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A theory of equilibrium thermal fluctuations in an isotropic continuous medium is developed, in 
which the state of incomplete equilibrium is described by deformations, a temperature, and an arbi­
trary number of scalar and symmetric tensor relaxation parameters. The spectral densities of 
these variables which depend on the complex elastic and thermal heat moduli with definite dispersion 
laws are obtained with the help of the fluctuation-dissipation theorem. Formulas for the spectral and 
integral intensities of the light scattered by the medium are derived in the general case where the 
fluctuations of the dielectric constant depend on all the above-mentioned parameters. It is shown that 
these formulas include as special cases the results of various other relaxation theories of Rayleigh 
scattering. rs- 131 The incorrect formulation and solution of the problem in previous papers of the 
author,r2- 4 1 pointed out in[ll, are analyzed. The analysis shows that the earlier critical remarks[7 J 
of the author about the theory of Mountainr 11• 121 are completely invalid. 

1. INTRODUCTION 

RoMANOV, Solov'ev, and Filatovar1J have pointed out 
that in my paper[ 2J on the thermal fluctuations in a 
visco-elastic medium with dispersion, an incorrect 
transition from stresses to deformations has been made 
in the application of the fluctuation-dissipation theorem 
(FDT): such a transformation is not valid in a so-
called incomplete description of the system, i.e., in a 
description where the number of generalized coordinates 
determining the state of the system do not include the 
internal relaxation parameters, and the dispersion is 
formally taken into account by introducing complex 
frequency dependent elastic moduli, heat capacities, 
and thermal expansion coefficients. 

The error in the spectral deformation densities 
arising from this transformation, of course, showed up 
also in my theory of Rayleigh scattering[3 ~ 4 1 which is 
based on the results of[2 J. Moreover, my endeavor not 
to go beyond the limits of an incomplete description 
led me[3 •41 to the incorrect assumption that the fluctua­
tions of the dielectric constant of the medium do not 
depend explicitly on the internal parameters. 

My objections against some of the assertions about 
the applicability of the FDT in[ 1J are of secondary im­
portance, and I intend to come back to these in another 
place. The main assertion, to which I must fully agree, 
is that a complete description of the thermal fluctua­
tions in the medium is required for the construction of 
a theory of Rayleigh scattering. This means that one 
must dismiss the possibility, which seemed so attrac­
tive to me, of describing the spectrum of the scattered 
light without any concrete assumption about the dis­
persian mechanism, requiring only that the Kramers­
Kronig relation be fulfilled. 

I am grateful to Romanov, Solov'E:w, and Filatova, 
whose paper[1J induced me to reconsider carefully my 
papersi2- 41 and which inspired me to obtain a solution 
of the problem of the thermal fluctuations in a relaxing 
medium, and of the scattering of light on such fluctua­
tions with the same generality as in the complete de-

scription. The corresponding theory of thermal fluc­
tuations is presented in Sees. 1 to 3 of the present 
paper, and the theory of Rayleigh scattering, in Sec. 4. 
In Sec. 5 it is shown that this theory contains as 
special cases the results of a number of papers on the 
scattering of light in a relaxing medium which have 
come to my attention. 

In the present paper we use, as before, the spectral 
description of the fluctuations and the FDT, since, in 
my view, there are no reasons why one should prefer 
the tempera! description to the spectral one. In prin­
ciple, both are equivalent, but the spectral description 
operates with the wq fluctuation amplitudes, i.e., with 
those quantities whose correlations are directly deter­
mined by the scattering. Moreover, the spectral de­
scription reduces the problem at once to linear 
algebraic equations and, owing to the FDT, leads more 
"automatically" to the final result than the temporal 
description. 

2. COMPLETE DESCRIPTION OF THE FLUCTUA­
TIONS. CHOICE OF COORDINATES AND FORCES. 
BASIC EQUATIONS 

Let us assume that the complete description of the 
thermal fluctuations in the medium is given in terms 
of the following coordinates: the displacement vector 
sa(or the deformation tensor Ua(:l = (asa/8x(:l 
+ 8s(:l/8xa)/2], the temperature T, and a certain num­
ber of internal relaxation parameters, scalar, 
/;{j) (j = 1, 2, ... ), or of the symmetric tensor type, 

/; ~J (k = 1, 2, ... ); i.e., the free energy >It of the unit 
volume depends only on these variables. 

Since the correlation theory of equilibrium thermal 
fluctuations requires only linearized equations of 
motion, it suffices to give >It in the quadratic approxi­
mation. Hence, + can be constructed solely from pair 
products of the scalar quantities u = Uaa, T 1 = T - To, 

and ~{j) and bilinear invariants of the tensor quantities 

Ua(:l and /; ~J. If, as usual, we divide the deformations 
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Ua(3 into pure shears Ua(3 = Ua(3 - ulia,s/3 and the 

compression u, and the tensors ,~J into pure aniso­

tro)y tensors '~J = '~J - '(k) 1ia(3/3 and the traces 
'(k = 'ikl, these invariants are given by the contrac-
. (~ )2 ~ ~(k) ~(k) ~v) (k) 

hans Ua(3 , Uaj3' a(3' and 'al3 'a(3' The traces ' 
are equivalent to scalar parameters and can be in­
cluded in the set of these, ; (j), i.e., one can assume 

that 1IJ does not depend explicitly on the '(k). Clearly, 
in our quadratic approximation no invariant combina­
tions of scalars and tensors occur; this implies the 
statistical independence of the scalar and tensor quan­
tities. 

In writing down the equations for the above-enumer­
ated coordinates, we introduce at once the fluctuation 
forces, i.e., the usual forces with the volume density 
Fa (or the stresses La(3 where. Fa= oLa(31ox,g), the 
"external" entropy se = q/T 0 ( q is the volume density 
of the intensity of the external heat sources), and the 

forces .:::(j) a~ z~J = zikJ - z~;liaj3/3, connected 
with ; (j) and 'ikJ in the same Lagrangian sense. 

The equations of motion are 
Q(J~o~t 0 1 Q I < ( ) poiia=-.-=-(Oa~+au~ +~a~)=-0 (aa~+aa~ )+Fa. 1 
(!X~ OX~ X~ 

Here po is the average density of the medium, a~(3 
= 211ua(3 + 'uliaj3 is the viscous stress tensor due to 
constant viscosities: the shear, 11, and the bulk viscosi­
ties, '· and aa(3 = o'll/ouaj3 are the elastic stresses. 
Furthermore, we have the linearized equation for the 
heat transfer: 

(2) 

where K is the heat conductivity, and S 1 = S - 80 

= - o'll/oT1 is the volume density of the "internal" 
entropy. Equations (1) and (2) must be complemented 
by kinetic equations for the relaxation parameters, 
which, neglecting inertia and choosing these parame­
ters appropriately, can always be written in the form [5J 

(3) 

(4) 

where no summation over the indices is implied, and 
Oj and ek are the relaxation times which (in analogy 
to the normal and partial frequencies in coupled 
vibrational systems) may be called "partial" times, 
since they characterize the relaxation of each of the 
parameters when all others are held fixed. The 
"normal" relaxation times will be needed in the follow­
ing. 

First of all we verify that the fluctuation forces 
just introduced are indeed connected with the chosen 
coordinates such as required for the application of the 
FDT. To this end we multiply (l) to (4) by sa, T 1 /T0 , 

~(j)' and t~~. respectively, and add them up. Intro­
ducing the instantaneous power dissipated per unit 
volume, 

Q = Oao,Uao + -- -- + OJ·--.- t - -.:- 0 r(k' , · )~ (' aT, )' L o"V . <,.>" .L.--. D''l' · > 
'' '' T 0 ~t< > ~ k 0-;:<k>,- ~"i' o .r,, i v~ ' ' k ~"il 

and the energy current density, 
• I xT, aT, 

P~=sa(aa~+ <1a~ )+-T -0.-, 
0 X~ 

and using, furthermore, 

a ou - S 'f + \"'1 o'Y i:W _._ \"'1 o'Y ""<k> d'Y 
a,. afl 1 1 k,. fjt(i) ~ , LJ -(k) \:ars = -- , 

J ~ k 0\;a~ dt 
we find for the sum 

:t (Ek + E + S'T1 ) + Q = 
(5) 

- oP~ + F s' .J S'T' + \"'1 ""U> t<J1 _L \"'1 -z<k>'i:<•> - -- a a ~- 1 -~ ..... '::! r ~ ~af\ ~aj"'i· 
ox~ i • 

Here Ek = Pos~/2 and E ='II + T 1S1 are the volume 
densities of the kinetic and internal energies. When 
averaging (5) over the ensemble, the time derivative 
vanishes owing to the stationarity of the fluctuations, 
and in the integration over space with the usual assump­
tions at infinity (sa =0, oTjox(3 = 0) the integral 
over the divergence of the current is zero. As a result 
we obtain for the average power dissipated in the 
medium 

~({j)dF = ~{<Fa;a) -:~ (S'1\) -i .E (C:<j)~<i>) ,-L <Z~~~~~~!>}dV,(6) 
j ~~ 

which proves the correctness of the fluctuation forces 
introduced above. 

If, instead of sa, we use the deformations Uaf3 as 
coordinates, we have, assuming symmetric fluctuation 
stresses La{3 

s \F~·'"-1 dV = s <~~sa) dV = - s < ~"~ :::) dV =-s (2:uB ua~) dl', 

i.e., the fluctuation forces corresponding to ua,s are 
- La(3; these will be used in the following. 

The form of the equations (3) and (4) presupposes 
already that the dissipative function Q is reduced to a 
sum of squares, but it does not yet imply the statistical 

independence of the relaxation parameters ; (j) of each 

other, and of the quantities /; ~J of each other. We now 
make this assumption, since it simplifies considerably 
the calculation and the final result. On the other hand, 
this does not restrict the generality, since the simul­
taneous reduction of the two symmetric quadratic 
forms Q(~G)) and 'li(;(j)) and (or) Q(t(k{3) and 

~(k) a 
'II(' a(3) to a sum of squares can always be effected 
via a linear transformation of the variables. Of course, 
if one is considering a model for which the introduc.:. 
tion of dependent relaxation parameters is natural, the 
application of the more general formulas given below is 
complicated by the rather intricate preliminary trans­
formation of the corresponding parts Q and 1IJ to sums 
of squares. 

We note in this connection that going beyond the 
limits of the relaxation theory, for example by taking 
account of inertia, (involving the appearance of second 

time derivatives in the equations for ;(j) and 1(kJ), 
introduces a third quadratic form ("kinetic ene:fgy"), 
so that a complete separation of the variables becomes 
impossible in general. 

In writing down 1IJ, we must further take account of 
i)2 'Y o2'Y poe v"" 

Du DT-=- Kooaoo, 81'2 = - -7,- (7) 
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The index oo refers to the values of the moduli (the 
isothermal compressibility K, the thermal expansion 
coefficient _q., and heat capacity cy) corresponding to 

constant ~(jJ and ~ikJ, i.e., to sufficiently rapid pro­
cesses (in the spectral language, to frequencies which 
are much higher than the largest of the inverse relaxa­
tion times). Besides the coefficients (7}, >It contains 
also the shear modulus iJ. 00 and the coefficients 

il"F iF'¥ o''¥ 
L; = ouoEU) ' M; = fil'ot(J) ' Nk = au a~(R) 

... 1::> a~ a 11 

[no summation over a and {3 is implied in the expres­
sion for Nk, since Nk is the scalar coefficient of the 

~ ~(k) 
contraction Uaf31: a/3 j. The free energy has thus the 
following form: 

2'¥=2J.1«>(1l'a~) 2 -l- l:(~~~) 2 -l-2ilap....., Nh~1~-l- .L,s(i)2 

h h j 

-1- 2n _L,L;£W -1- 2TI _L,M;£W -1- KNu2- 2K,a~zzTI- Po;~, 1'1 2 (8} 
i ! 

Calculating from(~) the derivatives C1af3 = a>Itjaua/3• 
S1 = -a>ItjaT~> a>Itja~U), and a>Itja~;ikJ, we find from 
(1) to (4) the following system of equations: 

p,:su = ~- {2[1-- z7'u;; .! - r,· .)lbu;, + zt~u .... -, {;;tliull 
ux;\ 

" 1' ~ · ~ 1 to>• · '\" v r (!•)} , F 
- 1'-·:y,Ja~J 1uu;~ -~-1-.J 'j~ Vuj} -r- k...J ... k~u;~ -r- a, 

j k 

_a -(J' . -1- p .. cv, T _ D JI t(J)) = ~ o'T 1 _ S·• 
" \ 00UocU , · 1 L,.. -'" 1' " 2 ' vl l 0 j 0 vXp 

(9) 

T;~(i)-= - £U)- L;u- i\1;1\ + 2Ul, 

T k t~~~ = - -~~.~~ - .v k Uail + z&~~ 0 

The relaxation times for the independent ones of the 

parameters ~(j) and 'i';:J, i.e., the "normal" times, 
are here denoted by Tj and Tk· 

3. SPECTRAL DESCRIPTION OF THE FLUCTUATIONS 

Taking. the Fourier transform of (9} (a jat - iw, 
a I a x/3 - iq/3), we obtain 

Fa= as,. -1- bqaqySy -l- iq" ( Kooaool'l- _EL;1'P)) 
j 

f<k) ) 
-36ay , 

S• = -iqyKooaooSy- cT1-\- _EM;£W (10) 
! 

2W = iq1.L;s1 -\- M;T 1 -\- A;£W, 

Z-(1<) _ .,1 ( qpsa -1- gasp qysy ~ ) -1-) ;:(n) 
ap-lHk --2 ---3u"-~ -hoa~ 

where we have introduced the notation 

a= (~loo-\- iWl]) q2- pow2, b = Koo-\- iw6-\- [too-\- iWT] 
3 

1 ( xq2 (11) 
C = To PoCvoo-\- t;;;), 'J..; = 1-\- iwT;, Ak = 1-\- iWTh. 

The coefficients in the equations (10) form the in­
verse generalized susceptibility matrix a -I, [B] with the 
help of which one can, in accordance with the FDT, 
write down the matrix of the wq densities of the fluc-

tuation forces Fa, se, 2: (j), and zikJ (it is, of course, 
diagonal, i.e., the spectral amplitudes of the forces 
are mutually uncorrelated). 

However, for the scattering theory we need the wq 
densities, not of the forces, but of the coordinates, and 
of these not the displacements sa, but the deforma­
tions Uaf3· Solving (10) for sa, T 1, ~0), and 1(k), we 

A a{3 
obtain the susceptibility matrix a and thus the wq 
densities of these coordinates. With the help of these 
we can easily calculate also the wq densities for the 
ua/3• using 

(12} 

However, with the help of (12), one can also go over to 

the coordinates ua/3• T 1, ~ (j), and 'i' ::J in the equations 
themselves. We are speaking here of the transforma­
tion of the first equation in (10) only, since the remain­
ing three already contain Uaf3 and u. 

In any of these fashions we arrive at expressions 

for the coordinates ua/3• T 1, ~ (j)' 'i'~J in term~ of the 

corresponding fluctuation forces -'Za/3• Se, Z(j), and 

zikJ, and thus obtain the matrix a: 
T -l\-s \'' sU') '(k') 

' .. Zys 
1-- I 
Uu~ a, a, a3 a, 
T, b, b, ba b, 

(13) 
~,0) c, c, c3 c, 
-(,) 
~a,, d, d, d, d. 

where 
Vaf3r6 Cqaqilq,.q, Ka 

a1=~+ tJ.q2 ' a2 =- 'L\ qaq~, 

Here we have introduced the tensors 
Va~\'b = 1 /.(ba\'q~qb-\- Oaeqllqy-\- Opyqaqb -l- b~bqaqv)- qaqpq\.qb f q', 

(14) 
l'lap = qaqp- '/sq00ap, flaPv6 = 1/2(0a\'11P6-\- 1\p\'Oa6)- 1/31ia~6y6 

and the notation 

A= ~tq2 - pow2, B = K -1- ~ , C = 1'1 (p0c1, + ~q2 ) , 
u o ~w 

tJ. = (il + Bq2 )C -l- K'a'q2, 

U; = KaM; - CL;, V; = (A -1- Bq2) ,Jf; + Kaq'L;, (15) 

lV;y = AI; Vi' -1- L;U;·q', 

where JJ., K, Ka, and cv are the complex moduli: 

(16} 
ToL AJ2 Cy=CI·oo-l-- -', 
Po . "-; 

l 

The dispersion of the shear modulus is determined 
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solely by the tensor parameters rikJ, while the dis­

persion of the other quantities connected with the com­
pression waves are determined only by the scalar 

parameters ~(j). The expressions (16) for K, Ku and 
cy have already been obtained and discussed inr 7 i. 

The frequency independent vi.scosities TJ and ~ 
which violate the Kramers-Kronig condition, also do 
not conform with the meaning of the constants with 
index oo (the values of the moduli for w » 1/ Tmin). If 
many relaxation times are taken into account explicitly, 
the constants TJ and ~ need not be introduced and have 
therefore been discarded in (16). When we introduced 
them above (introducing, accordingly, the viscous 
stresses a~ 13 ), we did this only for greater clarity in 
the separation of the dissipative terms in the energy 
balance equation (5). According to (16), the static 
values of the moduli, and for JJ. and K also the coeffi­
cients of iw in the imaginary parts, i.e., the viscosi­
ties T/o and ~ 0 , are the following: 

flo'= I'=- ~I: Nh 2, 

h 

Ko = Koo - ~ L/, 
j 

~o=~L;2T;, 
j 

I: To .I: . 2 Koao = K=aoo + L;l'rf;, cvo = Cvoo +- M; . 
Po 

j 

(16') 

In accordance with the FDT the generalized suscep­
tibility matrix a which connects the coordinates X 

with corresponding forces F (x = aF) directly deter­
mines the matrix of the spectral coordinate densi-
ties :[s, a] 

where 
H = -8 I (2n) 4i(J), 

(17) 

(18) 

in the classical region of frequencies, where e =kBTo 
is the temperature of the medium in energy units. 
Separating the pure shears Uuf3 and the compression 
u, we obtain, with the help of (13) and (17), the f_ollow­
ing spectral coordinate densities Uuf3• u, T 1, ~ (j), and 
,..(k). 
!ou(3· 

(u"~U:,.o•).., = li ( ""~'0 + _£_ na~nvo -c .c.), 
A !:J.q2 

(iia~u·).., = lhta~ ( ~ - 1c.c.). (ua~T,').., = -llna~ (~a -c .c ·), 

(uapf;W).., = lhta~ (.!!!.._ -C .c ·), 
!:11.; 

-chJ• ( 1 ( 'Va~vo C ) 1 (iiap~1·o ).., =- JlNh - --+ - 2 :rta~1tvo -C .C • , 
A• A !:J.q (19) 

(uu· ).., ~~lit( \l!:_ --c.c.), (u7'1 ") 10 = -JJq2 ( Ka -C .c.), 
/:,. ~ . 

< '·!1'' · '1 '(U; c c) ( ;:(hl•) II'' ( C c c) U.; .I /oJ .:._-; 1 qw ·~).j- • • 1 ZU-:.VG (!) =-:::- H k:Ty6 ~~vk- • 0 ' 

(1',1'1 • )o ~=-If (_:'_l_±llg_~ -c.c.). (T,';,iiJ').., =-II (~i_ -C .c ·), 
t\ tv.; 

-rkl• ( Ku ) ('l',~ro \,•=Ilt\'";r1.; -.. --C.C. , 
.\l.h 

('E.'iiW >' ) .. ~· 11 [-~: (o;j•- l+>·) -c .c.], 
- 1._, t\;.,, 

. _ . ~lhl• ) ( U; ) \tl.",1·6 " ~-~ --11 N;,~ ,·o -- .--:---c. c. , 
:_\l •. jl.,, 

where c .c. means "complex conjugate." 
We note that in (19), the original quantities and 

their complex conjugates never enter in the same term, 
as was found in[ 2J owing to the transition from the 
stresses au{3 to the coordinates uu/3• which is not 
permitted in an incomplete description. As a result, 
the spatial correlation functions are here local (delta 
correlation for all integral (with respect to w) quanti­
ties, i.e., those considered at one and the same instant. 

If we eliminate the parameters ~(j) and ~~J from 
(10) i.e., if we go over to an incomplete description in 
the coordinates Uuf3 and T1, then the forces z(j) and 

zikJ. enter linearly in the new set of fluctuation forces 
- ~~{3 and se through which uu/3 and T1 will be ex­
pressed in the previous manner. In other words, the 
susceptibility matrix in the incomplete ( Uuf3• T 1) de­
scription coincides with the submatrix indicated in (13) 
by the dotted lines, and the wq densities of the defor­
mations and the temperature remain the same as in the 
complete description. Of course, the wq densities of 
the forces - ~~{3 and se' are different from those for 
- ~u/3 and se; this does not mean that one can say that 
the incomplete description leads to incorrect forces. [ 11 

In the complete description one can choose any 
linear combinations of the original coordinates as the 
new coordinates. In particular, one may go from the 
deformations ua/3 to the stresses a a/3 and (or) from 
T1 to S1.1> But the incomplete (ua/3• T1) and (ao:/3• T1) 
descriptions are not equivalent to each other, since the 
transformation CJa{3 =- 1lw/Bua{3 .....:. Ua(3 (like the 
transformation T1 - S1 = -1l'lt/1lT1) contains also the 

parameters ~ (j) and ~~J which are eliminated in the 

transition fr:om~the complete (ua/3• T1, ~(j)' 'fikJ) and 
(aa/3• T1, ~(j), ~(k)) descriptions to the corresponding 

o:/3 
incomplete ones. Equivalent are only those incomplete 
descriptions which are obtained from one. another by a 
transformation which does not contain ~ (j) and 'f ~ . An 

example are the (sa, T1) and (uo:/3• T1) descriptions, 
which are connected by (12). 

4. RAYLEIGH SCATTERING 

The deviations Eaf3 of the dielectric constant of the 
medium from the average value E0 0af3 depend in 
general on the deformation and on th.~ temp!t~ture, as 
well as on relaxation parameters ~ (j J and ~ ~k/3: 

Eof ·~XU a,!+ ?JllOa~ + zT,Oajl + ~mj£Cillla~ + l:,n·~~. (20) 
k 

The coefficients x, y, z, mj, and nk are naturally con­
sidered real, since we assume a complete description 
of the system. 

If we eliminate ~(j) and 'fikJ from (20) with the 
help of the last two equations (10), we obtain 

DThe coordinate S1 corresponds to the fluctuation force Te, the 
"external temperature." 
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X - -' )' ' +Zl'' 6 '\"' m; ~1·1• + '\"' n,. z-<"l ') Ea~ = • llu~ T tlua~ 1 a~+ ~-1-. =: J ua~ L.JT ap • (20 

where J k 

X '\"' n,N,. '\"' m;L; '\"' mpl!; (21 ) 
=x- ~-----;;:;:-· Y=y- ~-~..-, Z=z- ~-;;:-· 

k j J j j 

It is seen directly from (20') why one cannot re­
strict oneself to the incomplete ( Ua:f3• T 1) description 
for the scattering theory: for nonvanishing mj and 
(or) nk, i.e., if Eaf3 depends explicitly on the relaxa­
tion parameters, the spectral density Eaf3 is determined 
by the spectral densities not only of the deformations 
and the temperature, but also of the fluctuation forces 

:::6) and z~J, and of the cross densities of these 

forces and the conserved coordinates. If mj =0, nk = 0, 
then the incomplete description is sufficient, but then 
X, Y, and Z do not have dispersion (they are equal to 
x, y, and z, respectively) and (20') does not-when the 
spectral deformation densities are calculated correctly­
give a true description of the wings of the spectral 
line. 

In this connection the natural question arises why 
in[ 4l, where the fluctuations of the dielectric constant 
were assumed to be given only by the first three terms 
of (20'), the Leontovich theory[9 J was obtained as a 
limiting case and why the correct relations for the 
anisotropic wing (in particular, a depolarization coef­
ficient equal to 6/7) could be derived. The explanation 
is th~t the deformations were determined in [21 not by 
(12), but as the quantities ua{3 = Ua:f3 - Uaf3• where the 
Uaf3 are the "external" deformations, i.e., the fluctua­
tion forces corresponding to the stresses aa{3· Thus 
the expression for Eaf3 is in fact 

e"~ =Xu a~+ Yuba;;+ ZT,oa~- XU a~- YU&a.~- (20") 

The additional term with Uaf3• which has the necessary 
symmetry, is responsible for the "imitation" of the 
correct spectrum in the anisotropic wing. This situa­
tion can also be described differently, as shown by 
Volterra.[ 10J Sine: in[ 2J the stresses aa{3 were, as 
usual, related to Uuf3 and not to Ua:f3, the transforma­
tion (20 ") to a a{3 gives 

ea.~=X 0"-~ + y ~oa.~+(Z + aY)T16a~· 
211 3K 

Therefore one can say that the anisotropic scattering 
has been calculated in [3 ' 41 for shear deformations de­
fined as 8'a{3121J.. 

Formulas (21) show that the dispersion of the mag­
neto-optical and thermo-optical coefficients X, Y, Z is 
determined by the same processes in the medium as the 
dispersion of the moduli (16), and is characterized, in 
particular, by the same relaxation times. It is thus 
impossible to assume, as was done in[ 3 ' 4 l, that the dis­
persion laws for X, Y, and Z can be taken as arbi­
trary, independently of the dispersion laws for the 
moduli 1J., K, etc. 

If one is dealing not with the thermal fluctuations, 
but with the determining processes, then the fluctuation 
forces must be set equal to zero and the shear term in 
Ea:f3 will, according to (20'), be equal to xUaf3· For 
w « 1/ Tk max the coefficient X can be written in the 
form X = X0 + iwX~, where 

Xo = x- Lz nkNI, = 4y€o" ~toe, 
h 

Xo' = Lz nkNhr:h = 2eofjoM, 
k 

and c and M are coefficients which are usually intro­
duced in the empirical formulas for the anisotropy 
caused by the low-frequency stresses-which are 
elastic in solid matter ( c is the so-called relative op­
tical stress coefficient) and viscous in liquids ( M is 
the Maxwell constant). 

For the calculation of the spectral densities of the 
components of the dielectric constant it is, of course, 
not necessary to return formula (20') which contains 
the coordinates as well as the fluctuation forces. It is 
simpler to start from (20), using (19). As a result we 
obtain the following cross wq density for the compon­
ents Eaf3 and E y6: 

According to (22), the appearance of the relaxation 
parameters affects the dielectric tensor in three ways: 
first, through the dispersion of the elastic and thermal 
moduli IJ., K, a, and cy, second, through the disper­
sion of the coefficients (21) owing to these relaxation 
parameters, and third, through the terms ~mj /Xj and 

J 
I;nk:/Xk, which give (cf. below) a direct contribution 
k 
to the wings of the spectral line (the compression wing 
and the shear wing). 

Spectral intensities. Formula (22) allows one to 
calculate the spectral intensities of the scattered light 
for different polarizations of the initial wave and the 
observed light, and for various scattering angles. If 
the initial wave propagates along the x axis and the 
direction of observation lies in the (x, y) plane with 
angle e with respect to the x axis, then the intensities 
of the scattered light for four combinations of polariza­
tions are[ 3 l 
l!(w, q) = (2n) 3<ltaal 2).,, l?(w, q) = (2rt) 3<leizsinO-e23 cos8! 2 ).,, 

J,Y(w, q) = (2n)3(iea•l 2).,, lrY(w, q) F (2n)3(je1.sin8- e22 cos0j2).,. 

(23) 

The upper index refers to the polarization of the initial 
light wave, the lower to the observed polarization 
(h-horizontal). Here q is the scattering vector which 
is equal to the difference of the wave vectors of the 
initial (k) and the scattered waves (k'): 

. e 
q = k- k' = {k0 (1- cos 8),- kosin 0, 0}, q = 2k0 sm 2 . 

Calculating the spectral densities from (22), we 
obtain from (23) using (18)21 

21Calculating the vertex 1~. (Ul, U) = (2n)•(e.,,,,').p.p,·p,p,·, with the 
help of (22), where p and p' are the polarizations of the incident and 
observed waves, it is easy to expand 1g, into the canonical "modes" 
considered by Volterra. [ 10] We restrict ourselves, however, to the 
special choice of polarizations corresponding to the usual experimental 
conditions. 
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8 { 1 [ Xq' (XC 2 ) 2c , 1,'=--.- - -.- -.--·2YC+ ZKa +Y q 
2mt•l fj, 3 <l 

] I: m·2 2 \"1 n"2 } 
- 2YZKuq2 - Z2 (A + 1Jq2) + _J +-;-L., -.- -c.c. , 

).; 3 }." 
j k 

8 { X 2q22 1 }2 n"' } /'=/."=--- ---+- ---c.c., 
h • 2niw 4A 2 1." (24) 

k 

J v = __ e_ f_5'i_ [ X 2C ( 1- cos _f!_) + 2X(YC- ZKa)cos o] 
h 2niw l fj, 2 3 

1 n n, 2 } +-> .-' sin 2 0-c.c. +l!cos2 0. 
2 .<...i '·" " 

In the general case of an arbitrary ratio of the re­
laxation times Tj and Tk the effects due to the tensor 

parameters 'fik{3 which determine.the dispersion of X 
and 1J. (and also affect B and ~ 1_ v1a 1J.) and the effects 
due to the scalar parameters ~ I.J) which determine the 
dispersion of Y, Z, K, a, cv, B, C, and~ are inter­
wined in a complicated manner. The relaxation of ~ {j) 
does not affect only the intensiti.es of the depolarized 
scattering J~ = Ji. 

The dispersion equation has the form AA = 0. The 
terms of (24) which contain the determinant ~ in the 
denominator describe the fine structure (the central 
line and the Mandel'shtam-Brillouin doublet) and the 
term with A in the denominator, which enters only in 
J~ = J~ describes the shear doublet which occurs un­
der certain conditions. The terms of both kinds give a 
certain contribution also to the relaxation background 
(line wings), but this background also arises from 
terms containing "-j = 1 + iwTj and "-k = i + iwTk in the 
denominator: 

8 \"1 '( 1 1 )· 8 \"1 n"2-r. 
- 2ni(!) LJ nh J:;:-~ ·=--; .l.... 1 -l- wz-c,tz. 

h • 

(25) 

Depolarization in the anisotropic wing. If the relaxa­
tion times are so short that the anisotropic wing 
reaches sufficiently far beyond the limits of the fine 
structure line, then ~ ~ -p~cyw 2/To, A~ -Pow 2 in 
this region of frequencies, and the terms with ~ and 
A in the denominator become small compared with the 
terms of the form (25). Thus, in this spectral region 

(26) 

The quantity ~k increases linearly with cos 2 8, chang­
ing from the value ( 1 + 0 )6/ 7 at e = 90° to unity at 
e = 180°' going through the value 6/7 for cos 2 e 
= 6o/ ( 1 + 70 ). Usually the parameter 0, which differs 

from zero only to the extent that the compression wing 
is noticeable, is small. With increasing frequency it 
changes from 

iSo= (i .L,m/-r; j 7 .L, nk2Tk 

j k 

to 

In any case, the fact that ~k is close to 6/7 is con­
nected with the presence of the coefficients nk, i.e., 
with the explicit dependence of ~a{3 on the anisotropy 

tensors 'f~~, at least on one such tensor, as for ex­
ample, in the theory of Leontovich. [9 l 

Integral intensities. All spectral intensities (24) 
consist of terms of the form 

e {g(z) g(-z) } . 
l=-2nz f(z)-1(-z) 'z=tw, 

where g{z) and f(z) are polynomials in z; the poles 
in the left half-plane of z come only from the first 
term, and the point z = 0 is not singular. Hence, the 
integral (with respect to the spectrum) intensities can 
be calculated using the theorem lcfYl, formula (6.7)] 

irr,{g(z) g(-z)}dz g(oo) g(O) 
2niJ f(z) -f(-z) -z-=~-7(0)' 

r 

where the contour r encloses the left half-plane. It is 
easy to see that g( oo )/f( oo) = 0 for all intensities (24), 
so that the integral intensity I is expressed through 
the corresponding spectral intensity J according to 
the formula 

1= rd6>=-~p { g(z) _g( -z) }.:!:._=8 g{O). (27) 
_., 2ni r f(z) /{-z) z /(0) 

Applying this formula to the spectral intensities (24), 
we obtain 

{ (Y0 - 1/aXo) 2 '\' 2 '\1 '} 1,'=8 ·+L., m;'+-;-L., n, , 
Ko+ 4/a!!o i 3 " 

Xo2qo'' 1 " 
1h' = [,Y = 0 { 4po~2 + 2 }2 n•·}' 

k 

Ju=e{ Xoq,' [xo(1-cose)-4Yocos0] 
h 2(Ko+ 4/s~to)q2 3 

+ + }2 n1! ~in 20} + !,• cos2 e. 
k 

(28) 

The index 0 refers to the value for z = 0, i.e., accord­
ing to (16') 

p0 =p~-+ }2N,;, 
k 

and by (21), 

Ko = Kx - }2 L;2, 

j 

(29) 

Xo=x- }2n"l\''" Yo=y-- _L,m;L; (Xoo=X, Yoo=!f). (30) 

" j 

It is seen from expression (28) for I~ = I~ that in 
the case of liquids ( 1J. 0 = 0) these intensities remain 
finite only if the ratio xg / 1J. 0 is finite. The require­
ment Xo = 0 for 1J. 0 = 0 means according to (29) and 
(30) that 

Hence the shear modulus J.1. and the mechano-optical 
coefficient X must have the following form for liquids: 
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(31) 

It is clear from this that the ratio X/ j.L can show dis­
persion if there are two or more relaxation times of 
the anisotropy. This ratio will be constant either if 
there is only one relaxation time-the case considered 
by Leontovich[91-or when the conditions 

nk = const·Nk (k = 1, 2, ... ), 

are satisfied, which, however, cannot be derived from 
anywhere. It is for this reason that it is impossible to 
justify the extension of the Leontovich relation X 
= const · j.L to the general case of many relaxation 
times. Other arguments concerning this point have 
been given in[41, 

The expressions (31) not only give JJ.o = 0, Xo = 0 
for liquids but also imply XV IJ.o = 0, so that the inte­
gral intensities (28) for liquids take the form 

1?=8(~: + ~m}+ ~ ~ nh2), 

zh~=I.v= ~..Enk2• ]hY= ~ I>k2sin2B+I,rcos28. (32) 
k k 

In the present paper we do not intend to give a de­
tailed analysis of the various consequences of (24), 
(28), and (32), and to compare these with the available 
data or with the experimental possibilities. In con­
cluding, we only compare the spectral intensities (24) 
with the results of a few other relaxation theories of 
scattering. 

5. COMPARISON WITH OTHER RELAXATION 
THEORIES 

One might simply state that the other theories are 
contained in the one delt with in the present paper as 
special cases, and leave it at that. However, we re­
gard it of interest to analyze the transition to these 
special cases in some detail. In this way one may also 
obtain a better idea of the contents of formulas (24). 

Mountain's Theory[ 11- 131. We do not follow the 
chronological order and begin with these papers be­
cause they are concerned with the relaxation of a 
scalar internal parameter. Mountain is interested in 
the isotropic scattering in a liquid arising only from 
density fluctuations. He assumes only one relaxation 
parameter 1;, where €.01.{3 does not depend on it ex­
plicitly, i.e., (20) has the form €.af3 = yul>af3• the co­
efficients x, z, mj, and nk are eqUa.l to zero and ac-
cording to (21), X =0, Y = y, z = 0. ' 

As a result, the only term remaining from the in­
tensity of the non-depolarized scattering in (24) is 

(c c· 
1."= (2n)3Jly2q2 1':-T- )· (33) 

In the absence of tensor parameters r::-J the coef­
ficients Nk in the free energy are also zero, and hence 
the shear modulus has no dispersion: IJ.oo = IJ.o = 0 
(liquid). Introducing, following Mountain, the frequency 
independent viscosities /; and 7J , we obtain from (16) 

. £2 
f.L=IW1], K=K..,+iw"-­

" 1.' 

LM T0llf2 
Ka=K~aoo+-.-, cv=cv~+--

1. pol. ' 

where ~ = 1 + iwT. As shown in[7 1, the formulation in 
the papers[ 11' 121 of Mountain, where the case of a fre­
quency dependent volume viscosity is considered, 
corresponds to the model where M = 82llf/8T81; = 0. 
These restrictions are removed in[ 131, but only two 
limiting cases are considered: "thermal relaxation" 
for which (81;/Bp)T = 0, and of course 82ll!/8p81; = o 
(in our formulas this means L = 0), and "structural 
relaxation" for which (81;/8T)p = 0 and hence 

2 I ' a lJ! 8T81; = M = 0. Thus the "structural relaxation" 
is identical with the dispersion of the bulk viscosity 
as noted in[ 131. In both limiting cases Ka has nodi;­
persion: Ka = KooOI.oo = Ko01.o. 

For M = 0, formula (33) is easily reduced to the 
result of Mountain/11• 121 in its simplest hrm [?] [ cf. 
formulas (36), (37a), and (38) of this pa~er]. My objec­
tions, expressed in the last section of[7 , are com­
pletely groundless: the difference between this result 
of Mountain and my formula in[ 31 is due to the faulti­
ness of the latter. 

For L = 0, when only cy has dispersion, formula 
(33) agrees with the result of[ 131, 

Theory of Leontovich. [91 In order to make the transi­
tion to this theory, one must discard in the free energy 
(8) and in the fluctuations of the dielectric constant 
(20) all terms containing the temperature (we assume 
isothermal fluctuations) and the scalar parameters 

I; (j) (we consider only the fluctuations of the aniso­
tropy), i.e., we must set 01...,, cyoo, Lj, Mj, z, and m· 
equal to zero, Of only the anisotropy tensor fa{3 is J 
present, we have then 

2'l' = 2f.L~Ua~2 + K«,u2 + k~2 + 2iYilap~p, 
Eap = XUotr, -j-- yubap + n~:p, 

while the basic formulas of Leontovich have the form 

2'l' = 2rt~(i1o:~- So:~)2 + K"'uz, 

Ea~ = AL (nap- So:~) + yubo.p, 

where lia{3 is the pure anisotropy tensor (1;01.01. = 0). 
Comparison shows that 

1'a~ = 1'2!-I<»Sa~, N = -l'2p~, X= AL, n,= -AL / l'2floo. 

For such values of N, x, and n we find from (16) and 
(21) 

X=x- Nn =A ~ N2 iwr 
J.. .L 1 + iwr ' f.L = floo - 21.. = f.Loo 1 ..I- iwr 

and hence, X/iJ. = AL/IJ.oo = const. 
Using the notation introduced in[91, 

'"' 2 - K.,qz '"' 2 !l,q2 Q 2 - '"' 2 4 ••L ---, ••T =--, S- ••L +-QTZ 
Po po 3 

it is easy to see that with the above-named restrictions 
and for scattering angle e =90°, formulas (24) go over 
into the expressions for the intensities obtained in[9l. 
In particular, for w 2 » 0~ they yield 

J,!=l.v=l:x:V=~lz"=~~. tJ.k=~ 
4 4nf.Loo(1 + w21:2) 7 • 

Theory of Volterra. [101 As in the theory of Leonto­
vich, this theory contains no scalar relaxation parame­
ters (therefore Lj = Mj = mj =0 and K = K..,, 0 = u..,, 
cy = cyoo show no dispersion) but the fluctuations of 
the temperature are taken into account ( cv and u are 
different from zero). The main difference is that two 
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tensor parameters are introduced, and, correspondingly, 
two relaxation times. 

The derivation of the relaxation equations is in[1oJ 
based on the "pseudo-crystalline lattice;" one of the 
tensors, ?:af3, describes macroscopically the result of 
the deviation of the orientation of the anisotropic mole­
cules from the isotropic equilibrium distribution, and 
the other, Haf3• describes the shear deformations of 
the pseudo-lattice of the equilibrium positions of the 
molecules. Of course, ?:aa = 0 and Haa = 0. The 
instantaneous shear deformation is Saf3 = uaf3 - Haf3 
and the free energy of the shears is equal to 

2'1' sh = 2j.looSa~2 + 2bsa~~a~ + a~a~2 = {34) 
= 2~t .. ila~• + 2j.t .. Ha~2 - 2blla~~a~ + a~a~2 + 2ua~(b~a~- 2~t..,Ilap). 

The fluctuations of the dielectric tensor are assumed 
to depend only on ?:af3 and on the compression u, but 
not on the temperature (x = 0, z = 0): 

(35) 

Under these assumptions Eq. {8) for 'It takes the 
form 

where 
2'1'sit ·77 2!-lco(ua:•>' + <~~·h)2 + <n'J>' + 2ua~ (NJ~•J + x;n~). (36) 

and formula (20) gives 

{37) 

However, a direct comparison of (34) with (36) and (35) 
with {37) is impossible, since (34) contains the contrac­
tion Haf3 ?:af3· We are encountering here a case where 
we must first transform (34) and (35) to the independent 
parameters 'E~1h and "l:;b in order to make use of the 
general formulas obtained above. 

The coefficients Pi of this transformation, 

~"~ = r.~~J + r"n:~. u "~ = r.'f:~J + rX~j 
are determined by the requirement that the form 
2J..LaoH~f3 - 2bHaf3?:af3 + a?:af32 in (34) is reduced to 

(?;~~)2 + (f~~)2 and the form c8J;~f3 + 2J..LaoBJI~f3 in 
the dissipative function ( c = a - b ~ 2J..L 00 ) to the form 
T ~11) )2 + T (1='<2> )2 3) 1\!.a/3 2 :.a/3 . 

Thus Pi and T 1,2 are known functions of the original 
parameters (we do not write down the corresponding 
formulas for lack of space), and (34) and (35) take the 
form 

It remains to express the intensity Jgr(cf. footnote 2j 
through the original parameters a, b, 2J..L 00 , and () 1 2 , 

which leads to the formulas of Volterra for the spe~­
tral densities of the compression u and the five inde­
pendent combinations of the components ?:af3· 

In summarizing, one can say that the Volterra 
theory is a certain special case of the theory with two 
tensor relaxation parameters, but the author's inter­
pretation of the tensors ?:af3 and Haf3 is hardly the 
only one possible. We note in this connection that 
Leontovich[sJ especially points out the general charac­
ter of his theory and emphasizes that the interpretation 
of the tensor ?:af3 as a quantity describing the effect of 
the orientation of the molecules is a possible but not 
necessary model concept. 

6. CONCLUSION 

The construction of a relaxation theory of scattering 
with an arbitrary number of relaxation parameters is 
formally no more complicated for two or three parame­
ters, but the meaning of the results does not, of course, 
rest in the possibility of an infinite increase in the 
number of such parameters. 

The use of Rayleigh scattering as one of the methods 
for investigating the structure of real matter is fruit­
ful to the extent to which it (1) helps explain particular 
(and not extremely numerous) relaxation processes 
which determine a whole range of phenomena, includ­
ing the temperature dependence of the various com­
ponents of the spectrum under different conditions of 
observation (this is the intent of the Volterra theory) 
or (2) allows one to establish that the observed laws 
(or at least part of them) go beyond the limitations of 
the relaxation theory and require a different explana­
tion. 

In both these respects, so it seems to me, the re­
sults provided by the relaxation theory in its general 
form are not without interest. This refers to the 
general form of the dispersion laws for various quanti­
ties describing the medium [the moduli {16), the coef­
ficients (21)], the type of connection between these laws, 
and also to the type of relation between the complex 
parameters of the medium and the components of the 
spectrum of the scattered light. 

I should like to thank M.A. Leontovich and M. L. 
Levin for a useful discussion of the results of the 

2'1' sit = 2~t"''U~~ + <W>' + l1~J>" (34') present work. 

+ 2ua~ ((bp1 - 2~tooPa) 'f:~J + (bp,- 2!-locP•) n•Jl, 
Ea~ = yufla~ -1- BpJ~J + Bp"~~l. 

Comparison with (36) and (37) gives now 

(35') 

3lThe appearance of the coefficient c is connected with the fact 
that Volterra writes the kinetic equation for ~a(j not in the forrn where 

ao,e.~ = -(8'1' sh ;m;,.p). ' 
•P 

a= (il 2 \If sh/il~&3)scxP, \If sh i.e., the derivative for constant deformations 

cO,~.p = -(8'1' sh /ot;.,p),•P' 

(which would be natural), but in the forrn where c = (il 2 '1rsh/il~a(j2 ) 
Oa(J, i.e., the derivative for constant stresses Cia(J =- 2J.L00 Sa(J- b~a/3. 
Incidentally, this change leads simply to a renorrnalization of the par­
tial relaxation time 01 [01 = (a/c)Otl. 
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