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We consider finite-amplitude oscillations of the m = 0 mode in an electron-hole pinch. It is shown 
that nonlinearity does not stabilize the sausage modes in an intrinsic semiconductor. A stabilizing 
effect due to plasma drift in a longitudinal magnetic field does appear in extrinsic semiconductors. 

1. INTRODUCTION 

As is well-known, even the first observations of the 
pinch effect in an electron-hole plasma exhibited weak 
oscillations of the electric fieldYJ These oscillations 
may be attributed to transient processes during the 
formation of the pinch, these processes being associ
ated with periodic heating and cooling of the latticeYl 
Furthermore, it has been established experimentally 
by Ancker-JohnsonE3 l that real instabilities can appear 
in an electron-hole pinch, in the form of traveling 
density perturbations that are amplified as they propa
gate. In the main, these waves are sausage modes char
acterized by m = 0 with modulation amplitudes of ap
proximately 10-20%. In the absence of a longitudinal 
magnetic field, modes characterized by m = 1 exhibit 
an extremely low amplitude. 

Inasmuch as the oscillations are amplified along the 
length of the sample it is reasonable to associate them 
with a sausage instability, such as that which is well
known in gaseous plasmas, rather than with contact 
effects. It has also been shown by one of the present 
authorsE 4 l that a similar instability appears in an elec
tron-hole plasma even with unmagnetized carriers. 

In the present work we consider finite-amplitude 
oscillations taking into account the stabilizing effect of 
impurities. 

2. BASIC EQUATIONS 

To be definite we consider a p-type semiconductor 
with an equilibrium concentration of holes p0 ; it is as
sumed that the plasma is produced by injection of car
riers from the cathode. By virtue of neutrality the 
concentrations of holes np and electrons ne must 
satisfy the condition 

np = n, + [Jo. (1) 

Although the concentration p0 is small in the region of 
the pinch, as we shall see below, it must still be taken 
into account. The concentrations of holes and electrons 
satisfy the continuity equations 

(2)* 

dnp . ( ) -+d!v(!lpnpE-DpVnp)=O, 3 at 
where 1-Le and 1-Lp are the mobilities, De and Dp are 
the diffusion coefficients for electrons and holes re-

*[EB]="EXB. 
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spectively, E is the electric field, and B is the mag
netic field. In the electron equations we take account of 
the Hall term under the assumption 

and in the equations for the holes, which have a much 
lower mobility, in general we can neglect the magnetic 
field. 

In {3), np is expressed in terms of ne through (1). 
Then, multiplying {2) by 1-Lp and Eq. {3) by 1-Le and 
adding, we obtain an ambipolar diffusion equation for 
the electron density ne (for simplicity we omit the 
subscripts): 

an !la!le 
-= Da !>.n ---div(n[EB])- Jla[Jo divE, {4) at c 

where 

J.la = Jle!lp I (!le + !lP), Da = (f!.,Dp + !lpDe) I (!le + !lp), n == np. 

Under conditions of the pinch effect in a semicon
ductor with hole conductivity the electron current is 
much greater than the hole current so that 

4ne 
rot B = -- Jl,nE, 

c 
(5) 

i.e., we can neglect the hole current inside the pinch. 1 l 

We now substitute E from {5) in {4). Confining our
selves to terms with azimuthal symmetry, that is to 
say, terms which are independent of the azimuthal co
ordinate e in a cylindrical coordinate system r, e and 
z, and assuming that there is no magnetic field, we 
write {4) in the form 

!!_::=Da!l.n+ !lafo2 {r!_ (_!__ dy})+ D2x2 '+_!!_{~an_ dx Dn} 
at 2nc2r2 Dr r Dr dz2 n2r Dr dz az Dr ' 

where Io is the pinch current 
(6) 

c fo !la[Jo 
x=-rB, Q=--=const. 

2Io 2ne !le 

In what follows we only consider perturbations with 
wavelength much greater than the radius of the pinch, 
because it is only these perturbations that are observed 
experimentally (furthermore, the linear approximation 
indicates that shortwave perturbations are stabilized 
by diffusionE4l). For these perturbations we need only 
consider the z-component of (5): 

1 ax 2ne 
--=-IlenE,. 
r [)r Io 

Furthermore, from the equation of continuity for the 

(7) 

l)Jn Eq. (5) we have also neglected the diffusion component of the 
current; this is permissible when ller e <€; I. 
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electric current div nE = -div(nVcp) = 0, where cp is 
the potential, it follows that for long-wave perturbations 
in the zeroth approximation acpjar = 0, that is to say, 
Ez can be assumed to be independent of r. Integrating 
this equation with respect to r (after first multiplying 
it by r) we find that the solution condition for the 
following approximation is the relation Ez( z) N( z) 
= const = E0N0 • Here, E0 is the mean longitudinal 
field, N( z) is the running density .. 

N(z)= J2nrndr, 
0 

(8) 

and N0 is the average value over the length of the 
pinch. Writing Io = 1J.eE0eNo we can now cast Eq. (7) in 
the form 

ax I fJr = 2nnr IN. (9) 

Equations (6) and (9) are sufficient for the descrip
tion of long-wave plasma oscillations of an electron
hole pinch. We note that the function x is of order 
unity (it is exactly equal to unity when r = co). Taking 
this fact into account it is easy to show that the last 
term in (6) (as compared with the next-to-last term) is 
of order (p0 /n) (Oeret1. Inasmuch as the quantity 
OeTe is usually smaller than unity even for modest 
currents in an electron-hole pinch, then even for rela
tively small values of p0 /n the last term in (6) can be 
important. 

3. SAUSAGE INSTABILITIES IN AN INTRINSIC 
SEMICONDUCTOR 

First we consider the case of an intrinsic semicon
ductor Po = 0, i.e., Q = 0 in (6). For oscillations char
acterized by long wavelengths in z this equation can 
be solved by perturbation theory. For this purpose we 
write it in the form 

~~ (Dar_!_n+ J..lalo~~2} = fJn -Da fJ2n _J..Iafo2 fJ2x2 (10) 
r fJr fJr 2nc2 r fJr at f)z2 2nc2 f)z2 

and assume that the right side is a small perturbation. 
In the zeroth approximation the right side is set 

equal to zero. Multiplying (10) by r 3dr and integrating 
between 0 and co we obtain the familiar pinch condition 

(11) 

where Te and T are the carrier temperatures. It is 
evident from (11J that equilibrium is possible only if 
the running density No is independent of z. 

Furthermore, from (10) for the zeroth approxima
tion and (9) we find the equilibrium Bennett distribution 
for the functions n0 and Xo of the zeroth approxima
tion: 

No ( r } no=-!-, 
na2 a 

(12) 

where the functions f and g are given by 

1 p2 r (13) 
/(p) (1 + p2)2' g(p)= 1 -]-p2' p ==-;;· 

It will be evident that the zeroth approximation has an 
arbitrary parameter a, the radius of the pinch; this 
will be assumed to be a slowly varying function of z and 
t. The dependence of this quantity on z and t must be 
determined from a higher approximation. 

In the next approximation, on the right side of (10) 
we substitute the functions obtained in the zeroth ap
proximation, n0 and Xo· In this case, since the time 
derivative is reasonably expected to be a first-order 
quantity in the ratio of the radius of the pinch to the 
wavelength, the second and third terms on the right 
side of (10) can be neglected, that is to say, 

1 f) ( fJn1 2No 1 fJ fJno 
Da-- r-+----(XoXI) =-. 

rfJr fJr n rfJr fJt 
(14) 

Here, we have used the pinch equilibrium condition (11) . 
To first order, (9) assumes the form 

No 1 dx1 N1 1 dxo 
n~=---+---

2nr dr 2nr dr' 

where N1 is the perturbation of the running density. 
Substituting (12) and (15) in (14) we obtain for x1 an 
equation that can be solved by quadratures: 

p2 R'~a'x [ a fJa x' 

(1 + p2) 2 }, I 2Da at (1 + x') 2 

(15) 

N ' 1 2 
-2 1 x ]az'(1+-} dx (16) 

No (1-]-x') 3 x ' 

where we have made use of the boundary conditions 
X1 = 0 for r = 0 and r = R, where R is the radius of 
the sample. The second condition expresses the con
servation of current through the sample and can also 
be obtained by integration of Eq. (15), multiplied by 
rdr, from 0 toR. When R >>a, we have to logarithmic 
accuracy from (16) 

- R2 p2 {L.!:__ fJa - .!!..:.._} (17) 
XI- a2 (1+p2)2 n.at No • 

where L =ln (R/a) R: const. We see that when R/a 
>> 1 the expression for x1 is very large. For pertur
bation theory to hold, we require x1 « xo, that is to 
say, the expression in brackets in (17) must be small; 
hence, we obtain the following relation between the time 
derivative of a2 and N1 = N - N0 : 

fJa2 2Da N-No 
-at=T~ 

(18) 

Equation (18) is a solution condition for the next higher 
approximation in perturbation theory. 

We now consider the next approximation. Actually, 
in the determination of the next approximation for n2 
and X2 we cannot use (9) since it is necessary to take 
account of terms containing cp 1. However, the second
order corrections n2 and X2 are not of direct interest 
in themselves. For the present purposes it is adequate 
to use the solution condition for (10), which reduces to 
the vanishing of the integral of the right side of (10), 
multiplied by r, with respect to r. Substituting the 
zeroth-approximation functions in the second and third 
terms, we obtain the following equation: 

fJN fJ2 ( ) 
-=-D.N0-lna2• 19 

fJt f)z2 

In obtaining this equation we have taken account of the 
fact that in the zeroth approximation N = N0 = const; 
also, the second derivative with respect to z cannot 
be taken out from under the integral sign in the last 
integral in (10 ), since x2 does not vanish at infinity. 

Substituting N from (18) in (19) we obtain a single 
equation for the radius of the pinch a: 
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fJ2a2 2D 2 fJ2 
-=---a-lna2 

fJt2 L {)z2 • 

In the linear approximation, for perturbations of the 
form exp ( yt + ikzz), we then obtain the growth rate 

_ ( 2 )'/• Dakz 
Y- L -a-· 

(20) 

(21) 

As we have assumed, the growth rate is proportional 
to kz. 

Equations (18) and (19) provide a qualitative picture 
of the development of the sausage instability into the 
nonlinear stage, in which the modulation amplitude of 
the pinch radius becomes of the same order as the 
pinch itself. In the nonlinear stage the logarithm is a 
slowly varying function so that the right side of (19) 
can be regarded as constant, i.e., ON= N- No will be 
a linear function of t. Correspondingly, in accordance 
with Eq. (18), a 2 will execute uniform accelerated 
motion and the pinch will contract to zero radius in the 
region of the sausage within a finite time. By that time 
the depth of modulation of the density ON = N - No, 
being small (of order kza), will still remain small. 

Under actual conditions, of course, the pinch does 
not contract to zero radius, because a number of effects 
that have not been considered in our analysis come into 
play; these include recombination of carriers, heating, 
ionization, etc. Hence, under actual conditions we ex
pect certain oscillations, possibly irregular ones, in 
which the amplitude of modulation of the density will 
be the smaller, the smaller the ratio of pinch radius to 
wavelength. 

4. SLOW OSCILLATIONS IN EXTRINSIC SEMI- -
CONDUCTORS 

We now consider the role of the last term, propor
tional to the hole concentration p0 , in (6). 

We first consider the limiting case in which the last 
term in (6) is much greater than the other terms, mak
ing use of the method of successive approximations. 
In the zeroth approximation we retain only the last 
term; setting this term equal to zero we have x = x(n). 
But then it follows from (9) that n is a function only .of 
s = r 2/N(z): 

n = n(s), dy./ ds = nn(s). (22) 

In order to obtain the next approximation we substitute 
n = n(s) and x = x( s) in the other terms of (6) and 
replace the variable r by the variable s. The quanti
ties n1 and ¢1 in the next approximation are related by 
(9), so that n1 can be expressed in terms of x1: 

After this substitution, the last term of (6) can be re
duced to the following form in a first approximation: 

2Q fJ2 ( XI ) 
N {)z{)s n(s) ' 

where n(s) is the density in the zeroth approximation. 
We assume that N(z), n1, and X1 are periodic func

tions of z. Then if we multiply (6) of the first approxi
mation by N( z) and average over the period, the last 
term vanishes since it is equal to the derivative of a 
periodic function with respect to z. Furthermore, the 

last term vanishes upon integration over s. Thus, we 
obtain two equations for the functions in the zeroth ap
proximation 

(23) 

(24) 

where the angle brackets denote averages over z. In 
the derivation of (23) we have neglected small terms 
proportional to the square of the ratio of the radius of 
the pinch to the longitudinal wavelength. Equation (23) 
is of exactly the same form as the equation for a pinch 
that is uniform along z, the only difference being that 
the quantity 1/No is replaced by (1/N) in the last 
term. Since (1/N)(N) =(1/N) N0 > 1, in the presence 
of modulation of N, in accordance with Eq. (23), the 
equilibrium current 10 must be somewhat smaller 
than is indicated by the pinch condition (11 ). 

For a given current 10, Eq. (24) for N is not con
nected at all with (23). In the linear approximation for 
the equilibrium pinch, in which the current Io is related 
to the density No by the pinch equilibrium condition (11 ), 
Eq. (24) leads to a stationary perturbation with fre
quency precisely equal to zero. In the case of finite
amplitude oscillations the second term in (24) is re
duced compared with the first since the quantity ln N 
varies more slowly than N; furthermore the equili
brium current [in accordance with (23)] is much 
smaller than in the cylindrical case (11 ). Consequently, 
the nonlinear oscillations are damped. 

Thus, we have shown that there is a complete stabili
zation of the pinch under conditions of a rather high 
equilibrium hole density p0 • Under these conditions it 
is possible to have only very slowly damped (in the 
linear approximation, stationary) perturbations of the 
running density N(z). For these perturbations, the dis
tribution density varies along the pinch in a similar 
fashion: n = n(r2/N(z). Under these conditions the 
running density varies in phase with the radius of the 
pinch, as in the case Q =0. 

5. DISCUSSION OF THE GENERAL CASE 
Having the results for the limiting cases Q = 0 and 

Q = oo we can now discuss qualitatively the case of 
arbitrary Q. First we note that under conditions of the 
pinch effect the actual parameter that characterizes the 
role of the last term in (6) is the quantity 

'J..=~-c-= Po _1_. (25) 
n 11.B n (Qe't'c) 

In fact, compared with the second term in (6), the last 
term contains in addition to containing ~ also one 
small parameter kza. However, as is evident even 
from (18) and (19), we are not interested in the second 
term itself, but the part that is not in equilibrium with 
respect to z and is proportional to kza, 

Thus, the intermediate case between two limiting 
cases is the case ~ ~ 1. This case is extremely com
plicated for an analytic treatment, so that we shall 
discuss it only qualitatively. 

We note first that for a specified running density N 
the parameter ~ is a strong function of the pinch 
radius ~ ~ a 2 • This means that in the case ~ ~ 1 the 
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expansion of the pinch carries it into a region of 
stability, while compression brings it into a region of 
instability; hence, the development of the instability is 
a case of "hard" excitation, that is to say, a strong 
sausage on a pinch cannot be stabilized by p0 if Po 
remains constant. However, it is possible that the am
plitude of the perturbation is so small that strong 
sausage instabilities do not occur. In this case the 
stabilizing (last) term in (6) will act in the following 
way. At the axis itself, taking account of (9), we find 
this term to be of the form (27TQ/Nn) an/az, that is to 
say it describes the drift transfer of the density per
turbations in the unneutralized plasma, which is well
known in semiconductor physicsP• 6l In the linear ap
proximation we can obtain a transfer rate v0 

= -27TQ/Nn in the direction from the cathode to the 
anode (in a p-type semiconductors), whereas in the 
nonlinear approximation we can have the effect of 
breaking of the density-perturbation wave. Assuming 
that perturbations with kza > 1 are damped by diffu
sionf41, we might expect stabilization of finite-ampli
tude perturbations. However, as A increases the am
plitude of the stationary wave should decrease; for 
very large A there must be a complete stabilization of 
the waves traveling with the drift velocity v0, because 
this velocity depends on r, so that perturbations with 
different r travel with different velocities, in which 
case transverse diffusion causes quenching. Under 
these conditions it is only possible to have almost sta
tionary perturbations, which have been considered in 
the preceding section. In some range A ~ 1 one then 
expects steady-state oscillations with finite but modest 
amplitude, and is observed experimentally. 

6. CONCLUSION 

Thus, we have shown that intrinsic semiconductors 
can support sausage type instabilities which, within the 

framework of the diffusion analysis (neglecting recom
bination, generation, and heating of the carriers), must 
lead to collapse of the sausage. In an extrinsic semi
conductor there is a stabilizing effect associated with 
the plasma drift in the electric field. In a p-type semi
conductor the characteristic parameter that determines 
the magnitude of this effect is the quantity A = p0c/nJ.LeB, 
where p0 is the equilibrium density of holes, n is the 
density of carriers in the pinch, and J.Le is the electron 
mobility. When i\. >> 1 the pinch is completely stable 
and can only exhibit small stationary perturbations of 
the pinch radius with pinch density constant along the 
axis. When i\. ~ 1 it is possible to have small station
ary perturbations in the form of waves that travel from 
cathode to anode. When n0c/pJ.LpB >> 1 a similar sta
bilization effect is to be expected in n-type semicon
ductors. However, since rather large currents are 
generally used in this case, it cannot be observed 
experimentally. 
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