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The possibility of appearance of coherent quantum effects in superconductors at temperatures above 
the critical transition temperature Tc (into the superconducting state) is analyzed. It is shown that 
in a superconducting ring placed in a constant magnetic field Hat a temperature T > Tc a circu
lating current is induced which varies periodically as ay ~unction of the magnetic flux ~. The ampli
tude of the current is proportional to the parameter e-"-'1 ~ where L is the length of the perimeter 
of the ring and ~ ~ v0 /(Tc(T- Tc))l/2 is a temperature-dependent coherence radius. 

AMONG the essential manifestations of the concept of 
macroscopic coherence of the London[l] superconduct
ing state are the so-called coherent quantum effects: 
fluxoid quantization[1• 2l, oscillation of superconducting 
currents in time in the presence of an electric field 
(Josephson effect)[ 31 , quantum interference of super
conducting currents (cf. e.g.r 4 l). The purpose of the 
present paper is to analyze the possibility of occur
rence of such effects under the conditions of "fluctua
tion pairing"[ 5 l, i.e., at temperatures exceeding the 
critical temperature of the superconductive transition, 
T c. 11 It turns out that coherent quantum effects do in
deed occur for T > Tc; however, in distinction from 
the situation below Tc, where the phase coherence 
propagates over unlimited spatial and temporal inter
vals, under the conditions of fluctuation pairing, it 
occurs only over distances of the order of the coher
ence length HT) = (D/r(T))l/4 and for time intervals 
of the order of r-1 (T), where r(T) = 81T-1(T- Tc) is 
the reciprocal of the relaxation time of the Cooper 
pairs [a] and D is the diffusion coefficient ( D = 
()'s)v0 l for an impure alloy and D ~ v~/Tc for 
l >> vo/Tc; l and Vo are respectively the mean free 
path and the Fermi velocity of the electrons in the 
normal state). This causes a broadening of the spec
trum of Josephson oscillations above Tc[ 6 ' 7l, and for 
the case of the flux quantization there occurs an ex
ponential decay of the amplitude of the circulating cur
rent, under the condition that the length L of the 
quantization perimeter is considerably larger than the 
characteristic size HT) (cf. infra). 

1. We consider a thin superconducting filament with 
transverse dimensions d1 and d2 small compared to 
HT), placed in a field with vector potential A, pro
duced by a source of magnetic field (a narrow solenoid) 
of small area (Fig. 1). According to Aharonov and 
Bohm [9J, the action of the vector potential is not 
eliminated even if the magnetic field vanishes in the 
region of the metal. In the case illustrated in Fig. 1 the 
order parameter (the wave function of the pair) 1jJ de
pends only on one coordinate x, measured along the 

llThe case of temporal coherence of superconducting currents in a 
Josephson tunnel junction forT> T c has been considered in a previous 
paper of the author [ 6 ] ( cf. also [1] ). In the present paper we consider 
the effect of quantization of the magnetic flux forT> T c· 

FIG. 1 

length of the filament: 1jJ = ljl(x). We denote the length 
of the perimeter of the ring by L ( L = 21TR). Since the 
function must be single-valued after traversing the 
closed contour, it admits a representation of the form 

(1) 

where kn = 21Tn/L, n =0, ±1, ±2, ..•. In the Ginzburg
Landau the superconducting current is given by the 
expression (ti = 1) 

. 2e 1 [ • ( a 2ic } ] J=-- m ..p -::---A ..p , 
m ox c 

(2) 

where A =Ax is determined by the total flux ~ of the 
magnetic field produced by the solenoid: 

A =¢1/L. 

We find the thermodynamic expectation value of j, 
by averaging with the Gibbs factor e-f3F: 

Here {3 is the reciprocal temperature ({3 = 1/T) and 
F the Ginzburg-Landau free energy[loJ, which in our 
case is given by 

(3) 

(4) 

F=d!d2 Ls {I(.!...- 2i:A) ..pI\_£ I..PI2}dx. (5) 
2m 0 ax c $2 

where d1d2 is the cross sectional area of the filament 21 • 

According to the expansion (1), F has the representa
tion in the form of a sum 

2lWe note that the Ginzburg-Landau equation in its usual form is 
not valid forT> T c· One can only write down a temporal generaliza
tion of such an equation, which includes stochastic terms, owing to 
which 1/1 is nonzero for temperatures above T c· 
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from where it can be seen that the different values of 
n are independent from one another. The expectation 
value of the current is defined according to (2) as 

(7) 

The element of phase-space volume in the computa
tion of the trace in Eq. (4) has the quasiclassical 
product approximation[7 l 

dr=II dNndfPn, (B) 
2n 

where Nn is the number of partie les in the condensate 
for a given value of n, <fJn is the appropriate phase. 
Considering Nn ~ II/Jn 12, we obtain3> 

- 2mT [( 2e ) 2 1 ]-1 
"i'n." ~Jn = d1d2L k,. --;;-A + ~ t,.n•. (9) 

Substituting (9) into (7) we have for the current 

~ 4eT \"1 kn-(2e/c)A 
1 = rl1d;£' .L..J [kn- (2e/c)A)2 + \; 2 • 

(10) 
n=-o=~ 

It is obvious that the expression obtained for the 
expectation value is different from zero. This means 
that under the action of the static field of the vector 
potential A a nondecaying current is induced in the 
ring, even if the temperature T of the ring is above 
the critical temperature Tc of the superconducting 
transition. It is clear from (1 0) that I is a periodic 
function of A, with period D..A = 1rc/eL, which is 
equivalent to a change of flux by one quantum 41 0 
=hc/2e. 

Summing the series (10) by means of the Poisson 
summation formula (cf. e.g.[ 12l) we obtain 

J = 4eT Im { (eLl< e2"i0/<>,- 1) -t} = .- 4eT ~ e-PL1 sin (znp ~) .(11) 
d1d2 d1d2 .L..J <l!0 

p~l 

It is clear from here that for L >> ; the current am
plitude r is proportional to the exponentially small 
factor exp( - L/; ( T)). Therefore the observation of the 
effect is possible only sufficiently close to Tc, when 
;(T) is large, or in superconducting rings of small 
diameter ( ~ 104 em); in the latter case the effect will 
have a significant magnitude even for temperatures 
which are not very close to Tc (a similar slow decay 
of the fluctuational component of the current with tem
perature occurs in the theory of fluctuational conduc
tivity of films, developed by Aslamazov and Larkin[ 5l). 

2. It is not difficult to carry out a similar calcula
tion for a hollow cylinder for which the wall thickness 
d is small compared to the coherence length ; ( T). In 
this case lj! depends both on the coordinate x along the 
perimeter of the cylinder (Fig. 1) and on the coordi
nate z in the direction of the normal to the plane of the 
ring, so that in place of (1) one must write the expan
sion 

3lWe note that in the book of de Gennes [ 11 ] the phase volume is 
assumed in the calculation of the fluctuations to be proportional to 
dlJln 1 for which we see no justification. This, however, does not lead 
to essential differences, since the mean values calculated from (8) and 
given by de Gennes differ only by a numerical factor of the order of 
unity. 

"" 00 

'ljl ,x, z) = .2:: J dq IJ1nq eihnx eiqz. 

n=--oo---~» 
(12) 

The remaining computations are completely ana
logous to the ones above. We list only the final result. 
The expectation value of the current is given by the 
expression: 

J =- :~~ )2 K1 ( p ~ ) sin ( 2np!). 
p~l 

(13) 

Here K1(x) is a first-order Bessel function of 
imaginary argument. Since the asymptotic behavior of 
K1(x) for x -oo has the form (2/7Tx)1/2e-x, it is clear 
that the expression (13) contains the same kind of ex
ponential smallness for large L as the expression (11). 

3. Finally, we consider the occurrence of quantum 
interference effects in a superconducting ring contain
ing a weak coupling: a Josephson tunnel junction T 
(Fig. 2). For simplicity we consider the case of a fila
ment ( d1, d2 « H T)), and the critical current of the 
junction[ 6' 7l is considered small compared to the mag
nitude of the current in the ring in the absence of the 
gap (Eq. (11 )). 

In place of Eq. (2) for the current we get in this 
case the Josephson expression for j, according to 
which the magnitude of the current is proportional to 
the sine of the discontinuity of the phase of lj! at the 
point of the junction[ 3' 4 ' 6 ' 11l. This can be written in the 
following form: 

j = T12 Irn ['IJ,(O),I"(L)], 

where, according to[s], the magnitude 

T _ n S(nTc) 2 

12 - 4eR1'c ·;i~(3)N . 

(14) 

(15) 

(R is the junction resistance in the normal state). Now 
the function 1/!(x) is no longer required to be single
valued after traversing the contour, since at the junc
tion there is a jump of its phase, the magnitude of 
which is determined from the requirement of minimiz
ing the free energy (for T < T c) and under the condi
tions of fluctuation pairing, by averaging with respect 
to the Gibbs factor e-f3F, cf. (14). Since the quantity 
T12 is proportional to a small parameter-the trans
parency coefficient of the barrier-the function lj;(x) in 
(14) can be calculated to zeroth order in the trans
parency, i.e., in the current-free state, in which it 
satisfies the boundary conditions [ 101 

[(!.__ 2ie A)~P] _ [(!.-.- 2ie A) ..P 1 _ 0 
Ox c x=O- ox c J x~L- ' 

(16) 

Making the substitution 

FIG. 2 
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'I'= exp ( 2:e Ax)'¥, 

we obtain from (14) 

(17) 

J = Tu Im [ cxp{- 2ni:} '1'(0) 'I'' (L)]. (18) 

The function v(x) now satisfies the boundary condi
tions 

(c'i'l') =(c'i'l') =0 
O.X ~=0 O.X ~L ' 

(19) 

from which it follows that it can be represented in the 
form of a series 

Making further use of the expression (5) for the 
free energy and computing the expectation value 
v(O)v*(L) we easily obtain 

(20) 

~ 2mT I:"" ( -1) n . ( Ill} . . ( Ill ) ( ) 1 = Tu--- sm 2n- =Jasm 2lt~ ' 21 
d1d2L (l1n/L) 2 + s 2 lllo ..-o 

1J!.-=~ 

The quantity js is the amplitude of the Josephson 
current after summing the series (21) and is written 
in the form: 

(22) 

Thus, the amplitude of the stationary Josephson 
current in the ring also decreases exponentially with 
the length of the perimeter L (cf. Eqs. (11), (13)). As 
already remarked, this is due to the fact that the phase 
coherence at temperatures above Tc propagates only to 
distances of the order HT). We note that in the non
stationary Josephson effect above Tc[s,?] the amplitude 
of the oscillating component of the current does not 
exhibit an exponentially small factor. However, the 
temporal behavior of the current in the latter case is 
described by an exponential e -rt, which leads to a 

widening of the radiation spectrum, i.e., to the appear
ance of a lorentzian form for the Fourier component of 
the current correlation function j(t)j (t') with width 
tl.w = 2r. 

In conclusion, I express my gratitude to M. I. 
Kaganov for useful discussions. 
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