse diffusion flux ~ H-2 and Eth ~ H-1 since 
the drift flux in the field of the wave, which causes the 
instability, is ~ E · H- 1 , and for very strong magnetic 
fields the primary role is played by longitudinal diffu
sion and Eth ~ H. As the length of !he sample is in
creased the position of the minimum Eth(Y) is shifted in 
the direction of stronger magnetic fields. It is evident 
that a rigorous description of these effects requires a 
theory that takes account of the boundary conditions of 
the ends. 

In the present work, using the two-mode picture for 
the oscillistor, l51 we obtain criteria for excitation for 
samples of finite length and these criteria are found to 
be in agreement with experiment. [BJ The calculation is 
carried out for a high level of injection of nonequilib
rium carriers (for example impact ionization, optical 
ionization) and a "dirty" sample surface, in which case 
the distribution of carrier concentration over the cross
section falls off sharply towards the surface (Schottky 
condition). This case is the closest to the gas-discharge 
plasma and is relatively simple for calculation pur
poses since the strong magnetic field has no effect on 
the spatial distribution of the electron-hole plasma. 

It should be noted that the conditions in the Dubovoi
Shanskii experimentsl61 actually apply to a clean sur
face, so that the agreement between theory and experi
ment is qualitative. 

In this work we present a theory for the high
frequency stabilization (HFS) of the oscillations in 
strong magnetic fields. This effect was first observed 
by Dubovoi and Shanskiil8J in weak magnetic fields and 
was explained by Kadomtsev and Vladimirov.l51 Subse
quent experimentsl81 verified the basic conclusions of 
the theory. l51 

It will be shown below that for a given sample length 
the efficiency of high-frequency stabilization increases 
with increasing magnetic field (the stabilization region 
is expanded and stabilizing coefficients of the modula
tion 11 = E/Ec of the electric field, where Ec is the 
constant component, are reduced). We shall determine 
the dependence of the stabilizing modulation coefficient 
on the effective length of the sample and the modulation 
frequency. It should be noted that the efficiency of HFS 
of the oscillistor is much higher in samples with clean 
surfacesY 1 For this reason the calculations carried 
out below, which apply to a dirty surface, are aimed 
primarily at explaining the qualitative features of HFS 
in strong magnetic fields. 

For reasons of simplicity, all the calculations are 
carried out for the case in which the electron and hole 
mobilities are equal (the helical instability is excited 
in this case, too, because in a fixed electric field the 
electron and hole density helices drift in opposite direc
tions). 

We note that in Ge the ratio of the mobilities is 
be/bh ~ 2, 2 at T = 300°K and 1-1.5 at T = 77°, so 
that the case being considered is a close approximation 
to the real situationY1 

2. The initial equation of the oscillistor in an alter
nating electric field in the presence of a longitudinal 
magnetic field and equal densities of electrons and 
holes can be obtained from the equation given by Glicks
manl21 much in the same way as is done in l51 . When 

the electron and hole mobilities are the same (be = bh 
= b, De = Dh =D) the equation for the perturbed density 
n', written in dimensionless form is 

- a ( iJ2n' ) ( a2n' ) on' Ln'=- ---n' + J.L ---n' -ia(i +tJSin~ti)-
{}t) ox' ax' ax 

=a4n' -n' 
ax• ' 

where all quantities are computed for a dirty surface 
and are defined as follows: 

3,44 z 
X=--=-, t) 

l'i + y' a 

O,ivo,a ,1--2 
a=-D-Yri+y, 

(2) 

v0 c =bEe is the drift velocity in the constant electric 
field, w0 is the modulation frequency and I.J. = 2.25. 

The boundary conditions are written in the form · 

n'lx=O,xL =0, (3) 

where XL= 3.44Z and l = (1 +y2f 112L/a is the effec
tive length of the sample. 

The form of (2) is exactly the same as that of the 
corresponding equation for the case y << l.l5J The 
principal difference lies in the fact that the effective 
length of the sample l depends on the magnetic field. 
This feature then determines the basic characteristics 
of excitation and HFS of the oscillistor in strong mag
netic fields. 

In choosing zero boundary conditions we have as
sumed that the rate of surface recombination at the sur
face of the contacts is very large. The experimental in
vestigation of the spatial structure of the oscillistor['7' 81 
shows that the boundary conditions (3) are well satisfied. 

The solution of Eq. (2) in the form of plane waves 
exp (ikz) does not satisfy the boundary conditions (3). 
Since the variables in (2) do not separate, we seek the 
solution written in the form of an expansion in the char
acteristic coordinate functions <Pn of the operator f., 
which satisfy the boundary conditions ( 3): c5 J 

(4) 

where <Pn(x) = exp ( l PnX) x sin Knx, Pn = .J 1 + K;, Kn 

= 1rn/xL, n = 1, 2, .... 
This approach to the solution of Eq. (2) represents 

one of the perturbation-theory methods, since the right 
side of (2), with substitution of the solution in the form 
(4), is a quantity of order 1/xL and is small in long 
samples. We note that the equation Ln' = 0 (zeroth ap
proximation) does not describe the HFS effect; l5J hence, 
in very long samples, in which the right side of (2) is 
small, the HFS effect will not be observed, as has been 
verified experimentally Y' 81 

It follows from the form of the function <Pn(x) that 
the spatial structure of the helical wave in long samples 
and weak magnetic fields ( l >> 1) will be determined by 
the exponential factor and that the period of the wave 
will be comparable with the radius of the sample; in 
short samples and strong magnetic fields ( l ~ 1) the 
period of the wave coincides with harmonics of the 
sample length. 

The further analysis is carried out in the two-mode 
approximation (n = 1, 2)l5' 91 since the first two modes 
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have the largest instability growth rates/ s-a1 The equa
tion for the first mode is of the form( 5 ' 91 

(5) 

The expressions for the coefficients y and K (and for 
all the coefficients given below) have the same form as 
the corresponding coefficients for the case of weak mag
netic fields.r 5 ' 91 In carrying out the calculations it is 
necessary to make the substitution L/a- Z. The equa
tion for the second mode is of the same form. The so
lution of (5) is 

C1 = const·exp {-fydti}u(ti), 

where u(J.) satisfies the equation 

ii+ (x-y'-t)u=O. (6) 

High-frequency stabilization is possible when, in the 
absence of the high-frequency field, the development of 
the instability is given by (6): 

y(T]=O)>O, X(T]=O)<O. (7) 

The conditions in (7) determine the range of values of 0! 

for which HFS is possible. In Fig. 1 this region is 
shown as the function of the effective length of the sam
ple l. It is evident from Fig. 1 that the HFS region is 
reduced as l is increased. Hence, for a given sample 
length the HFS region increases with increasing mag
netic field. 

As follows from the conditions in (7), the lower limit 
of the region determines the threshold for excitation of 
the oscillistor. In Fig. 2 we show the dependence of the 
threshold value of the electric field E: = V0ca/D on the 
magnetic field y for various sample lengths. We note, 
that in contrast with the helical instability in the posi
tive column, the oscillator phenomenon is determined 
by two free parameters, the electric field and the mag
netic field. 

In Fig. 2 the solid curve determines the oscillistor 
excitation boundary for samples of infinite length. This 
curve coincides with the corresponding curve given by 
the Glicksman theory. [ZJ The dashed curve determines 
the threshold for excitation in samples of finite length. 
As is evident from Fig. 2, in weak magnetic fields 
(y << 1) the solid curve and the dashed curve coincide. 
However, in strong magnetic fields, in which the effec
tive length of the sample is reduced, the dashed curves 
do not coincide with the solid curves and the conditions 
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FIG. 1. Region of high-frequency stabilization. 
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FIG. 2. The electric field e = v0ca/D as a function of magnetic field 
y = bH/c =WeT at the excitation threshold. 

for excitation become more and more stringent. The 
dependence of the threshold electric field on the mag
netic field has a minimum, in accordance with the qual
itative discussion given above. As the sample length is 
increased the position of the minimum is displaced in 
the direction of stronger magnetic fields. 

Equation (6) for the function u(J.) is in the form of 
the generalized Hill equation.rs, 91 The criterion for 
stability of the solution of this equation reduces to a bi
quadratic equation for the stabilizing modulation coef
ficient of the electric field 77s; r 91 

TJ.' + PTJf - q > 0. (8) 

In Fig. 3 we show the dependence of 77s on the ef
fective length of the sample l for the modulation fre
quencies {3 = 5 and 10. It will be evident from Fig. 3 
that 77s increases sharply with increasing l ; when 
l > 3 it varies like l 3 ! 2 • As the modulation frequency 
is increased 77s increases; this effect is associated 
with the reduction of the high-frequency corrections in 
the Hill equation averaged over the high-frequency. A 
similar situation arises in the analysis of the dynamic 
stabilization of an inverted pendulum with an oscillating 
point of support.L 101 As is evident from Fig. 3, HFS 
can be realized more effectively in samples with small 
effective length, that is to say, in strong magnetic 
fields. 

In conclusion the author wishes to thank B. B. 
Kadomtsev for his interest in this work; useful discus
sions with members of the seminar given by M. A. 
Leontovich are also acknowledged. 
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