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A metal model is considered in which electrons can exist in almost free states and can also be 
localized at nodes in the d1 and d2 states of the atomic d shells. The spectrum of Fermi excita­
tions of electrons is found, with account of the hybridization of these states and the intra-atomic 
interaction of the d electrons. The influence of the indicated interactions on the magnetic proper­
ties of the system is investigated; it is shown that when the number of the electrons in the atom 
n $ 2, ferromagnetic ordering is possible and energetically favored. 

1. As is known, in the construction of a theory of the 
electron gas in transition metals, it is necessary to 
solve two basic problems. One of these is the neces­
sity of consideration of two sorts of electrons: the 
almost-free s and p electrons and the almost-localized 
d electrons of the existing outer shells of the atom of 
the transition metal. The second problem is the need 
of introduction of many-body effects into the theory, in 
particular, the electrostatic interaction of the electrons. 

Considerable progress has been made in recent 
years toward the solution of the problem. The method 
of account of both types of electrons has been put forth 
by Ziman,ll), Heine,E 2l, Hubbard[ 3l and others, in a 
unified scheme in the framework of the single-electron 
theory. Here the single-particle wave function is as­
sumed to consist of components corresponding to the 
potential motion in a weak pseudopotential (the s- and 
p-partial amplitude) and a resonance scattering by the 
quasidiscrete level formed from the existing atomic 
d state. 

Whereas the single-electron wave function is a 
completely sufficient approximation in the considera­
tion of transport phenomena, the construction of a 
many-particle theory is necessary for a large number 
of phenomena, especially magnetism, which by its very 
nature is associated with the collective properties of 
the electrons. In traditional band theory, the theory of 
electron interactions is considered as an addition to the 
single-electron energy.[4 l However, there are also 
theories in which the correlation is assumed to be so 
great that it is even taken into account in the zeroth 
approximation. These theories are based on the works 
of Hubbard, Kanamori and Gutzeiller.[sJ In these 
theories, the intra-atomic electrostatic interaction of 
the electrons leads to a splitting of the energy band 
into several subbands, corresponding to the probability 
of a different number of d electrons being located at 
the node. To impart realistic features to the correla­
tion theory, it is necessary to include both types of 
electrons and their interaction in it. The first research 
of this type was due to Smith. [s] In it he considered a 
band of free electrons, hybridized with atomic d levels 
which were considered to be nondegenerate. The cor­
relation of the d electrons is considered here on a 
single node, which is assumed to be very strong. 

In the present research, the authors posed the fol-

lowing problem: First, to include in the theory the 
correlation of the d electrons, developed earlier by 
Hubbard[ 7 J and the authors[aJ in the approximation of 
overlapping Wannier functions, with the hybridization 
of the d-electron levels with the band of almost-free 
conduction electrons; second, to investigate the mag­
netic properties of the model, assuming that cause, 
defining the possibility of magnetic ordering, is the 
satisfaction of Hund's rule for electrons located in a 
single cell. 

A comparison of the results of our research with 
the theories of Smith[sJ is given in Sees. 3 and 5. 

2. Thus, we consider a system of electrons in a 
metal. We shall assume that they can be found in al­
most free s states, with energy Ek( Ek 1 k = o = 0) and 
in almost bound states in atoms in the electronic con­
figurations d 1 and d2 , having energies € 1 and €2. In 
order that the s-d hybridization play an important 
role in the properties of the system, it is necessary 
that the energy of the transition d 2 - d1s 1 be com­
parable with the energy of the s-d interaction. For 
this, we shall assume that the energy € 2 - € 1 be posi­
tive and intersect the conduction band. We shall not 
consider the other configurations dn, assuming that 
their energies and the corresponding differences En. 1 

- En lie outside the range of energy of interest to us. 
Furthermore, among all the possible terms of the 

configuration d 2 , we shall consider only the lowest. 
According to Hund 's rule, this term is 3F. Moreover, 
for simplicity, we shall assume the s band to be non­
degenerate, and the atomic levels not to depend on the 
projections of the orbital momenta upon neglect of the 
effect of the crystalline field. 

As has already been pointed out, the correlation 
theory of d electrons in a narrow energyband was 
formulated by HubbardYl The authors[a] considered 
the Hubbard model with account of only one- and two­
electrons states of the atoms in the approximation of 
a degenerate d band. Now we shall set up the problem 
of the account in this model of two types of electrons 
and their hybridization. 

We shall make use of "atomic" operators of second 
quantization, introduced in the papers[ 7 • 81 : X~A is the 
creation operator of the configuration 

X""-+lnA') =IIOA·InA); 
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~1A 2 = X~ A XnA is the configurational change opera­

tor at the n~de ;, For the operators ~1A 2 we have 
the following multiplication rule :[ 71 

(2.1) 

Any operator acting on the electrons of a given atom is 

expressed in terms of ~1A 2 in the following way: 

An= .E<nAdAnln&)z:-•Ao. (2.2) 
A1A!! 

Our model is described by the Hamiltonian 

H=Hd-t-H.-t-Hsd· {2.3) 

In the atomic Hamiltonian Hd there enter the localized 
single-electron states of the atoms y and the two­
electron d2 states r. Here, inasmuch as the energy 
level of the second electron, according to the assumed 
model, lies above the bottom of the conduction band, 
i.e., in the region of positive energy, we shall assume 
it to be quasidiscrete (see, for examplePl), i.e., to 
have a finite width W. 

Thus, in the representation of the configuration 
change operators, 

Hd= .E { .E e,z,;v + .E e2z:r} . (2.4) 
r 

The Hamiltonian of the condudional electrons has 
the usual form: 

H.= .E e.tCta+Cta. 

•• 
(2.5) 

The Hamiltonian of the s-d interaction in the usual 
form is described in the following fashion: 

(2.6) 

where dmna is the annihilation operator of the d elec­
tron on node d with the projections ma of orbital and 
spin momenta, T~m = (ka IV I nm) is the matrix ele­
ment of hybridization of the s and d states. The op­
erators d~ma and dnma can, according to Eq. (2.2), 
be expressed in terms of the atomic configuration 
change operator. In correspondence with the assumed 
model, we shall assume that only the two-electron r 
states take part in the hybridization with the s elec­
trons, so that the expressions for d• and d are de­
scribed approximately in the following way: 

a;t.a= .E (fld:maly)Zn~"~, dnma= .E (y.ldnmalf)Z.vr. {2.7) 
vr vr 

The matrix elements ( y I d I r) are expressed in terms 
of the Klebsch-Gordan coefficients. 

Substituting (2.7) in (2.6), we obtain the following 
expression for the hybridization Hamiltonian 

Hsd= .E.E{v~r c •• +z.vr+ c.c.J, (2.8) 
ta nvr 

vnvr ~ CLMLcsM.Tnm' (2.9) 
ka = ~ mm' aa" ka ., 

m•a• 

where T contains the potential V, which is created by 
the nucleus, with filled inner shells and with a single 
d electron on the outer shell of the atom. 

3. The elementary excitations are considered by 

means of the technique of double-time temperature 
Green's functions. The following Green's functions 
are considered (we immediately write down their 
Fourier transforms in the energy): 

G:,•!:r,v, (E)=( Zn~'r'IZ.!';"'}E, G:a~"~(E)= (c•aiZ~)E, 

u vr I Gnvr(E)= < Zn I c •• + )E' a •• (E)= (c •• Coa+ )E. 
(3.1) 

Using the commutation relations, which are easily ob­
tained from the multiplication rule for the configura­
tion change operators (2.1), 

(3.2) 

we obtain a set of equations for the Green's function, 
in which we perform the uncoupling 

( Z:"'c•aiZ!';')E = (Z~') G:;v'(E), 

(Z.!''rc •• IZ.!"')E= (Z~'r) a:;v (E), 

( z!'· co,alc•a+.)E = (Z!"') G.a(E)6oo,, 

( z,!'r'c•,alcoa+}E = (Z,!'r') G•a(E)6•••. (3.3) 

Finally, we carry out averaging for those which do not 
depend on the number of the node and which are diagonal 
in the upper indices: 

(3.4) 

and perform the Fourier transformation in k. 
As a result, we obtain the set of equations for the 

Green's function 
vlrtri'•'a Kv,r, v1r1• r2vs 

(E -e2 + e1) G. (E)=-- 6v,v,6r,r, +D.. K••r•G•a (E), 
2:t 

(E -e.)G·~·•• (E)= -r D.~r G.Vrr,v, (E), 
"""-" vr 

(E -e2 + et)G:.~.(E)= D.~.r,• K••r•G•a(E), 

(E -e.)G •• (E)=-1--t- ~ v.:·r·G:.~.(E). (3.5) 
2:r .t.... 

Here KYr = ( z'l') + ( Zr). We then easily find the 

functions G~rry and Gka that are of interest to us: 

G. vrl"' (E)= 1 Kvr(E- e.) , 
2n (E-ed)(E-e.)+Ba(k) 
1 E-ed 

Goa(E)=- , 
2n (E- lld) (E- e•)+ Ba(k) 

lld=e2-eh Ba(k)= E ID~~ I2Kvr. 
,.r 

(3 .6a) 

(3.6b) 

The poles of the Green's function (3.6) determine 
the energy spectrum of the elementary excitations: 

E 1,2(k) = 1/2(e.+ed) =t=l' 1/.(e.-ed) 2 +Ba(k). (3.7) 

This is the customary expression for the two hybrid­
ized bands, formed from the broad s band and the 
localized d level. A formula of similar type was ob-

. tained by Smith. [sJ Just as in the work of Smith, the 
uncoupling of our levels depends on the average num­
ber of d electrons per atom. However, in the Smith 
model, hybridization of the s-d type occurs, while we 
consider the hybridization sd - d2 • Moreover, Smith 
considers the d electrons to be nondegenerate, two 
electrons with the same projections of spin, cannot, by 
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virtue of the Pauli principle, be found in the same node 
simultaneously, and the d 2 state is a singlet. We also 
consider the degeneracy of the d levels in the projec­
tions of the orbital momenta and, in correspondence 
with Hund's rule, that the ground two-electron state 
has the spin S = 1. 

The scheme of energy bands (3.7) and density of 
states p (E) are shown in Fig. 1. The numbers I and 
IV denote the portions of the spectrum in which the 
bands have an "s character" and the numbers IT and 
ITI indicate the "d regions." Such a division is, of 
course, tentative, because, after taking hybridization 
into account, it makes no sense to speak of pure s-
or d-electron states, and the probability of the elec­
tron's being in s or d states is determined by the 
shape of the entire energy spectrum. However, as will 
be shown be low, the contribution from regions IT and 
III to the probability of the s state, and the contribu­
tion of the regions I and IV to the probability of the d 
state are small. 

The spectrum (3.7) generally depends on the projec­
tion of the spin r:r. Therefore, the average of the num­
ber of electrons in the different states can also depend 
on the projections of the spin momenta: 

(ZY)=Pa, cr=±1/2, (ZI')=PM,, Ms=0,±1. (3.8) 

The dependence on the orbital quantum numbers is 
lacking, since there are none in the energy spectrum. 

For the study of the properties of the considered 
model, we must write down the closed set of equations 
for the determination of the occupation numbers of the 
one-electron Pr:r and the two-electron PMs atomic 
states and the conduction electron distribution function 

For this puripse, we express the correlation functions 
( Z'Y) and ( Z ) in terms of the Green's functions, with 
the help of the Lehman-Callen formula, just as has 
been done previously[al (Eqs. 35), (37) and (41)). As a 
result, we get the set of equations (for T = 0): 

P+1 = (P+J + P+~)l+, Po.= (Po+ P-•h)l+, 
(p )/ (3.9a) Po=(Po+P+•h)L, P-1= -I+P-v, -• 

~{ Ed-Eia E2a-Ed } 
na=N-1 E E 8(!!-Eia)+E -E El(11-E2a) , 

2a- Ia 2a la • 
Here 

{ :1, x>O 
El(x)= 0, x<O · (3.9b) 

To these equations, we add the equation for the normal­
ization of the probabilities 

.E (Z~ =1, 
A 

which has the form 

(2l + 1)(PH +P-%) + (2£ + 1) (P+I +Po+P-1),.., 1 (3.10) 

in terms of Pa, PMs· We also add the equation for the 
total number of electrons in the cell 

(3.11) 

E 

rm 
FIG. I. Scheme of energy bands. The dashed lines indicate the 

energy levels ek and ed in the absence of hybridization, p(E) is the 
density of states. 

The eight equations (3.9a), (3.10) and (3.11) form a 
closed set of nonlinear equations for the eight unknowns 
Pr;r, ~s• nr;r and nT inasmuch as the excitation spec­
trum (3.7) depends in turn on the values of Pr:r and 
PM· Actually, by using the explicit values of the 
Klebsch-Gordan coefficients in Eqs. (2.9), we can show 
that 

(3.12) 

The quantity !; generally depends on k and is equal in 
order of magnitude to the ratio W / ( E. 2 - f.1 ), where the 
energy W is the width of the quasidiscrete level f.d. 

The basis of our model is the assumption that f.d is 
a sufficiently quasidiscrete level and, consequently, !; 
is a parameter whose smallness justifies the splitting 
(3.3) and allows us to solve the set (3.9)-(3.11) in 
analytic fashion in a number of special cases. Here we 
shall neglect the dependence of !; on k. 

4. Thus, we must find the solutions of the set (3 .9 )­
(3.11). In addition to the eight enumerated unknowns, 
there also appears the parameter j.J.-the chemical 
potential-by the variation of which we can change the 
total number of electrons per atom. 

Generally speaking, the solution of our system is 
difficult without machine calculations, since the inte­
grals J. and J_ are expressed in terms of elliptic 
functions. However, there are a number of cases in 
which the correlation functions are found approxi­
mately. Furthermore, the analysis of the system is 
materially simplified if we consider the quantities J+, 
J_ and ll as independent variables. It is easy to show 
from the set (3 .9) that 

p±1 = ~-'1±2(1-1+)2, Po= Z-'l+L(1- h) (1- L), 
(4.1) 

P±!l, =Z-'1+(1-1±) (1-1+)2. 

The quantity Z is determined by the normalization 
condition (3.10): 

Z = (21 + 1)[h(1 -I+) (1- /_) 2 + L(1- L) (1- h) 2] (4.2) 

+ (2L + 1) [h2(1- /_) 2 + I+L(1 -I+) (1- L) + U(1- h) 2]. 

Substituting (4.1) in (3.12), we get 

B± = Z-'~ed2 (2L + 1) (1- I+) (21± +I+- 3l;L), (4 .3) 

and our problem reduces to the solution of two non­
linear algebraic equations: 

h=F(h, L, ~t), L=F(L, 1+, 11). (4.4) 

The function F is determined in explicit fashion by the 
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form of the integral Ja in (3.9b) with account of (4.3). 
Let us consider the nonmagnetic solution. Then 

J+ = J_ = J, and the set (4.4) reduces to a single equa­
tion 

1=, J dES(e) {£:=~: 6(11 -Etl+£~~~: 8(11-Ez) }· (4.5) 

Here 

S(e)= dN(e) N(e) = N-1 "\' 8 (e- e.). (4 .6) 
de .l... 

Let the chemical potential be found in region I (Fig. 1), 
i.e., t:.. >> ~l/ 2 Ed, where t:.. = Ec(- JJ.. Then we have, in 
first order in ~ (assuming Ek = k2 ), 

(4.7) 

P._,.= 1 [t-~ 2L-t1 1] p =P =P 
" 2(21 + i) 2 21 -i- 1 ' +I O -I 

1 
2(21-tt)' 

n+=n_=N(!L) (1- 3B /2~) -1. 

In the case considered, the effective mass on the Fermi 
surface is equal to 

m·=(~!~tl~=m0 (1-B~-2 -4BfL.~~). mo=(~~n-'t (4.8) 

i.e., the effective mass of the hybridized state only 
slightly exceeds the mass of the bare conduction elec­
tron and, consequently, the speetrum in region I has an 
''s character.'' 

If the chemical potential intersects the level E 1 in 
region II, i.e., 0 < £:.. « e12 Ed, it is sufficient to com­
pute the integral (4.5) in the zeroth approximation in ~: 

1 =N(ep) -N(ed), E:e=Ed + B~-1, 

B=6E~3(2L-t1)Q(1), (4.9) 
P±v. = (1-1)Q(1), P1 =Po =P-I= 1Q(l), 

Q-1(1) =2(2l + 1) (1- J) + 3(2L + 1)/, n+=n-=N(Ed), 

(m•)-1 =mo-l [~2B-l- 2mo~3B-2 ( dEh )2 ] ' mo-l= d2Eh I . 
dk Ep dk2 Ep 

(4.10) 

We see that the effective mass is very large (and nega­
tive) in this case. This gives us reason for saying that 
the spectrum has a "d character." 

The equations (4.9) determine the occupation number 
in implicit fashion, and we see !that with increase in J.1. 

(i.e., as t:..- 0), the quantity J increases and so does 
lld 2-the number of electrons in the d2 states: 

nd' = 2(2L + 1) {P+t +Po+ P-t). 

The number of electrons in d 1 states decreases here, 
and the number of s electrons remains approximately 
at a constant level. 

We now investigate the possibility of a magnetic 
solution of the set (4 .4), when J+ ,. J .... In the general 
case, the set is not given to analytic investigation. 
However, in the case Ed« Ec, N(Ec) = 1 (Ec is the 
width of the conduction band), Eqs. (4.4) are rather 
easily solved if it is assumed that the chemical poten­
tial is such that the subband E~ is completely filled 
and the subband E! intersects the chemical potential 
in region II, and 

(4.11) 

In this case, the integrals J± can be computed from 
Eq. (4.9) 

l±=N(er) -N(ed), er=Ed-tB~-•. 

Under our assumptions, Ep = Ec and therefore 

h= 1-N(ed). 

Using the second condition of (4 .11 ), we find 

L=(Ep--Ed) dN(':l_l =B-~-IS(ed)· (4.12) 
de '• 

It then follows that J_ « EdS(Ed) ~ N(Ed) « 1. Thus 
J+ is close to unity and J_ is close to zero. In this 
case, Eq. (4.3) gives 

B+ ~ 2sE~, B_ ~ se~N (Ed). 

Substituting B+ in the equation E F = E c, we find 

~""'~.=~~ 2sei. 
P.~ --Ed 8e 

Hence, and also from (4.12) and (4.13), we get 

/_ = eeS(ed)N(Ed}. 

(4.13) 

(4.14) 

(4.15) 

Using this expression, we can easily see that the in­
equalities (4 .11) are equivalent to the inequalities 

s( Ed)~(~)'"~ 1, (4.16) 
' Ee £c 

which are satisfied automatically whenever Ed « Ec. 
From (4.1), we find 

P+t=(2L-t1}-1 [1- 21 +1 N(ed)], 
2L-t1 

~=N(Ed), Po~ 0, P-1 ~ 0, P ... •r, ~ 0, 

( 2l + 1) 
nT=2+ 2- 2L-ti N(Ed). 

(4 .17a) 

(4.17b) 

Here the magnetic moment, in units of J.l.B, is equal to 

s=n+- n-+ (2l + 1) (P+v.- P ... w,) + 2(2L + 1) (P+t- P-t} 
=nT-2N(ed). (4.18) 

Thus, we have found the solution of the set (3 .9 )­
(3.11) for which the d electrons are virtually com­
pletely polarized, while the superimposed magnetiza­
tion of the s electrons is negligibly small (see Fig. 2). 
In order to prove that the magnetic solution thus found 
is more advantageous energetically than the nonmag­
netic solution with the same number of electrons 
(4 .17b ), we show that the chemical potential of the 
nonmagnetic solution is higher. It is easy to see that 
upon satisfaction of the inequality Ed« Ec the total 
number of electrons in the nonmagnetic case is equal 

FIG. 2. Scheme of filling of the energy levels in the case of almost 
complete magnetic ordering. 
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to the quantity (4.17b) if 

1=1- 3/~(su). (4.19) 

Here N(EF) = 1- }'2N(Ed), EF =Ed+ ~Ed~~~nmag· 
It then follows that EF ~ Ec and 

We thus see that the magnetic solution (4.17) is 
energetically more profitable (see (4.14)). 

(4.20) 

It is easy to show that the nonmagnetic solution (4.7) 
is the only solution of the set (3 .9 )- (3 .11) for the con­
dition ~ » e12 Ed. Inasmuch as we have just now found 
the magnetic solution for the case ~ F::; ~Ed/Ec with 
almost complete polarization, it is clear that a critical 
value ~cr should exist, such that only for ~ < ~cr is 
there a second, magnetic solution along with the non­
magnetic. 

For the determination of the critical value of the 
parameter J1. for which the number of real solutions 
changes in the set of algebraic equations (4.4), it is 
necessary and sufficient to find the solution J1. = JJ.c 
for which the directions of the tangents coincide at the 
point of intersection of the curves (4.4a) and (4.4b). 
This requirement leads to the equation (see[lol) 

dF(1+.1-) I _ dF(l.n1-> I = 1. 
dJ+ J+_J_ dJ_ J+_J_ 

(4.21) 

For Ed « Ec this equation has the form 
si" . . 1.+31 

s-x;,f(s,) (ZL + 1) 1(1-1)[2(2l + 1) (1-1)+ 3(2L + 1)1] (4 ~22) 
The solutions of this equation depend on the ratio 
Ed/Ec· In particular, by taking N(Ed) = 10-\ we find, 
numerically, ~c = 0.3 ~Ed, nT = 1.73. Comparison of 
this value of nT with the expression (4.17b) shows that 
for Ed<< Ec, there is a comparatively broad region of 
values in which there exists a state of the system with 
spontaneous magnetization (and which is energetically 
profitable). The increase in the chemical potential 
from the value J1. = Ed - ~c to JJ. =Ed - ?'2~c leads to 
a gradual decrease in the spontaneous moment from its 
maximum value to zero. Thanks to the modeling as­
sumption ~ = const, there is a gap in the spectrum, and 
for 

nr<=2+N(su) (z-_! Zl+i) 
3 2L+1 

our system takes on the character of a semiconductor •11 

However, too great a value should not be given to this 
conclusion, inasmuch as first, in the more realistic 
model, one should expect that the level Ed intersect 
several conduction bands and, second, the quantity 
~ can generally vanish on the boundaries of the 
Brillouin zone. It is clear that the region of existence 
of a magnetic solution here becomes smaller than when 
~ = const, because in this case there is a second solu­
tion (~ = ~~r) (~c < ~~r < ~cr) for which the mag-

ll At frrst glance, it seems odd that the band E1 is filled for a non­
integer value of nT. This is connected with the fact that, in contrast 
with the usual band theory, we have here a hybridization between 
states with different statistical weights (gs = 2, gd = 1). For example, 
the effective statistical weight geff of the hybridized band E 1 , defined 
as~ff= (nT-1)/N(fF), changes from 2 to 1 in the change ofeF from 
0 to €c. 

netic solution of the set (3.9)-(3.11) again vanishes. 
When the total number of particles exceeds the value 
n~, filling of the band E2(k) begins (see (3.7)). It is 
easy to show that the magnetic solution of the system 
is lacking in this case. 

5. In conclusion, it is useful again to compare the 
principles involved in the work of Smith[6l and in our 
model. Essentially, there is an alternative in these two 
works relative to the mutual position of the s and d 
levels in the crystal (see Fig. 3). Smith assumed that 
filling of the energy levels takes place in the following 
order: first, the lowest level of the s band is filled, 
then the localized d level. The third electron, because 
of the strong intra-atomic correlations, is practically 
never localized at a node and is also in the broad con­
duction band. It is assumed in our model that the 
single-electron level is filled first. To the second and 
third electrons on the node there is the "choice" of 
being in the collectivized s state or in the quasilocal­
ized d sta~e in a cell where there is already one elec-
tron. · 

A different form of energy spectra leads to different 
reasons for magnetic ordering and to different regions 
of existence of magnetism. In the Smith model, as has 
already been mentioned, two electrons can be found at 
a single node, having opposite spin directions but such 
a situation almost never occurs, because of the elec­
trostatic repulsion. The possibility of ferromagnetism 
in this model is due to the fact that the energy of the 
subband with given spin is lowered in hybridization by 
an amount that is the larger the smaller the number of 
electrons in the system with opposing spins. Here, 
such a lowering takes place only for JJ. < E, i.e., when 
the mean number of electrons per atom is not greater 
than unity. 

In our model, the d level is assumed to be degener­
ate, the magnetic electrons, in contrast with the Smith 
model, spend a larger portion of time in the two-elec­
tron atomic states, where Hund's rule is satisfied. Al­
though the mechanism for the appearance of magnetism 
in our case is the same as Smith's (lowering of the 
band energy in hybridization), the region of existence 
of the ferromagnetic phase is different: that situation 
is most favorable for magnetic ordering in which about 
two electrons come to the atom. It can be shown that 
the Smith model corresponds to the assumption that 
atomic states of the type 3d104s, 3d94s 2 are realized 
in a crystal of a transition metal, while in our model, 
the states 3d84s2, 3d94s are considered to be the most 
important, as was formerly proposed by Van Vleck) 111 

Er---a---, 

r.-r,f-----~ 

t,l-------1 
I I I 

FIG. 3. Position of the electron levels in the Smith model (a) and 
in the present research (b). 
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