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Experiments showl 11 that the specific heat cts of a binary system as a function of temperature does 
not lie on the coexistence curve near the critical point, i.e., it does not coincide with the specific heat 
discontinuity. This effect is not the result of impurities in the system but rather the result of an in
homogeneity of the matter along the height of the calorimeter, which persists even during stirring. 
The calculation results agree satisfactorily with the experiments, and the evaluated inhomogeneity 
parameter is reasonable (reasonable values are also obtained for the isothermal density-distribution 
relaxation time). The presence of impurities and small temperature gradients in the sample modify 
the specific-heat peak splitting and discontinuity and lead to additional distortion of the singularity. A 
similar behavior is also observed in solids near second-order phase transition points; this, apparently, 
can likewise be attributed to external actions on the system, e.g., nonuniformity of the ordering param
eter in the sample, due for example to an external nonuniform field or to inhomogeneities that are pro
duced during the preparation of the sample and are not in thermodynamic equilibrium with the lattice. 

J. THE experimental dataU 1 show that the specific heat 
has a peculiar temperature dependence near the critical 
point of liquid and near the second-order phase transi
tion point, namely, at a nonzero value of the ordering 
parameter, a maximum of the specific heat is observed; 
the position of this maximum dcies not coincide in tem
perature with the jump of the specific heat connected 
with the appearance of the second phase, with T max 
< Tj· The magnitude and position of the maximum of 

the specific heat and the splitting of the maximum and 
of the jump depend on the average value of the ordering 
parameter (on the density of the medium in the calo
rimeter in the case of the critical point of a liquid). [1, 21 
Thus, experiments indicate that there is one more dis
tinct line on the P-V phase diagram, namely the line of 
maxima of the specific heat of the binary system, cts' 

located inside the coexistence curve. This line has a 
maximum at the critical density and is similar in shape 
to the coexistence curve (see Fig. 1 below). At the 
same time, the maximum specific-heat curve has noth
ing in common with the spinode, since the existence of 
metastable states of the liquid in the calorimeter was 
excluded in the experiments of Voronel' et al.[lJ 

It can be shown that the distortion of the character 
of the specific heat as a result of the presence of im
purities in the system does not lead to the appearance 
of a dome-like line of maxima of cts. In the absence 
of an external field and other external actions on the 
system, the specific heat of a mixture with fixed com
position x depends only on the average specific volume 
V and the temperature T. In the presence of two coex
isting phases in the system, the intensive properties of 
each phase depend only on the temperature, and the 
amount of matter in the phases is determined by the 
average specific volume V, i.e., the specific heat of a 
binary mixture of fixed average composition x depends 
linearly on V. For example, in the case of a single-

component system 

bs . ( aP) (aV2 ) 2 [ Cv =Cv,-T --1 ---;- +Y Cv,-Cv, 
aT~ T dT coex 

( aP) ( 8V1 ) 2 ( 8P ) ( 8V2 ) 2 ] 

- av, T. dT coe:t-· OVz T- dT coex ' 

where y = ( V- V 2)/(V 1- V 2), and the indices 1 and 2 
pertain to the coexisting phases. Thus, the reason for 
the appearance of a line of the maxima of the specific 
heat of a binary system on the T-V phase diagram in 
l11 is not the presence of impurities but external ac
tions on the system. 

We have shown earlierl31 that the inhomogeneity of 
the density over the height of the calorimeter (hydro
static effect), due to the change of the hydrostatic pres
sure in measurement in a gravitational field, lead to the 
appearance of the maximum of the heat capacity of a bi
nary system. It is natural to assume that the stirring 
employed in the experiments described in l 11 does not 
eliminate the hydrostatic effect completely, and we can 
attempt to explain the results of the aforementioned ex
periments as being due to the influence of this effect 
during the stirring. 

2. We shall consider the effect of stirring on the 
system in a gravitational field, using a simple idealized 
model. We assume that the stirring does not lead to a 
redistribution of the matter among the phases, i.e., to a 
noticeable heating of the system, but only equalizes the 
density of each phase in height. In this case the periodic 
operation of the stirrer1> causes the densities of the co
existing phases, after each stirring cycle (at T 1 = 0), to 
be homogeneous and equal to the densities on the coex
istence curve, while in the intervals between the cycles 

llJn the experiments considered in [ 1 ], the frequency of stirring 
fluctuated from three to five times every three minutes, i.e., r 1 = l-
0.6 min. 
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(in the time interval [0-T 1 J) there occurs in the system 
an isothermal relaxation of the distribution of the den
sity towards the equilibrium distribution with respect to 
height in the gravitational field. The temperature of the 
calorimater in the time interval (0-T 1 J can be re
garded as constantYl We shall assume henceforth that 
the main relaxation process at 0 s T s T 1 is isother
mal density relaxation, while the remaining thermody
namic quantities adjust themselves instantaneously to 
changes in density. 

Numerous experimentsr4 J have shown that the time 
of equalization of mechanical disturbances near the 
critical point is of the order of several minutes, and 
does not depend strongly on the closeness to the critical 
point. Therefore, in a sufficiently narrow temperature 
interval near Tc, the time of isothermal relaxation of 
the density distribution with respect to the height, T 0 , 

can apparently be regarded as independent of 
t =(T-Tc)/Tc. 

In our model, the action of the stirrer on the density 
distribution is equivalent to a decrease of the accelera
tion g due to the gravity (or the inhomogeneity scale l), 
from ~(or h) at T >> T0 to zero at T = 0, i.e., 
g=~[1-exp(-T/T0 )] (or l=h[1-exp(-T/T0 )]). In 
perfect analogy with the procedure used in rsJ, we obtain 
from the classical equation of staters l and from the hy
drostatic condition the following equation for the distri
bution of the density in height as a function of the time: 

for t > 0 

P= + 2rsh..!. - 3' 

for t < 0 
p=±2rch:, 

l 
c!tcp=- if Ill> ho, 

ho 
lp l 

p=±2rcos-, coscp=-h if lll<ko, 
3 0 

(1a) 

(1b) 

(1c) 

where p = (9'- 9'c)/:7'c, t = (T- Tc)/Tc, 
p = (P- Pc)/Pc, and h = go:7'c(H- H0)/Pc are the di
mensionless density, temperature, pressure, and height 
measured from the meniscus; A = (02p/ap at)c, 
B = 7'2 (a 3p/op3)tc are the constants of the equation of 
state/6 l l = h [1- exp ( -T /T 0 )] is the effective scale of 
the inhomogeneity of the density, and h0 = % B(A It I/B)312 

is the characteristic dimensionless height, determined 
by the closeness of the temperature to the critical value: 
when ll /h0 I >> 1 the inhomogeneity of the density de
termines completely the result of the experiment, and 
when ll/h0 I << 1 it leads to corrections. The measured 
specific heat corresponds to 

1 -. 'ta II,:~ 

C = -- --;:-. ·-~ J J [E ( 9', T) +gil] 9' d-r dH, 
:7' 11,.-rl d1' 0 0 

(2) 

where Hm and :fo are the total height and the average 
density of matter in the calorimeter. 

For the dimensionless specific heat cy = VvTc/Pc V c 
we use the law considered in r 7 J, in the form proposed 
by I. M. Lifshitz: 

(3) 

where a is the finite part of the specific heat. The use 
of an equation with other critical indices for the iso
thermal compressibility and specific heat (see [BJ) does 
not change the gist of the results of our calculations. 

The calculation of the temperature of the jump of the 
specific heat and of the specific heat of the inhomogene
ous system after stirring leads to results similar to 
those in r 3 ' 5 l, except that now the role of the inhomo
geneity scale in the final formulas is played not by the 
total height of the vessel hm, but by the time-averaged 
effective dimensionless inhomogeneity scale 

or 
l = hm { 1 -- ; 1° [ 1 - exp (- -c:1 ) ] } 

l=hm_!!_ if r,<-co. 
2-co 

The temperature of the transition through the coex
istence curve (the jump of the specific heat) is, in ac
cordance with rsJ, 

, 2B t. 3 7 ) 
•j--- 3Ai>2 \ 1 - 2BIPf3 

if hl ~ 1 and IPI > ·va( 3l )''· (4) 
o 2B ' 

t i ~ - :~ ( ;r ) '" [ 1 P 1- : ( : ) '"] 

if hl >1 and 1'3(~)''• >IPI >2.( 3l )'" (5) 
o 2B 4 B ' 

ti=O ifO~IPI~:(~)"'. (6) 

where p is the average density of matter in the calo
rimeter. 

The specific heat of the binary system has, as are
sult of the hydrostatic effect, a maximum at It I 
> (B/A)(3l /2B)213 ,CSJ The temperature of the maximum 
is2> 

tmax = K( :! )"' [ 1 + M( ~~f''p2), (7) 
where 

B ( 1'~ A~ )''• 
K =-A 4 3A fi - !J ~ - 0•3• 

'I 5 A2 ( 4 3A~-B)'t, 
II =--:::-- ~ 4·10-2 

3GJ13 aB f:i A~ . 

At the maximum points, the specific heat assumes val
ues that depend on the average density and inhomogene
ity scale: 

(8) 
where 

s=~cvo+~-alnl: eA!-llf'(: )"'J 
2 

-3a >::;; ucv0 +~+ (10±5), 

4 A2( B )'I• y=-3'"__:_ 1--- -0 3 
3 B 3A~ - ' ' 

acy is the j~mp of the specific heat in the homogeneous 
system. At p = 0 we have 

i! max= const + const· In ( ~ ) • (9) 

Following rsJ, we can easily calculate the jump of the 
specific heat as a function of p and l for 7 /h0 < < 1 and 
T/h0 >>1: 

if _!__..., 1· (10) 
ho..,.. ' 

2lTo estimate the constants we use in this and in the preceding 
formulas the estimates given in (3 ]: A= 3.8, B = 0.6, ex= 0.75 and 
{3 = 5.5 X 10-2 • 
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- - (ho)''• 112 (3l)-''• [ , 3 tHt ''• ~c = !lc\·oi3 2t = L\cvo 3 "jj Iii I -4 t B) ] (11) 

l 
if ho >1, 

if 3 ( 3l)''• M=O, t=O and 1111.;;;; 4 B . (12) 

In the case of continuous and sufficiently intense 
stirring, our model is not valid. With such stirring, 
however, there should appear in the system regions of 
density inhomogeneities, produced and maintained by 
the work of the stirrer. If the pressure in these re
gions changes with height linearity, then our formulas 
are valid also for this case, with T meaning a suitably 
averaged scale of the inhomogeneity regions. We note 
that in the direct vicinity of the critical point the sur
face tension and the heat of evaporation decrease, and 
continuous stirring can lead to a mutual dispersion of 
the phases and a to a redistribution of matter along the 
phases, and as a result also to an additional distortion 
of the features of the specific heat and to a decrease in 
the transition temperature. 

3. Let us formulate some deductions from the fore
going formulas and compare our results with experi
ment. 

A. As follows from (4)-(7), the inhomogeneity of the 
density in stirring causes the maximum and the jump of 
the specific heat at a given p to be separated in temper
ature, the line of the maxima is located inside the coex
istence curve, and crosses it at I pI ~ J.(3l /2B)113 , 

where J. is a combination of constants of Eqs. (4)-(7), 
(in order of magnitude, J. ~ 10). When 1/)1 > J.(3l/2B)113 , 

the specific heat of a binary system has no maximum. 
There is a formal analogy between formula (9) and On
sager's well known result for the specific heat of a fi
nite Ising latticeP1 which of course is connected with 
our choice of the law (3) for the specific heat. This 
analogy, however, has a certain meaning if it is recog
nized that the inhomogeneity of the density over the 
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FIG. 1. Jump of the specific heat 1::. c and temperature of the 
transition (of the jump of the specific heat) as functions of the 
average density. Line EKF-jump 1::. cyo in the ab~ence of a gravi· 
tational field, EBCF-in a gravitational field. Transition temperature: 
in the absence of a gravitational field-AOD, in a gravitational field
ABCD. The line of the maxima of the specific heat of a binary sys
tem in a gravitational field-LMN. BC = (3/2)(3lB)1i3, OM-K(3l/ 
2B)2/3. 

I P·101 .61-101 fthm 'f1o.min 

From measure- {4.8 3.2 0.2 
ments of cy [1]. 25 1.7 0,1 

From thermograms ( 3 . 2 2.0 0.12 
in accordance J 5 . 3 1.4 0.04 
with ~he data I' -3. 4 2.0 0.12 
of[ 1 ] . l-6.6 1.4 0.07 

0.6 

calorimeter causes the phase transition to occur only 
in a very narrow interval of heights near h = 0, while in 
the remaining parts of the system the ordering param
eter retains a nonzero value also at t > 0. The action 
of the hydrostatic effective decrease of the dimensions 
of the sample. 

B. TI_:e temperature of the maximum of the specific 
heat at p = 0 is not equal to the critical value, and 
amounts to tmax ~ 10-'4 ± 11 at reasonable calorimeter 
heights. Assuming the temperature of the maximum as 
the critical temperature, we can obtain the law govern
ing the variation of cv near the critical point; this law 
differs appreciably from that observed if T c is cor
rectly chosen, since the character of the obtained rela
tions depends very strongly on the choice of T cYl In 
this connection we note that a decrease of the tempera
ture conductivity of the medium on approaching to the 
critical point leads to an unlimited growth of the time 
of equalization of the thermal perturbation in the sys
tem as t- 0 and p- 0. The hydrostatic effect appar
ently should not lead to a deviation of the temperature 
TT corresponding to the maximum equalization time 
from Tc at a given p. We therefore consider the use of 
TT for Tc in the analysis of the experimental results 
to be more correct than the identification of T max 
with Tc. 3> 

Analogous results were drawn in [l<!J with respect to 
the determination of the Curie temperature of a real 
sample. 

C. The jump of the specific heat due to the hydro
static effect decreases and turns out to be dependent on 
the density. Inclusion of the next higher terms of the ex
pansion in the equation of statel61 leads to a change in 
the dependence of ~c on pat densities far from criti
cal, i.e., to the corrections that are the most significant 
in(10). The dependence of ~con p with allowance for the 
next terms in the expansion, is shown schematically in 
Fig. 1. A similar ~c (p) dependence was observed in 
the experiments of Kerimov et al. (see, for example, 
[ 111), on the basis of which they drew the incorrect con
clusion that there is no jump of the specific heat at the 
critical point. For comparison, Fig. 1 shows (dashed) 
the ~cv( p) dependence for a homogeneous system. 

D. Comparison of ~t = tmax- tj from formulas (4), 

(5), and (7) with the results of calorimetric experi
ments with stirringl11 makes it possible to reconstruct 
the inhomogeneity scale T/hm in the experiments. 

The results of these calculations are listed in the 
table.4 > 

3lln [ 10 ] the critical temperature of xenon was assumed to be 
the temperature of the maximum of the specific heat. According to 
[ 101 (T T - T max)/T c ~ 2 X 10'4 • The choice of T T as the critical 
temperature, alters the deductions [ 10 ]. A similar remark can be 
made with respect to the experiments of Kerimov et al. [ 11 ] 

4lThe results of [1] for tj and tmax• used in these calculations, 
pertain to the case T/h0 <!!: I. 
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FIG. 2. Specific heat in experiments with stirring ( T 1 = I min): I~ 

p = 4.8 X I 0"2 , O~experiment [4 ], solid lines~our calculation at l/hm 
= 0.2 (T 0 = 2 min); 2~p = 25 X 10"2 , 0--experiment [ 1], solid lines
our calculation at l/hm = 0.1 (To= 5 min). The values ofl/hm were de
termined from the position of the maximum of the specific heat in the 
experiments of [ 1]. 

We call attention to the decrease of l/hm with in
creasing stirring frequency and with increasing dis
tance from the critical point. The c(t, p) dependence 
and the values of the jump Llc of the specific heat, cal
culated with the inhomogeneity parameters f /hm ob
tained from Llt, are in full agreement with experiment 
(see Fig. 2). From the ratios l/hm we can estimate (of 
course, only in order of magnitude} the time of isother
mal relaxation of the density T 0 ~ T 1 hm/2 f. Estimates 
for different p lead to similar :results: T0 ~ 2-15 min. 
These estimates for T 0 agree with the pressure equali
zation times near the critical point observed in the ex
periments of Krichevskii and co-workers. Large equal
ization time (on the order of dozens of hours), observed 
in [1, 4 J are apparently the equalization times of the 
thermal perturbations, which increase strongly in con
nection with the sharp decrease of the coefficient of 
temperature conductivity near the critical point. 

Reasonable estimates of f /hm and T 0 , obtained 
from a comparison of our formulas with the experimen
tally obtained Llt, and also the agreement between the 
calculated values of c(t,p} and Llc with experiment,Pl 
give grounds for hoping that the explanation offered for 
the splitting of the maximum and the jump of the spe
cific heat is correct. 

4. A maximum of the specific heat below the transi
tion point can result also from other external actions on 
the sample, for example the inhomogeneities connected 
with the preparation of the sample. The influence of 
such inhomogeneities on a second-order phase transi
tion was investigated by Mikulinskii, using a two
dimensional Ising modell 13 J and using the method of the 
theory of self-consistent fields/ 14 J for the case when 
the sample is cooled so rapidly that the impurities do 
not have time to enter in thermal equilibrium. These 
papers explain qualitatively the distortions of the singu
larity of the specific heat, observed in experiments with 
solid samples.l1 ' 15J The presenee of impurities that are 
in thermodynamic equilibrium with the lattice cannot 
lead to a maximum of the specific heat below the transi
tion point, but leads to a shift of the transition tempera
ture and to a distortion of the singularity. The phase 
transition in a two-dimensional Ising lattice with such 
impurities was considered by Lushnikov .P6 J In this 

model, the specific heat at the transition point remains 
finite and the temperature of the transition (of the max
imum of the specific heat) T(: shifts towards lower 
temperatures, but the distortion of the singularity at all 
concentrations is observed only in an exponentially nar
row temperature region (T(: - T)/Tc ~ 10-8 (in the ex
periments of Voronel' et al.l 1 J the singularity is dis
torted at (Tmax- T}/Tmax ~ 10-3 when p = 0} . 

In measurements of the specific heat cy near the 
critical point, the gravitational field apparently is the 
main cause of the distortion of the singularity also in 
the presence of impurities. An appreciable hydrostatic 
effect is also observed near the critical point of a mix
tureY7 J At low impurity concentration, the inhomogene
ity of the concentration in height is relatively small, but 
the density distribution over the height of the vessel 
changes, and it is not excluded that for certain systems 
the density inhomogeneity increases with increasing im
purity concentration. Such an action of the impurities 
was noted in an interesting paper by Timrot and Shu
iskaya l18 1 for C02 with an air impurity. 

In a homogeneous system, small impurities distort 
the singularity apparently only in a very narrow tern
perature interval near Tc (at t :S 10-8 ). Thus, at tem
peratures t ~ 10-4 small impurities change the split
ting of the maximum and of the jump and distort the 
singularity of cy only via a change of the hydrostatic 
effect in the density. The presence of small impurities 
can be taken into account by renormalization of the con
stants in formulas (4}-(12}, namely A- A + const 
• X: ln X:, and B- B + const ·X:, where const is a com
bination of thermodynamic derivatives that remain fi
nite as x- 0. It is seen from (4)-(12) that the splitting 
of the maximum and of the jump of .6-t is particularly 
sensitive to the values of the constants, since 3 A{3 is 
close to B and a slight change of A and B leads to a 
strong change in the position of the maximum of the 
specific heat. The magnitude of the splitting of the maxi
mum and of the jump can thus serve as a sensitive indi
cator of the purity of the substance. The linear depend
ence of the magnitude of the splitting of the maximum 
and of the jump of Llt on the impurity concentration x 
turns out to be valid, however, only for very small 
X:~ 10-2 • 

One more cause of the splitting of the maximum and 
of the jump may be the presence of temperature gradi
ents over the height of the calorimeter, due to absence 
of equalization, since the temperature-conductivity co
efficient of a substance near the critical point depends 
strongly on t and p.5 J The influence of small tempera
ture gradients (IV t I << (dt/dp}c) on the results of the 
experiments is due mainly to the change of the hydro
static effect. In our calculation we could take into ac
count small temperature gradients in the system. This 
would lead, however, to a change of the constants in the 
equations; for example, allowance for a linear change 
of t over the height of the calorimeter t = t0 + bh leads 
to a renormalization of the constants A and B in Eqs. 
(4)-(12}: 

A-->- .A - B--+ B 
1 + b(dp/dt) c, 1 + b(dp/dt) c 

One must therefore exercise a certain caution in 

5lThis circumstance was pointed out to us by A. V. Voronel'. 
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comparing our formulas with experiment, since we can 
overestimate the influence of the hydrostatic effects 
with purer substances and with smaller temperature 
inhomogeneities when we determine the constants from 
the experimental data that are affected by the presence 
of impurities or temperature gradients in the calorime
ter. We note in this connection that in recent experi
ments by Voronel' and Smirnov / 19 J special measures 
were taken to decrease the impurities and the possible 
temperature gradients over the calorimeter. In these 
experiments 'no distortion was observed in the singu
larity of the specific heat up to It I ~ 10-5 • 

5. Second-order· phase transitions in an external 
field have been relatively little investigated. In the case 
of a magnet in an external field, the inhomogeneity of 
the field over the sample, due, for example, to edge ef
fects, can lead to an appreciable inhomogeneity of the 
magnetization and consequently to an additional distor
tion (compared with that investigated in l 13' 14 ' 16 l) of the 
singularity of the specific heat. All our formulas and 
the formulas of l 3' 5 l can, of course, be readily general
ized to include cases of second-order phase transitions 
in external fields. 

In conclusion, it is our pleasure to thank N. A. Anisi
mov, A. V. Voronel', M. Sh. Giterman, E. E. Gorodet
skii, and M. A. Mikulinskii for very useful discussions. 
We are also grateful to V. A. Smirnov for supplying us 
with the numerical experimental data. 
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