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It is pointed out that the Pauli- Villars regularization which is necessary for maintaining gauge in­
variance at all steps of computations according to perturbation theory, has some unusual features. 
It leads to the vanishing of integrals of positive definite functions, both for convergent and diverg­
ent integrals, and also leads to discontinuities in the regular parts of divergent diagrams. The 
physical significance of the Pauli-Villars procedure is discussed, as well as the possibility of 
extending it in such a manner that the divergent parts of all the diagrams are made to vanish. 

1. INTRODUCTION 

GREAT attention has been paid recently to the prob­
lem of definition of currents and their commutators. 
In doing this, different authors claim different results 
for the same quantities, so that there arises the im­
pression that certain redefinitions become necessary. 
Any such redefinition consists in detailing the regulari­
zation method employed. We are of the opinion that 
regularizations should not be introduced anew for each 
special case under consideration, but rather that one 
should make use of the regularization which has al­
ready been used in carrying out the renormalizations 
in the S-matrix. 

In principle, any regularization in an intermediate 
stage of the calculation may violate some of the physi­
cal conditions imposed on the theory: unitarity, 
causality, positive definiteness of the metric, relativ­
istic and gauge invariance, etc. Since all these condi­
tions have to be satisfied only for the final expres­
sions 1 >, their (inevitable) violation in the intermediate 
stages of computations is not dangerous. It is however 
preferable to deal with a regularization which violates 
a "minimal" set of physical requirements, namely 
those which are not too hard to verify on the final ex­
pressions. From this point of view the Pauli-Villars 
regularization[ 11 is attractive for theories having a 
gauge group, since in distinction from other types of 
regularizations, it maintains gauge in variance at all 
stages of the computation. 

In the present paper we investigate in detail on the 
example of quantum electrodynamics those peculiari­
ties of the Pauli-Villars regularization which distin­
guish it from other regularization methods. We shall 
be interested most of all in the application of regulari­
zation to spectral representations. The reason for this 
is that the known formal contradictions of vector 
theories are usually demonstrated most clearly in the 
language of spectral representations. At the same time 
the properties of the Pauli- Villars regularization have 
never been discussed in the literature in these terms, 
in spite of the fact that it is exactly the presence of 

nor course, at all stages of the computation the regularization 
should be the same, otherwise contradictions might (aad will) appear. 
To their number we refer the so-called Schwinger paradox. 

these properties which ensure the freedom from any 
contradictions. In particular, we show that the Pauli­
Villars regularization in the form used for effecting 
renormalizations in the S-matrix are completely suf­
ficient for the computation of the equal-time commu­
tators. 

2. THE SPECTRAL REPRESENTATIONS FOR 
ELECTRODYNAMICS 

It is well-known that the spectral representation of 
the vacuum expectation value of the commutator of 
vector currents has the form 

/11v(X- Y)=- i([j,, (x) ,jv(y) J>o = {as/ (s) ( g,,. + a.a.) D,(x- y). 
0 s (1) 

In order to obtain the representation for the Green-
like functions one can make use of the "equations of 
motion"[ 2 J for the current-like operators 

f:Jj"(x) = i6(y0 - x0)[j.(x),i•(Y)] + A~~(x, Y). (2) 
6av(Y) 

Then 

(3) 

where each term in (3) is the vacuum expectation value 
of the appropriate term in (2), taken with the opposite 
sign: 

00 

J.~(Dl (x- y)=(- K"1.) s dsl(s)s-2D,• (x- Y) (- K1.v) 
0 

+ cw(- K"v) 6(x- Y) + Cov(g"v -ll.ollvo) ll(x- Y) 

A:~ (x- y)= A1(- K"v)ll(x- y) + Ao(g"v -ll"oOvo}ll(x- y), 

·..._ Kw-,c== gj4vi31.2 - a"&v, 
so that in the renormalized theory 

cw + AI = 0, cov + Ao = 0; 

(4) 

(6) 

cw= _ J l(s)ds, cov=J l(s}ds . (7) 
s2 s 

It is convenient to write down the spectral representa­
tion for the Fourier transform of the advanced current 
Green's function, ~ 11 (k): 

a J l(s)ds 
f"v (k)=(g 14vk2 - k"kv)k2 (B) 

s2(s- k 2 - iek0) 

+(!.'"vk2 -kl'kv) [Jl(:~ds -AI] +(gl'v-614o6vo) [J l(s~ds -Ho], 
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By the definition of CoD as the subtraction constant 
in the spectral representation (8 ), it should be related 
to the mass renormalization constant of the photon: 
CoD= 6J.J. 2/Z3 • On the other hand, the spectral integral 
CoD gives an expression for the equal-time current 
commutator 

S I(s) ds 
6(xo-Yo)/~v(x-y)=(6~o6vk+O~kbvo) - 8-ok6(x-y), (9) 

the consideration of which leads to the Schwinger 
paradox. 

The physical photon mass must vanish, from con­
siderations of gauge invariance. For a vanishing un­
renormalized photon mass this requirement will be 
satisfied owing to the stability condition (cf. the second 
of the conditions (6)), which can be enforced in two 
ways 2>. 

If the integral CoD vanishes, then Ao = 0, i,e., in the 
Lagrangian formalism there is no need to introduce a 
mass renormalization counterterm for the photon. In 
this case gauge invariance holds at all stages of the 
calculation. 

Conversely, CoD may be nonzero. Then Ao"" 0 in 
order to compensate CoD, so that the physical photon 
mass remains equal to zero. However, now the inter­
action Hamiltonian must contain gauge non-invariant 
and noncovariant counterterms of the type 

f.o (g~v- 61,olivo) 6 (x- y) : a~(x)av(Y):. 

It is clear that in this case gauge invariance is satis­
fied only in the final stage of the calculation. 

The main disadvantage of the second possibility con­
sists in the fact that there is no continuous transition 
to the case of finite renormalizations, where gauge­
noninvariant counterterms would be completely inad­
missible as a physical part of the interaction. One 
would therefore like to give unconditional preference 
to the first possibility. However, the requirement for 
the integral CoD to vanish is quite nontrivial. After all, 
CoD is (albeit divergent in a realistic theory) an inte­
gral over a positive definite function. Therefore, in 
order to achieve the first possibility, we require such 
a regularization procedure which will not only make 
an integral over a "positive definite" function vanish, 
but will also maintain the zero result after the regulari­
zation is removed. In addition, in order to achieve the 
desired continuous transition to the case of finite re­
normalizations, the procedure we are searching for 
must do the same to some convergent integrals over 
positive definite functions. 

It turns out that the procedure introduced already 
more than 20 years ago by Pauli and Villars does in­
deed exhibit all these "miraculous" properties. In a 
narrow sense, this procedure consists in replacing the 
contribution of each fermion loop by a sum of such 
contributions from loops with new fermions of masses 
Mi, weighted with coefficients Ci in such a manner 
that 

2lin principle there is a third conceivable possibility: when the 
stability condition is not satisfied and a nonvanishing integral c00 
compensates a nonvanishing unrenormalized photon mass in the ab­
sence of a mass renormalization counterterm; but such a possibility 
is not conveniently discussed within our formalism (cf. [3] Sees. 2.2 
and 2.4.1). 

.L:ci=O, L Ciflfi'=O, 

and such that c 1 = 1, M1 = m, and as the regularization 
is removed by letting Mi - oo ( i > 1) the coefficients 
Ci remain uniformly bounded. For the spectral density 
this procedure is tantamount to the substitution 

l(s) =I (s, m 2)-+f'"g(s)= _L,cJ(s, Mi'), 

and the regularization is to be removed after the spec­
tral integrals are computed. 

3. TWO-DIMENSIONAL ELECTRODYNAMICS 

The simplest example on which one can illustrate 
the realization of our general reasoning is spinor elec­
trodynamics in a two-dimensional space-time. In this 
case, among the strongly connected diagrams, the only 
divergent one is the second-order photon self-energy. 
Indeed, writing the polarization operator according to 
the Feynman rules (this operator corresponds to the 
current Green's function): 

l1 k =-~Jd' Sp{y,,(p+m)yv(p-k+m)} (10) 
~·( ) (2n)' p [p'- m2 + ie] [ (p- k) 2 - m2 +ie) 

one obtains an expression which formally has a logar­
ithmic divergence. We note however, that if one con­
tracts this operator with respect to the indices: 

TI(k2) = g~.n~v(k), 

and takes the trace, the highest powers of p in the 
numerator cancel mutually, so that II (k2 ) turns out to 
be convergent 

11(k')=- ie'(2n)-'4 J d'p[p'- m2 + ie]- 1 [ (p- k) 2 - m2 +ie]-1 

=-~ 4m' /jl- 4m' )-'I•. {rn \1 + (1- 4m'/k') '""!·- iO (k'- 4m~) n} 
2n k2 ~ k2 1-(1-4m2/k2 )''• 

= L~~~~ie k'J .~(sf_!_5k:s__ie) +J I(:)ds 

e2 4m2 ( 4m' )-'I• l(s)=- -- 1--- O(s-4m2 ). 
2:n s s 

(11) 

Such a result for II (k2 ) corresponds to a non-trans­
verse IIJ.l.v(k), and can be obtained by contracting the 
gauge-noninvariant spectral representation 

S l(s)ds J l(s)ds 
n,,v'(k)=(g~vk2 - k~kv) -(-k,--.-)-+(g~.- b~ollvo) ---' 

s s- -!e s 
(12) 

in which all integrals are convergent; in second order 
of e the spectral density I(s) corresponds to the con­
tribution from a closed fermion loop with s<->-lines, 
and behaves like s-1 for s - oo. 

The restoration of gauge invariance (transversality 
of II J.1. v) can be achieved by applying the Pauli-Villars 
procedure. For the two-dimensional electrodynamics it 
is sufficient to use one auxiliary mass and to subject 
the spectral density to the substitution 

l(s) = l(s, m 2) -+Jreg(s) = /(s, m') -l(s, M2). 

Gauge invariance will be restored if one can make the 
spectral integral f ds s-1 I( s) vanish in the representa­
tion (12). It is easy to see that in using the Pauli­
Villars regularization 

s I(:)ds_..Sireg~s)ds= s I(s~m2)ds sl(s,~2)ds =2~(2-2)=0, 

and this result remains valid after the regularization 
has been removed. 
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The fact of the vanishing of a convergent integral 
over a positive definite function is explained by the 
peculiarities of the Pauli-Villars regularization. In­
deed, this regularization is not equivalent to the intro­
duction of some regularizing multiplier, which becomes 
equal to one when the regularization is removed. On 
the contrary, it consists in subtracting from the inte­
grand to be regularized a function (which in our case 
is negative definite), such that its contribution to the 
integral f ds s-1 Ireg ( s) does not depend on the values 
of the parameter M, although for M - oe the region of 
s values where this function is nonzero goes off to 
infinity. 

The characteristics of the Pauli- Villars regulariza­
tion for the polarization operator as a whole can be 
illustrated by means of the graph of the function 

[n'C(s)ds 
fi'cg (k2)= k2 s ----

s(s -- k'- ie) 
(13) 

for large but finite values of M. As is usual in two­
dimensional theories the function rrreg(k2 ) suffers a 
root-type discontinuity at the thresholds k 2 =4m 2 , k 2 

=4M2 • In order not to complicate the picture one can 
smooth out the behavior of rrre~~(k 2 ) near k 2 ~ 4M 2 , 

by means of an appropriate smearing out in M. Then 
the graph will have the form shown in the figure. It has 
the following characteristic regions: 1: 4m 2 << I k 2 1 

«4M2 , and II: I k 2 1 »4M2 • The region I corresponds 
to carrying out the limiting process in the order 

Jim lim fl•·•C(k2) =- 2, 
A2-+oo ~\f-+oo 

and the region II corresponds to the order of the limits: 

lim lim n.ec ( k2) = 0. 
M-+00 R2-oo 

As is evident, the two limits are different. 
In other words, although for the spectral density we 

have 
lim /"8(s)= /(s), 

M-+OO 

we shall have for the spectral integrals 

lim J /"K(s)f(s, k 2) ds =t= J lim I••K (s) f(s, k 2 )ds = J I (s) f (s, k')ds. 
M-+~ 

Therefore, after the regularization is removed, the 
contracted polarization operator r(k2 ) is discontinu-
ous: the limits of II(k2 ) for I k 2 1 - oe are -2, whereas 
the value when k2 is "exactly infinity" is zero. The 
appearance of the discontinuity is the price one has to 
pay for the attractive features of the Pauli- Villars 
regularization we have discussed 3>. As we shall see 
be low, for the same price one achieves also the gauge 
invariance in a realistic four-dimensional electrody­
namics, but there the discontinuities turn out to be 
infinite. 

It would seem that the difficulties with the discon-

3lWe note that if one considers the successive operations as a for­
I (s)-+ ]"' (s)-+ lim ]'•< (s) = I (•) 

}o[-o-00 

mal intermediate regularization which should have no influence on the 
physical answers, such an approach is not legitimate in our case. The 
only possibility to interpret the Pauli-Villars procedure is to postulate 
that the "usual theory" is by definition the limit of a theory with finite 
M. For the two-dimensional electrodynamics before taking the limit, in 
addition to the physical fermion there are two auxiliary ones with mass 
M, one of which has indefinite metric. 

tinuity at k 2 = oe is inessential, since this point could 
be completely eliminated from consideration, for ex­
ample by redefining II (k2 ) by continuity. However this 
point is physically distinguished: it corresponds to 
equal times in the coordinate representation. There­
fore it is related to such important concepts as the 
equal-time commutation relations which are at the 
foundation of the Hamiltonian formalism, and also the 
initial conditions_ If one eliminates from considera­
tion, completely exactly equal times, it becomes un­
clear how far one can proceed with the construction of 
the Hamiltonian formalism of the theory. Indeed, con­
sidering only approximately equal, but not strictly 
equal, times one is forced to remember one of the 
versions of nonlocal field theory with its inherent dif­
ficulties. 

The answer for the contracted polarization opera­
tor comes out unique for any method used, owing to the 
sufficiently rapid decrease of the spectral density. At 
the same time the longitudinal part of the operator 
rr 1.w(k), more precisely the expression kJ-LIIJ-Lv(k), 
which should vanish owing to the requirement of gauge 
invariance, will in fact depend on the method of com­
putation. Here the formal divergence of IIJ-Lv(k) in 
perturbation theory manifests itself in full measure. 

Let us try, for instance, to verify the transversality 
of Ilgv(k). Owing to the formal divergence of the inte­
gral (10), the expression kJ-LIIJ-Lv(k) should be inter­
preted as the improper integral 

k~ll~v(k)= 

ie2 - sB" Bs, Fv(2kp-k2)-kv(p'-m2) = - - lim d p0 d p 1 --,.-,--::-_:_,_o---,,--,-:. __ .:___,--,-:._ 

4:t2 A,n,--.~ -A, __ ,, [p2 - m 2 + ie] [ (p- k)'- m 2 + ie] 

Before passing to the limit one can add and subtract in 
the numerator the combination Pv( p2 - m 2 ) and re­
ducing similar terms and simplifying with the denomi­
nator, we obtain 

By a change of variables one can achieve that the 
second term in the integrand will be equal, with oppo­
site sign, to the first, but so that the limits of integra­
tion for the two terms will be different. Therefore, 
depending on the relations between the quantities Ai 
and Bi, one obtains different results after going to the 
limit: if, e.g., At, Br >> Ao, Bo, then 

e2 kv 
Re h~II~v(k)=~zlho, 

and if A1 , B1 << A0 , B0 , then 
e2 kv 

Rek,,II~v(k)=--,-6vl etc. 
2:t 2 
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It is clear that the different methods of passing to the 
limit, corresponding to different methods of regulari­
zation may violate not only the gauge invariance, but 
also the covariance of the result for kJ..LITJ.l 11 (k). It is 
easy to verify that the regularization according to 
Pauli- Villars leads to a unique gauge-invariant (and 
covariant) reply: kJ.lilJ.lv(k) = 0. In this case one ob­
tains in perturbation theory for the total polarization 
operator a transverse expression, which agrees with 
the gauge-invariant spectral representation: 

. reg e2 ( k1,kv) { 2m2/k2 
IT1n·(k)= luniT1n·(k)=-- g"" ___ 1+ ~~---

M~oo 1l k2 )f1- 4m2fk' 

X [1n}1+ yi-4m'/k~-~- in0(/•2 - 4m2)]} 

l- 1\'1- 4m2/k" 

S l(s)ds 
= (g"vk2 - k"kv) k' . . , s(s-·-zf) 

and the integral CoD= Jds s~ 1 l(s) does not participate 
at all in this representation, since J ds s-1Ireg(s) = 0. 
It is clear in this connection that there is no need to 
include in the current-like operator terms proportional 
to gJ.lvO(x- y) and OJ.l 0 0v 0 0(x- y), i.e., if this method 
is used the photon mass is not subject to renormaliza­
tion. 

We also remark that in computing IlJ.Lv to second 
order by using the a -representation, then after taking 
the trace under the integral sign with respect to ai, 
the divergent terms cancel out, but the finite result ob­
tained in this manner (covariant, but gauge-noninvari­
ant) is in disagreement with all spectral representa­
tions. 

The listed facts show that in the presence of formal 
divergences a regularization is always necessary. 
Even if we are not encountering any really divergent 
integrals in a selected method of computation, some 
regularization is "at work" in fact, but we do not 
realize exactly which it is. The transformation group 
with respect to which the theory must be invariant is 
here a criterion which allows one to select a "natural" 
regularization, and thus to obtain definite, unique an­
swers. 

4. FOUR-DIMENSIONAL ELECTRODYNAMICS 

The next example is four-dimensional quantum 
electrodynamics. The spectral density I( s) to second 
order in e, has the form: 

e2 ( 2m') v 4m2 
l(s)=l(s,m2)=--s 1 +- 1--8(s-4m2). 

12n2 s s 

In this case the Pauli-Villars procedure requires the 
introduction of two auxiliary masses, and is equivalent 
to the substitution 

3 

l(s,m')-+l"g(s)= 2: c;l(s,.1!;2 ). 

i=l 

We first investigate how this regularization affects the 
quadratically divergent spectral integral c 0D 
= J ds s-1 I( s ), corresponding to the gauge-noninvariant 
photon mass renormalization counterterm. Now this 
integral is to be interpreted as the limit 

]reg (s) 
Con= lim J --- ds. 

l\f2,3-+00 S 

For its computation it is technically convenient to take 

the sum L; outside the integral sign. Taking into ac­
i 

count that the integral converges absolutely for finite 
Mi, we can represent it in the form 

A 

Con= lim lim J dss-lf,·eg(s). 
1\f~.r~oo A-...t'O.) 0 

Then, after going to the limit the integral of each term 
of the sum will be absolutely convergent, and we are 
entitled to permute summation and integration: 

A 

CIJL>= lim lim \"-, c,J dss-'I(s,M,'). 
.l\12,a-+oo A-+oo ~ 

t 0 

After the change of variables Yi = ( 1 - 4Mi/ s )1/ 2 in 
each term of the sum we have 

e' \1 ( 4Jlf ·2 ) ''' con=-2_2 lim lim J c;A2 1--,'-
1 :t M2,rce~ A-+oo A•~ A 

=~ lim lim l:cJ A'-6M,'+0(-1-)). 
12n M 2 ,roo A-:),) i \ j\2 

(14) 

In the same manner as for the two-dimensional case, 
the possibility that CoD vanishes is explained by the 
fact that the regularized spectral density turns out not 
to be positive definite: one of the coefficients Ci is 
negative. However, in itself this circumstance does not 
guarantee that after the regularization is removed the 
divergences do not show up again. It is also important 
that there are no logarithmic terms of the form 

c;A2 ln--' or ~ c,M,'1n--2: ill ·2 !rf (2 
m2 ~ m 2 

in the limiting expression (14). Therefore, in the limit 
A - oo the integral f ds s-1 1reg( s) does indeed vanish, 
and the result remains true when the regularization is 
removed, i.e., in the limit M2 , 3 - oo. 

The presence of logarithmic terms would lead to the 
appearance of divergences when the regularization is 
removed. The absence of such terms is a characteris­
tic of vector theories (more precisely of Yukawa type 
interactions and vector bosons. It is easy to foresee 
this feature, if one expands the spectral density I( s) 
in series with respect to the powers of 1/ s: I( s) s~ 1 

= 1- 6(m2/s 2 ) 2 - 8(m 2/s 2 ) 3- •••• The terms propor­
tional to sk with k < - 1 give a vanishing contribution 
to the spectral integral, owing to the Pauli-Villars 
condition. The contribution of terms proportional to 
sk with k > - 1 vanishes in the limit A - oo. The only 
dangerous term, namely the one proportional to s-1 
(which would give a logarithmic contribution to the 
spectral integral) is absent from the expansion of the 
function s-1 I( s) for vector theories. At the same time 
in other theories (with scalar, pseudoscalar or axial 
vector mesons) s-1I{s) contains such a term, and 
after the regularization is removed there remains a 
logarithmic divergence in the spectral integral c0D. 
We note that in the second divergent spectral integral, 
c1D the logarithmic divergence reappears for this 
method of procedure in any theory, even the vector 
one. 

Since the spectral integral c0D vanishes, the total 
polarization operator has the form 

II"v(k)={g1"·k2 - k"kv) J l(s)ds . . 
s(s-k2 -te) 

(15) 

Therefore it suffices to talk in the sequel only about 
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the contracted operator II (k2 ) = gJ..LviiJ..L 11 , as in the 
two-dimensional case. It is convenient to exhibit the 
characteristic of the Pauli-Villars regularization for 
this quantity on the example of the "dipole" regulari­
zation, which corresponds to auxiliary masses situated 
close to each other: M2 =M; M3 = M(1 + E:). Then 

.:1 = 1, c2 = -1-(1-m2 /M.2) /e, c3 = (1-m2 /M2) /e, 

and the removal of the regularization corresponds to 
the successive limits lim lim. The first limit may 

M-oo E:-0 
already be taken in the spectral density, so that the 
regularized expressions will depend only on the one 
parameter M. In the "dipole" case 

iJ 
Jr•K(s)= J(s, m2)- I(s, il/2) +(.1112- m2) iJM2 l(s,M2). 

Accordingly, we have 

J /"K(s) ds e2 { 
I1'"C(k2)=k2 . 2(M2- m2) 

s(s- k2 ·- 1e) 4n2 

ilf2 ( 2m2) +k2in--k2 1+- X(k2,m2) m2 k2 

k4- 2k2ilJ2- 12m211f2 + 4ilf4 X k2 M2) } .. 
+ k2-4Jf2 ( ' ' 

where 

(16) 

11/ 4b [ X(a,b)=-y 1-- In 
2 a 

1+l'~ 
l1-l'1-4b/al 

in6(a- 4b)]. 

Here, as before, two different sequences of taking 
the limit are interesting: 

e2 ( M2 2 lim lim ITreg(k2)=-k2 In-+-) 
1f.2....,.oo M 2-ao 4n2 k2 3 

and 
lim lim rrreg ( k2) = 0. 

M 2-oo A2-oo 

The second of these results is quite understandable and 
corresponds to a transition to the integral - c0D 
=-Ids s-1 I(s) in the spectral representation (16); 
since without regularization c0D simply diverges, it 
will make sense only with such an order of taking the 
limits. The first result should be interpreted in the 
sense that the asymptotic behavior of IIreg(k2 ) "goes 
off to infinity" when the regularization is removed. 

Thus, we have again reached the conclusion that 
II (k2 ) is discontinuous at the point k 2 = "" after the 
regularization is removed. In distinction from the two­
dimensional case this discontinuity is infinite, which 
means that the degree of divergence in four-dimensional 
electrodynamics is higher. 

The analog (insofar as the degree of divergence is 
concerned) of the polarization operator of the two­
dimensional case is now the photon-photon scattering 
diagram in fourth order of e. Its contribution is 
formally logarithmically divergent. However, if all the 
traces are computed in the integrand and similar 
terms are reduced, the total degree of growth dimin­
ishes. For vanishing external momenta the photon­
photon scattering tensor after removal of the cutoff 
becomes a finite constant, independent of the masses: 

As a result of the Pauli-Villars regularization (owing 
to the condition ~ Ci = 0) this finite constant "turns 
into" zero. 

5. DISCUSSION 

We have already praised the advantages of a com­
putational scheme which maintains gauge invariance 
throughout all steps of the calculation. Such a scheme 
is guaranteed only by the Pauli-Villars regularization. 
All other regularization methods can achieve only the 
gauge invariance of the final expressions. However, 
the renormalization terms (or the unrenormalized 
theory) will in this case be gauge-noninvariant. 

But, in ensuring full gauge invariance, the Pauli­
Villars regularization exhibits one concern causing 
feature: it turns into zero not simply divergent inte­
grals, but divergent integrals of positive definite func­
tions. It does moreover the same with convergent in­
tegrals of positive definite functions. This means that 
the procedure of introducing and subsequently remov­
ing the regularization a la Pauli-Villars is not an in­
nocent computational device, but a "physical" opera­
tion. 

In order to understand its physical meaning we note 
that the Pauli-Villars regularization is equivalent to 
replacing the usual current density - e: lPYJ..Llf!: by the 
expression4 >: 

-e: i!iv~1P + l' I c2l (it.'w'l'z + iii2v~¢{) + l'~iliaYJL'i'a: · 

Thus, from a theory with a single fermion we go over 
to a theory with indefinite metric and with four types 
of fermions: one physical and three auxiliary ones. 
The auxiliary fields l/! 2 and l/! 3 with masses M2 and 
M3 satisfy the same commutation relations as the 
original physical field 1/J: {ifj'(x), 1/J(y)h = -iS(x- y). 
The auxiliary field 1/J~ of mass M2 generates states of 
indefinite metric: {ifj'~(x), 1/J~(y)} = iS(x- y). 

Only in such a theory with finite Mi are dynamical 
relations among different quantities meaningful. In 
particular, the T-product is finite for the modified 
currents. In addition, their commutator at equal times 
yields directly zero, if one makes the natural assump­
tion that the indeterminacy in each of the four separate 
commutators should be removed in the same way. Con­
sidered in the whole Hilbert space with indefinite 
metric, the modified theory is unitary and causal. 

However, in this theory it is impossible to give a 
physical interpretation to the auxiliary fields. The 
genuinely physical quantities which are obtained after 
taking the limit Mi -"" appear as boundary values of 
quantities belonging to a modified, dynamical theory. 
It looks as if the physical quantities alone are insuf­
ficient for the construction of a dynamical formalism, 
similar to the fact that in quantum mechanics the prob­
ability density <~~*<~~ is insufficient and one needs to use 
the wave function <II itself, which is devoid of direct 
physical meaning. 

An investigation of the Pauli- Villars regularization 
has yet another aspect. In its simple form it only makes 
some divergent integrals vanish. However, it can be 
generalized (adding some new auxilliary masses, and 
imposing additional conditions on the coefficients Ci) 
in such a manner as to make all divergent integral 
vanish. In fact, such a ~ossibility was considered in 
the papers by Slavnovr4 , who has shown that if one 

4)The authors are indebted to D. A. Slavnov, who called their atten­
tion to this circumstance. 
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introduces new auxilliary fields and requires that con­
ditions of the type l:ci ln (Mi/m2 ) = 0 be satisfied 
(which can be achieved maintaining the uniform bound­
edness of all coefficients Ci), one can make the diverg­
ent parts of all diagrams vanish. Then only the regular 
parts survive for all diagrams (the number of new con­
ditions increases with the order of perturbation theory). 

In the light of this remark one can question all the 
results which are based on the positive definiteness of 
divergent spectral integrals. Such results are, e.g., 
the known restrictions on the magnitudes of the re­
normalization constants. 

The authors are grateful to E. S. Fradkin and I. V. 
Tyutin for stimulating discussions. 
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