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Stimulated emission and elastic scattering of resonance photons in a two-level system are calculated 
by the methods of quantum electrodynamics and scattering theory, taking account of absorption and re­
emission of the incident quanta. The rates of these reactions possess a saturation threshold with 
respect to the photon flux density jo ~ 1/;\. 27, where T is the duration of an elementary scattering act. 
It is shown that new reaction channels may open up not as a result of increase in the energy of the 
particle being scattered but as a result of increase of the flux density of the incident particles. An 
experimental investigation of these features (and also of the upper end lower bounds, calculated for 
the given model, of the monochromaticity region of the stimulated radiation) could help to elucidate 
the question of the existence and magnitude of the delay time. 

1. INTRODUCTION AND SURVEY OF THE RESULTS 

IN this article a calculation is performed, using the 
methods of quantum electrodynamics and scattering 
theory, on the processes of stimulated emission and 
elastic scattering in a two-level system 

ny(ro) + e2(E2)-+ (n + f)y(ro) + e,(E,), (1.1) 

ny(c·l) + "h-+ ny(c•>) + e1, (k = 1, ?.) (1.2) 

close to resonance (e1 and e2 are states of the electron 
in the lower and upper levels of the two-level system 
and IW- Wol ~ r' where Wo = E.-Eland r is the half­
width of the excited level), when features associated 
with the quantum nature of an intense electromagnetic 
wave are more pronounced. 

Thus, the transition (1} in a flux of density j is usu­
ally regarded as a one-photon process; allowing for the 
photon statistics, this leads to the transition probability 

W=A +Bi(roo). (1.3) 

However, consideration of the rate of reaction (1.1) 

dRn = WdN, ... dNn (1.4) 

(dNi is the number of incident photons of the i-th species 
in the interval (w 0 , dw}) leads to the necessity, close to 
resonance, of writing in place of (1.3) a more general 
"virial" expansion (Sees. 2, 3): 

Rr== ~Rn=A+ ~Bn(ro,roo,r)jn (1.5} 
n 

(far from resonance Bn- 0 like xn- 1 and (1.5) goes 
over to (1.3)). 

In (1.5) the important thing is the convergence of the 
series in j. The presence of a radius of convergence of 
(1.5} as n- 00 is interpreted in Sec. 4 by means of the 
concept of a delay time[l•21 in the ey scattering: 

'tEO Rc (d/ idw) InS= 'hi'[ (w- <llo) 2 + 1'2 I 4]-•. (1.6) 

An examination of the resulting features could serve 
as the basis for an experimental investigation of the 

concept of a delay time 1 >. (The interactions considered, 
in view of the ease of obtaining intense monochromatic 
fluxes, are unique in the whole of elementary particle 
physics2 >.) 

It is interesting that (1.6) elucidates the features of 
(1.2) even for n = 1. In fact, introducing the flux density 
(we are concerned with the order of magnitude} 

io=fi:J..~(w), (1.7) 

which determines (phenomenologically} the maximum 
flux of photons being scattered independently by one 
electron, we can write the reaction rate for Kramers­
Heisenberg resonance scatteringrsJ in the form 

R = cij ~ (4nc2 l·ro2)r2j[ (ro- roo) 2 + r 2 I 4]-l ~ rj I jo. (1.8) 

The point j = j 0 is singular for R(j} and is the threshold 
of new processes, when the scatterings of separate pho­
tons cannot be assumed to be independent (absorption of 
the next photon occurs before the emission of the previ­
ous one) and it is necessary to take account of the scat­
tering amplitude of a photon by an electron in the upper 
level. If the cross section for such a scattering is much 
smaller than (1.8), then R(j > jo} ~ R(jo) and saturation 
of the transition (1.8) occurs (if this relation is not ful­
filled, it will be possible to conclude that the extra re­
emissions increase the resonance transition time). 

Thus, a characteristic feature of processes in high­
intensity beams is the presence of thresholds for new 

1> A theory of the delay time has been developed for two-particle 
interactions and is an alternative method of description for these. The 
very formulation of the problem in [ 1•2 ] and in other papers enables 
us neither to carry out a direct experimental check of the theory or 
its consequences, nor to investigate phenomena not studied by other 
approaches. From a general point of view, it is also important to relate 
the delay time to the delay region (cf. [3 ] ). 

2lWe note that, in agreement with Hohler's analysis, the processes 
considered are similar to processes in the Lee model with a decaying 
V-particle: the transition (I. I) corresponds to stimulated emission of 
a 8-particle and the expansion (2.3) to consecutively allowing for all 
sectors of the model (the necessary changes in the formulas for such 
reactions are obvious). 
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processes determined not by the energy of an individual 
particle being scattered but by the flux density of the 
fixed-energy particles being scattered. Evidently, the 
existence of these thresholds can be established only 
with the help of the concept of duration of the elementary 
acts of interaction (their spread depends on the disper­
sion of r-cf.[6 J), and an experi.mental determination of 
the existence of thresholds and interaction saturation 
phenomena would be able to verify the correctness of 
the whole concept. 

It seems that it should be possible to check the fol­
lowing conclusions: 1) the dependence, given by (4.2) 
and (4.7), of the monochromaticity of reaction (1.1) on j 
and on the duration of the stimulating pulse, and the 
presence of the threshold (4.3); 2) the change in the 
form of the refractive index close to the absorption line 
when j ,..._ jo, insofar as it is determined by a reaction of 
the type (1.2)[7J; 3) the necessary presence in nonlinear 
processes with substantially multiphoton absorption 
{doubling of the frequency and multiphoton ionization) of 
a lower j-threshold, equal to 1/~ 2Tmin• where Tmin is 
the minimum scattering duration in the chain of absorp­
tions which lead to ionization, multiple increase of the 
frequency, etc.[7J {Of course, the calculations in the 
article are of a model character and do not pretend to 
quantitative agreement with experiment-cr. [8 J .) 

2. QUANTUM ELECTRODYNAMICS 

The calculation for the processes (1.1) and (1.2) is 
conveniently carried out in the Furry picture, using the 
low Green function [sJ for the bound electron: 

G(x x)~-1-~ (r).;r.(r)J .. exp[iw(t1-t2)]dw (2•1) 
1.2 2 . Wnl'f'2 E+ ·r,2 1t£ In W-£ nJ 

n -oo 

(the level shift is included in En)· All the radiative cor­
rections to the propagator line enter into (2.1), while 
the radiative corrections to the vertex part enter natur­
ally into r n (here we can also include all corrections 
for the Doppler effect etc.). Virtual photon lines which 
pass round two or more external vertices are realized 
in the form of low-frequency photons, which are not im­
portant in what follows; other possible corrections re­
duce to the appearance of renormalization constants in 
r n· Thus, taking experimental values for En and r n 
enables us to leave radiative corrections out of consid­
eration throughout the following {the problem of the 
calculation of En and r n as funetions of j is not con­
sidered in this article). 

The external electromagnetic field can be quantized 
in the plane-wave approximation in the usual way (V is 
the quantization volume): 

~ e;,fak [ . k )] 
A;,J-+ .l-1. (2w;,JV)'" cxp .±'( i,lr-w;,ft • 

I< 

(2.2) 

The transition amplitude for (1.1) or (1.2) can be 
written in the form of a cluster decomposition: 

(my', e,ISiny, e;) =2ni ~Ck ((m- n + k)y', e11Tiky, e1) Qk 

k 

(2.3) 

(nonphysical singularities arising because of factors of 
the type (ky lky) (e.g., [gJ) can be eliminated by going 

over to a wave-packet or similar representation). The 
factor Ck corresponds to the weights of the multiple 
terms, and the factor~ corresponds to the density of 
states and contains the whole dependence of (2.3) on the 
quantization volume. We can already take into account 
in (2.3) (although this is usually done for the transition 
probabilities-cf.[1J, p. 185) that in the interval (ki, dki) 
there are dNi photons of the i'th species, and we can 
formally replace ~ by 

h _ k dN· ,1,m-n+k 1 
Qa'=Qa fll'dN;= II Lw;~) II (2w1V)'"-+ 

I -1 J~l 

-+Ilk ( p;(k)dk,)'',mii-n+k( dkt )I" (2.4) 
2w; 2w1(2:r)" 1 

i=l f=l 

where Pi(k) is the density of photons of species i; in a 
monochromatic directed (coherent) flux, p{ki) 
= po (ki- ko). 

The degree of nonorthogonality of states with differ­
ent numbers of photons is determined by means of (1.6), 
from the extent of overlap of the wavefunctions: 

d- (1../ct)•~ (2A./cf) 3[(w-wo) 2 +f2 /4J". (2.5) 

At resonance, d ,..._ (..\T/c)3 ,..._ 10-18 , and, with allowance 
for (2.3), the reaction rate (1.4) for the process (1.1) 
acquires the form 

dR - 2n ~ (-L)qiTq+l J dk, C 2 
n- .l-1. 2w 2w,(2:r) 3 q 

qd! f=l 

Xj((q+ 1)y,et1Tiqyle;)j 2 6 (~E;-L,Et) 1 (2.6) 

i.e., can be written in the form (1.5). {To simplify the 
writing, here and below we do not take into account of 
factors arising from averaging over the initial polariza­
tions and summing over the final polarizations.) 

We shall consider the transition (1.1) for n = 1, when 
one of the resonance photons incident on the excited 
electron directly induces its transition to the ground 
state. The process (1.1) is described by six diagrams, 
pairs of which differ by permutations of finite photon 
lines. The three basic diagrams are shown in Fig. 13 >. 

When lw- wol < r /2 the main contribution to the 
transition probability is made by the resonance diagrams 
b; in these it is possible to neglect the A~ terms and, in 
the long-wavelength approximation of practical interest, 
replace all the radius vectors in (2.6) by the radius vec­
tor of the centre of the atom. With these assumptions, 
(2.6) leads to the expression 

64n r 256 nc2 • 
R1=--jf ~---J (2.7) 

9w2 (w- wo)2 + 1'2/4 9w02 • 

If, however, all n photons in (1.1) interact directly, 

a b 

FIG. 1 

c 

3lin all the diagrams, a continuous line is an electron line, a wavy 
line is a photon line, a real line represents a real electron level and a 
dotted line a virtual level. The chronological order of events follows 
the abscissa. 
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FIG. 2 

i.e., by means of absorption andre-emission, with the 
excited electron, inducing its transition to the ground 
state, then the basic resonance diagram (Fig. 2) will 
describe the "oscillation," known in quantum mechan­
ics l1oJ , of an electron between levels. Allowing only for 
the contribution of the resonance terms 
(Cn = n! (n + 1) !/(2n + 1)! ), we obtain the integral and 
total transition rates in a stationary flux (n » 1): 

Rn ~ nfnv•, R= .t,R. ~ nr v (v=~) (2.8) 
0 (1-v) 2 ]o 

We sum the series (2.8) for v < 1, i.e., for (cf. (1.7)) 

. . ro2 (ro-roo) 2+f214 roo2f 
J<Jo=-- ~--nc2 f 4nc2 • (2.9) 

Other multiphoton resonance processes can be calcu­
lated in a similar way. Thus, to generalize the expres­
sion (1.8) describing the dispersion close to resonance, 
we must consider (1.2). Proceeding in the same way as 
above, we obtain the reaction rates (j < jo): -R,.~2fn- 1 v", R=l::R.~-2fln(1-v). (2.10) 

0 

Similar expressions can also be obtained for other 
processes, combination of frequencies, combination 
scattering, etc. 

The reaction rate (2.8) was obtained by taking account 
only of resonance transitions. The presence of non­
resonance transitions leads to the appearance in (2.8) 
of factors of the form 

h njc• [ f2 ]-• I f 
Vk==~=-;;Tf (kro+roo)2+4. ~fo4(k+f)2roo4 (2.11) 

(the interference terms between a resonance term and 
any non-resonance term are proportional to lw- wol 
and can be discarded). If q non-resonance transitions of 
first order (k = 1) occur between two resonance transi­
tions, in (2.8) we must make the replacement 

v-..vv•q ~ (j lio)q+1(r2 /16roo2)q, 

leading to the convergence radius (2.8) 

j <it (q) = io(4oool r) 2q/(q+J). 

(2.12) 

(2.13) 

Thus, limiting the treatment to resonance terms only 
is equivalent to leaving in (1.5) only the terms responsi­
ble for the nearest singularity, and the justification for 
our approach lies in this fact. 

3. DURATION OF THE INTERACTION AND UNIT ARITY 

We shall derive the same results in another way 
(l1l, p. 498). The duration of the transition (1.2) should 
depend on the parameters w0 and r of the scatterer and 
on the frequencies of the incident photons (we consider 
"elastic" interactions). If all wk = wo, the reciprocal 
of the duration of the resonance transitions can be ex­
panded in a Taylor series in all the independent Wk: 

't'nn-1 (roto ... ,oo.)= a+ 2: [~k +Yh(roh- roo)] (roh- (J)o) 2 +. ·· (3.1) 

The independence of the transitions implies that, 
close to resonance, when the cross terms - (w- w0) 4 in 

(3.1) can be neglected, the S-matrix can be factorized 
and the interaction time is additive: 

S.=IISn~t'(wo, 1'; oJ,,), -rn,.= ~ 't~l((J)1,)=Re{- i \'; ~lnS.1t'}. 
L-1 L-1 doJ" 

h It I (3 .2) 
Integration of (3.2) taking the single-valuedness into 

account leads to the unitary S-matrix: 

s. = cxp { 2iL [6(co~t) +v(<il~t)]} =II ( 1 + roo_ ro:r_ ifl2 } e2iV(»,l, 

(3.3) 
where 6 (wk) = tan-1[r /2(w - wk)] is the partial phase 
shift. 

The scattering matrix (3.3) is close to that used in 
Sec. 2. The extra terms in (3.3) could correspond to 
realizations of the transition (1.2) through chains of 
real processes of the type ky + e2 - (k + 1)y + e11 

my + e1- (m- 1)y + e2 (m + k = n), and so on (the ab­
sence of chains of such processes in the scheme of 
Sec. 2 leads to an apparent violation of unitarity). 

In the following, we shall need (3.3) for all wk 
= W - Wo. In this limit, obviously, Q = r /4n, {3k = {3 
= (n2rr\ Yk = 0 and 

Sn = exp(2ini!((J))) = [1 +if I (ro- (J)o- if I 2)]•, 't'an =n't'. (3.4) 

The calculation performed is valid only for elastic 
processes of the type (1.2). We shall try, however, to 
extraCt the maximum information from it by generaliz­
ing the optical theorem of scattering theory (UJ, Ch. 5, 
Sec. 1; we use the same notation) to the processes 
under consideration: 

L/nm(0)=-21m£r... (3.5) 

We separate out from .Jnn the factors corresponding 
to the quantization volumes of each of the absorbed and 
emitted particles. In this it is necessary to take account 
of the dimensionless character of the transition ampli­
tude Sn calculated above, and therefore to write .J nn as 

2n 

.o/"nn=Tnn II (po/V;)-'''· {3.6) 
1 

The density p~ introduced into (3.6) for each incident 
photon in order to satisfy the normalization and dimen­
sionality can be defined as 

1 /01 "',.tsT/2 dk ro2f 
Po =-~2 --=--. 

c .,,-m (2n)3 n2c3 
(3.7) 

With allowance for (3.6) and (3.7), the equality (3.5) can 
be rewritten for the reaction rates (1.4) in the form 

.L,Rnm=-2(iolio')"ImTnn == 2(j/jo')"Ro(1-S.). (3.8) 

We shall examine the structure of the sum in (3.8); at 
the resonance frequencies, the only important terms in 
it are Rn,n+ 1 and Rn,n- 1, which for large n are close. 
Consequently, taking (3.3) into account, we can write the 
approximate equality 

R(ro,j)""' tRn,n+t Ri .E( fa,) n Re(1- Sn) 
0 

v'cos21!((J))-1 -1--1-
1 - 2v' cos 211 + v'2 1 - v' 

(3.9) 

or, for lw- wol « r/2, 
R(roo, j) =2(j lio,.)[1- (j lio')]-2• (3.10) 
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The formulas (2.8) and (3.10) are very close, although 
different types of approximation were made in their 
derivation and, apart from this:, the transition rate 
(3.10) takes account of chains of processes omitted in 
the calculation of (2.8). 

4. PHYSICAL MEANING OF THE EXISTENCE OF A 
LIMITING PHOTON FLUX DENSITY 

The presence of an essential singularity of R(j) at 
j - jo has been demonstrated above. Mathematically, 
this divergence is caused by the fact that, close to 
resonance, the expansion parameter for the S-matrix 
is effectively different from e2 /fie, since each term in 
the expansion contains within itself an infinite summa­
tion over the virtual interactions of the electron in the 
atom. 

For a physical interpretation, we can approximate 
(2.8) by a Lorentz distribution with an "effective width" 
for the radiation flux: 

R=f(f, Wo, j)y((w-wo)'+y'/4]-1, (4.1) 

_}~ = {_ul- wo]' + (1' 2/_1~)~~1-=- i/ior_ "'=' £ (1- _j_). (4. 2) 
4 (1'2/2) (1- j/io) 8 io 

For w = Wo and j- jo, we obtain y - 0, i.e., the 
radiation flux becomes ideally monochromatic and its 
density corresponds to the presence of one photon in 
each quantum state. 

The question of the nature of the interactions when 
j > jo arises naturally here. It is physically obvious 
that these interactions cannot accelerate the stimulated 
emission process, which is oceurring with probability 
unity, and must consist only of absorption and re-emis­
sion of a photon by an electron without a transition to a 
real level, i.e., they must introduce factors of the type 
(2.11) into the transition probability. During n reson­
ance transitions, there will be, in all, p = [(j/j 0 - l)n] 
such non-resonance transitions with k = 1, and, there­
fore, we shall have q = p/n = j/jo- 1 asymptotically in 
(2.12). Hence we obtain for the reaction rate when j > j 0 

where 
R' (j) = R (io) + nr (j I io) v ( 1 - v) _, "'=' R (io), (4.3) 

v = (j/io} i/io (f /4wo )'U'iw-1) = (jT1}i{ / ioTr\1)) ilio ( T~l) /r2k), ( 4.4) 

T.~~=(f/2) [(w + w0} 2 + fZ/4]-1 ~,f/4wo2 "'=' (f2/8uJ02 )Tj~l, (4.5) 

T:Nk is the duration of a non-resonance transition. 

The relation (4.3) shows that for j > j o the function 
R(j) decreases slowly but monotonically with increase 
of j (this behavior of R(j) has been noted by a number of 
authors, e.g., inl111 , for other processes when j - oo), 
Our analysis shows that these singularities are connec­
ted with the opening up of new reaction channels, which 
is thus connected not with increase in the energy of an 
individual particle being scattered but with increase of 
j 4 > (saturation of the single-photon scattering at the 
upper level of the system when j - j 1 opens up the two­
photon scattering channel, and so on; these singularities 
of R(j) are close to each other). 

Comparison with (4.2) of the constancy of R(j) (from 
(4.3)) in a large part of the interval (jo, h) shows that a 

4l It is possible to make a qualitative attempt to link features of the 
high-intensity regime in laser generation [7 •8 ] with these properties of 
RG). 

superluminescence process occurs in matter when 
j < j 0 , and generation when j 0 < j < j1. This eonclusion 
does not contradict experimental data, since, e.g., for 
a neodymium laser, j0 - 5 x 1015 quanta/cm2sec (the 
power Po- 10-3 W/cm2 ), and j1- 8 x 1030 quanta/cm2sec 
(P 1 - 2 x 1012 W/cm2 is much greater than any values 
obtained up to now). 

We note that, if the flux interacts with the system for 
a period of time t, then, since the reaction rate and the 
width (4.2) have the form (N = t/r » 1) 

N 

ll(i,t) "'=' :-rr ,L.nvn, y2(t)"'=' f 2[N +io2 /(h'- j')]-1, (4.6) 

questions of convergence are not important; neverthe­
less, all the statements made above remain in force. 

In conclusion, we remark that the quantum approach 
to resonance interactions of an intense photon beam 
with atomic electrons enables us to expose a number of 
features which it would be interesting to check experi­
mentally. 

The author is deeply grateful to N. B. Delane, V. V. 
Mumladze, V. S. Popov, v. Ya. Fal'nberg, N. N. Tsilo­
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