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The passage of a weak monochromatic wave through a resonant gaseous medium located in a strong 
monochromatic field of a close frequency is considered. Level degeneracy and the tensor character 
of the collision term are taken into account. Amplification of the weak wave is determined as a 
function of the weak and strong wave polarization directions. A very distinct structure appearing 
on the gain line of the weak wave depends on relaxation processes in the medium and manifests 
itself differently for mutually parallel and mutually orthogonal wave polarizations. The possi­
bility is discussed of employing the detected polarization effects to investigate collisions in a 
gas and to determine the level widths of the gas molecules. 

MANY recent experimental and theoretical papers 
have reported investigations of interactions between 
monochromatic waves and quantum resonance sys­
tems _P-41 In addition, the optical properties of atoms 
acted upon by several coherent waves have been inves­
tigated.rs,s] Such studies in nonlinear spectroscopy are 
very promising for investigations of laser radiation 
properties and for determining level widths and other 
properties of gas atoms and molecules.u 

In[4J an attempt was made to observe directly the 
Bennett "holes"[7 ' 8l in the gain line of a He-Ne laser 
operating with the 3s2 ,;, 3p4 transition (.X = 3.39 J.J.) of 
atomic neon. The holes burnt by the strong field of the 
given laser were investigated by sending through the 
working resonator a weak wave from an identical laser 
and by scanning the frequency of the latter within the 
limits of the spectral line width. The recorded gain 
line was basically of Lorentzian shape on which there 
appeared a narrow dip, without mirror reflection, in 
the region where the frequencies of the weak and 
strong fields coincide. Therefore the observed narrow 
dip cannot be identified with one of the Bennett holes. 

To account for the aforementioned effect we must 
calculate the amplification of a weak electromagnetic 
wave with a frequency w1 traveling in an active gaseous 
medium that is located in a strong resonant field with 
a frequency w. In the absence of level degeneracy the 
gain of the weak signal was determined in£61 by calcu­
lating the probabilities that the weak field would be 
emitted or absorbed by an individual atom located in 
the strong field. This procedure enables one to deter­
mine the local value of the gain near the edge of the 
active medium. If the saturation parameter is suffi­
ciently small, the amplification of the weak signal 
along the entire length of the laser can be character­
ized by the single value of the gain obtained in[6 l. How­
ever, the strong laser field and its length are usually 
so large that the concept of a "gain" factor does not 
exist for the weak wave. This situation is associated 
with the fact that in the presence of a strong field an 

!)The given references contain additional references to earlier in­
vestigations. 

incoming weak wave of frequency w1 is divided into 
two waves of the same frequency w1 but with different 
dispersion laws and different gains. Therefore the am­
plification of the weak signal of frequency w1 is the re­
sultant of the amplifications of the two waves. 

Kuznetsov and Rautian[ 9 • 10l investigated the polari­
zation of a medium acted upon by a strong and weak 
wave having parallel polarizations in the case of ac­
tive atoms at rest and without degenerate levels; they 
observed a wave having the combination frequency w 2 

= 2w - w1. The appearance of combination frequencies 
(combination tones) from the interaction of two mono­
chromatic waves in a resonant medium has also been 
reported inr 11 - 14l. In the case of homogeneous broaden­
ing the formation of a narrow dip in the gain line of a 
weak signal can be accounted for with the aid of the 
dielectric susceptibility obtained in[9 • 10l, However, by 
following the same procedure we would lose other in­
teresting effects, since the authors of£9 ' 101 neglected 
atomic motion and level degeneracy, while taking only 
incomplete account of atomic collisions. 

We shall determine the gain of a weak wave in the 
presence of a strong wave for both homogeneous and 
inhomogeneous broadening without neglecting either 
atomic motion or level degeneracy. The inclusion of 
degeneracy will permit a correct investigation of in­
teracting resonance waves with different polarizations. 
It was found that the amplification of the weak wave 
under certain conditions depends largely on the mutual 
orientation of the weak- and strong-wave polarizations. 
At the center of the Bennett hole of an inhomogeneously 
broadened line a very narrow dip is formed, the width 
of which varies with the character of the wave polari­
zations. The depth of this narrow dip is sensitive to 
the nature of the atomic collisions and sometimes ex­
ceeds the depth of Bennett holes. When homogeneous 
broadening predominates, a narrow dip appears on the 
Lorentzian contour of the gain line because of the com­
bining of the weak waves of frequency w1 and the com­
bination frequency 2w - w1. Therein lies the difference 
from[ 14l, where the interaction of two waves having an 
identical intensity and close frequencies w and w1 was 
considered. In[ 141 , because of mathematicafdifficulties, 
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all waves with the combination frequencies 2w - w ~, 
2w 1 - w, ..•. were dropped and atomic collisions were 
completely ignored. 

When elastic collisions induced by van der Waals 
and short-range interactions are unimportant, than in 
an inverted medium with y 1 >> y 2 the profile of the 
narrow dip in the gain line of the weak signal does not 
depend on the polarizations of the weak and strong 
waves ( y 1 and y 2 are the widths of the lower and 
upper levels). On the other hand, when the broadening 
of a degenerate level results mainly from elastic col­
lisions the narrow dip is appreciably shortened in the 
case of parallel polarizations and spreads for ortho­
gonal polarizations. The mentioned characteristics of 
the gain line were determined for an atomic resonance 
transition with 1 - 0 change of the total angular mo­
mentum; the zero angular momentum pertains to the 
lower level. We also note that the depth of Bennett 
holes in the gain line of a weak wave with orthogonal 
polarization depends strongly on the elastic collisions 
that induce transitions between sublevels of the de­
generate level. 

A very remarkable result is obtained when weak and 
strong waves simultaneously traverse an absorptive 
resonance medium with y 1 << 'Y2· For the 1 - 0 
atomic transition in the absence of elastic collisions, 
near exact w1 = w resonance on the absorption curve 
of the weak wave there appears a narrow peak with 
width equal to y 1 for parallel polarizations and '}'2 for 
orthogonal polarizations of the traveling waves. If 
elastic collisions are important here, then for parallel 
polarizations the narrow peak has width y 1, as previ­
ously, but disappears for orthogonal polarizations. 

The observed dependence of the weak-wave gain on 
the mutual orientations of the polarization vectors of 
the weak and strong waves is a new effect in nonlinear 
spectroscopy that can be utilized as an additional 
means of investigating the nature of atomic collisions 
and for determining the widths of gas atom levels. 
Similar nonlinear 8?:larization effects have appeared 
in other problems 1 • 3 • 5 l that involved strong and weak 
waves of different polarizations. 

1. BASIC EQUATIONS 

In order to understand physically. why the gain de­
pends on the wave polarizations, let us consider a weak 
wave of frequency w1 traveling through a resonator 
operating in a steady-state single mode at a close fre­
quency w. The results are easily extended to another 
case where the steady-state strong wave is replaced by 
a strong direct traveling wave that is either amplified 
or absorbed. Specifically, let us investigate the sim­
plest atomic resonance transition with 1 - 0 change 
of the total angular momentum. The matrix structure 
of the collision term, with allowance for degenerate 
levels, has been determined for this transitionP5 - 181 

We can therefore solve our problem for different 
polarization directions of the weak and strong waves. 

The basic equations in the resonance approximation 
can be written as follows 2>: 

2)Summations will be understood wherever vector or tensor indices 
are repeated. In our system of units h = I and c is the velocity of light 
in a vacuum. 

(..!:__ c2.!:....) A= 4nc J dv1 (1) 
at2 a:r.2 • 

[ t ( 8
8 + v.!..+..E..) -mo] la.=~yclt(pa.~- p 16,.~)A~. (2) t a:r. 2 4 · 

(! +v :Jpa.~=; W2f6,.~-Y2Pa.~-6S,.~-+(I..A~*-AJ~*),(3) 

( a a) t -at+v a:r. P!=W,nf-YlPI +YPoa+-;- (1A*-AJ*), 

where 
Ia.= -fwodo,.a.R,.o, p.,.a=3do,.a.p.,,..d~'O/jd01j2, 

Sa.~ = Ppaa6a.~ + Qp,.~ + Gp~. 
y =4jdo1l2 /9lt3, r = Y1 +v2+6, lt = c/roo. 

(4) 

Here PJ.LJ.L' and p 1 are the density matrix elements of 
the degenerate upper level and the lower level, re­
spectively; RJ.Lo is the density matrix describing 
transitions between upper and lower levels, with d~ 0 
and d~ representing the dipole and reduced dipole 
moments of these transitions; W 1 and W 2 are excita­
tion probabilities, per unit time, of the lower and up­
per levels as a result of pumping; y is the probability 
that a quantum liw 0 will be emitted spontaneously in 
unit time from an isolated atom; y 1 and '}'2 are the 
widths of the lower and upper levels resulting from 
radiative processes and gas-kinetic inelastic colli­
sions; o is the width of the degenerate upper level as 
a result of van der Waals and short-range elastic col-
lisions. . 

The ground-state density of the active atoms is n, 
and their velocity (v) distribution is described by the 
Maxwellian function 

I= (1/u'fn)exp(- v2 /u2), 

where u = ( 2T/M)112 is the thermal velocity, T is the 
temperature, and M is the mass of an active atom. 
The quantities Paf3• p 1 , and J pertain to a group of 
atoms moving with velocity v, which is taken into ac­
count by vB/Bz. 

With regard to the collision term in (3) we must 
state the following.[ 16l Elastic collisions of the atoms 
produce mainly two effects: 1) the relaxation of 
atomic polarization, manifested in transitions between 
sublevels; 2) the relaxation of atomic velocities. The 
first of these effects is stronger, since it is propor­
tional to the total collision cross section. The second 
effect involves, in addition, the mean scattering angle 
and is somewhat weaker. Accordingly, the collision 
term is divided, in the general case, into the sum of 
two components, oS01 (3 and an integral term. The re­
laxation of atomic polarization, described by oS01 (3, 
leads to several observed effects. For example, the 
relaxation of atomic polarization affects the power of 
the radiation at the central laser frequency, although 
the shape of the Lamb hole remains unchanged. The 
polarization of the traveling waves and of the laser 
radiation are affected most strongly by the afore­
mentioned relaxation. Since we are here investigating 
polarization effects, the relaxation of sublevel transi­
tions is taken into account fully in (3) by means of 
oSa(3· The numerical coefficients of oS01 (3 for the 
special case of quasiresonant van der Waals collisions 
were calculated in[ 15l and in the general case satisfy 
the relations 

3P+Q+G = 0, 

6 > 0, p < 0, I G I < Q. 
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The integral portion of the collision term takes into 
account the spatial relaxation of velocities. This term 
strongly affects the shape of the Lamb hole, although 
its contribution to polarization effects is small. For 
simplicity, therefore, the integral portion of the colli­
sion term has been omitted in (3). 

Equations (1 )- (4) will be solved approximately, 
retaining only linear terms in the weak field. There­
fore the vector potential A and the current J are 
written conveniently as 

A = [~ + 81 (z} e-1111 + 82(z} eilll] ei(b-O>I) + A-e-l(lz+•ll, 

J = [J+ + j1 (z} e-illl + !2(z} eillt] ei(b-oit) + J_e-i(kz+mtl, 

0 ={1)(-00 =00-002, 

where the plus and minus indices designate the ampli­
tudes of the direct and reflected strong waves of fre­
quency w; the indices 1 and 2 of the vector potential 
and the current designate the amplitudes of weak waves 
with frequencies w1 and w2 = 2w - w1 traveling along 
the laser axis. We have, similarly, 

pap = p.,.po + r.,.pe-1111 + rpa. • elllt, 

PI= p1o+re-illt + r"eillt. 

For the strong field we take the exact solution of 
(1)-(4) describing the steady-state single-mode laser 
regime in the absence of weak waves. In deriving the 
strong field from (1)-(4) we must add the boundary 
conditions of wave reflections at both ends of the reso­
nator or introduce equivalent linear losses inside the 
resonator. 

After the values of A+, P~f3• and p~ for the strong 
field are obtained, the travel of the weak waves is de­
scribed by the solution of the following equations: 

(oo1 - 001 + icp}a1 = -2nl\ Jav h + ic8J{O}, (5) 

(oo1- 20- OOk- icp}82" =- 2nl\ J dvb", (6) 

( oo1- ooo- kv +!!:.)lla.=~ycl\((pa.p0-pi06,.p}aiP +(ra.p-rlla.p}A+p], 
2 4 ~) 

( tr ) . • 3 .. [ < o a.. > • oo1 -20-oo0 -kv-2 ]2a. = 4 vcA ppa. -p1 u,.p a2p 

+(rp..- r6a.p}A+p"], 
('\'2 + 6Q- tO)rp.. + 6(Praa6a.p + Gra.p}= (8) 

=...!_ (l+a."au + f2a."A+P- A+a."hp- a2v."l+p}, (9) 
c 

(y1- iO}r=yraa-...!_ (1+"81 + b"A+-~"j!-82"1+}, (10) 
c 

where Wk = kc, a 1(0} is the value of the amplitude 
a1( z) at the point z = 0 where the weak wave enters 
the medium, and we perform a Laplace transformation 
with respect to the variable z: 

oa1 (z} I oz ..... pa1 -a1 (0}. 

In (7)-(10) we neglected pv as compared with y 1 , y 2, 
and r; these quantities usually exceed the effective 
value of pv by several orders of magnitude. 

The solution of (6)-(10) depends on the mutual 
orientation of the weak and strong wave polarizations. 
Therefore we shall consider the cases of parallel and 
orthogonal polarization separately, and shall begin by 
determining the strong field inside the laser. 

2. THE STRONG FIELD INSIDE THE LASER 

Since the specific forms of A+ and A. are unim­
portant in connection with polarization effects, we shall 

determine the strong field of a steady-state single­
mode laser in the approximation where the rapid 
spatial modulation of the population inversion, 
exp(±i2kz), can be neglected.[6• 19l From (1)-(4) we 
obtain 

(11) 

(12) 

(13) 

A11 = 3"(1-..!:)+..Y.(t+ 2" 2 ) (14) 
'\'1 '\'2 '\'2 '\'2 + 6(Q +G) ' 

where Ao = I A+ I = I A -I, 1 is the unit polarization 
vector of the strong field in the laser, A = w - wo is 
the detuning of the strong field, and N0 is the steady­
state density of the population inversion: 

No= [()--.!.)."JV2 -~] n. 
3y '\'1 '\'2 '\'1 

The relations (11)-(14) enable us to obtain the die­
lectric susceptibility K for the direct wave: 

3 J fN x=-yl\3 dv . 
4 .1.-kv+tr/2 

(15) 

Equating the imaginary part of (15) to the given losses, 
we obtain a transcendental equation for A0 • 

3. THE CASE OF PARALLEL POLARIZATIONS 

From (9) and (10) we obtain 

{ra.p-rllv.p)l,.lp=aR (Ao(ji-b")+82"J+-J+"8I], (16} 
yc 

R= (t-~)-"-+ (t +-"-).....!!._ 
'\'I - '\'2 0 + iy2 '\'I - '\'2 Q + iy1 

2y 
+ O+i(Y2+6(Q+G}]' (17) 

where 1 is the polarization vector of the weak and 
strong waves. 

The insertion of (11) and (16) into (7) and (8) leads 
to the following expression for the Laplace transform 
a1 of the weak wave (w1) amplitude: 

where N is defined in (13), and 12 is obtained from It 
by means of the substitutions A - -A and kv - -kv. 

The poles of (18) determine the character of the 
weak-signal gain. The existence of two poles indicates 
that two weak waves of identical frequency w 1 but with 
different dispersion laws are traveling in the medium; 
this was not noted in[ 6 ll-l4J. Similarly, two waves oc­
cur having the same combination frequency w2 = 2w 
- w1 but different dispersion laws; at the limiting 
point z = 0 they cancel each other. Thus a single 
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incoming weak wave interacting with a strong wave 
will generate in the resonant medium three additional 
weak waves differing either in frequency or with re­
gard to their dispersion laws. This fact is important 
in connection with the stability of the steady-state 
regime, since four frequencies of a weak fluctuating 
field will correspond to a given wavelength. 

In accordance with (18), for ')12 « y 1 and moderate 
values of A0 the weak-wave intensity as a function of 
w1 far from the strong resonance w1 = w represents 
the ordinary gain line with Bennett holes. This follows 
from the fact that as 0 increases the integral for I1 

retains only its first member, while I3 and Io vanish. 
Therefore in the region I 0 I » y 2 the weak-signal 
gain is essentially of the usual type. However in the 
narrow region In I $ y 2 at the center of a Bennett hole 
a dip appears on the gain line. 

The profile of the dip is especially distinct under the 
conditions 

(19) 

when an expansion with respect to the strong field A0 

is valid. In this region the intensity Iw 1 ( z) of the weak 
field with frequency w1 for arbitrary detuning A of the 
strong field and 1 o 1 « r is given by 

l.,,(z) { 3n J /No'l.2zyfAnF 
1.,,(0) =eKz 1-2 dv(Q+~-kv)2+f2/4 

_ 3nJ dv fNo'li. 2zyrF+ [( 1 -.~) (i- 2Q(~- kv)) ___!!!__ 
2 (~-kv) 2 +f2/4 y,-y2 v2r Q2+Y22 

+( 1 +-"-)(1 _2Q(~-kv)) 3yy,_ 
y,- Y2 y,r Q2 + Y>2 

( 2Q(~-kv) ) 2y[y2+6(Q+G\I ]} (20) 
+ 1 -r[y2+.S(Q+G)] Q2+[Y2+11(Q+G)]2 

_3nS JNo'li.2yr F='li.Ao2 r . 
K- 2 dv(Q+~-kv) 2 +f2/4 4 (~-kv) 2 +f2/4 

For ku » f the second term in the curly brackets of 
(20) describes Bennett holes in the ordinary gain line. 
The other terms represent a narrow dip at the center 
of the Bennett hole, with a width that is determined 
mainly by the smaller of the quantities y 1 and /'2· 
When the weak and strong direct waves traverse an 
absorptive or amplifying medium, then in (20) the sub­
stitution F - F + is necessary for the case Ao ~ const. 

As A changes, the center of the narrow dip is 
shifted together with the frequency of the strong field. 
Equation (20) shows that the narrow dip exhibits some 
asymmetry, which vanishes only for A = 0. When the 
Doppler width greatly exceeds the collisional width 
(ku » r), the asymmetric term is smaller than the 
main term by the factor rA/(ku)2 • In the opposite 
limiting case, ku << r, the corresponding ratio is 
OA/y 1 , 2 r and can exceed unity. 

To simplify (18) without loss of the given relation­
ship, we investigate the weak-wave gain for zero de­
tuning of the strong field ( w = wo ). The weak-field 
amplitudes become 

al (z) = 1f2al (0) (eiioZ + e-iht) ei(O/c-Io)z, (21) 

a 2•(z) = !f2a 1(0) (eii,z _ e-ilo:)ei(O/c-I,)z, (22) 

where in h and Io we have inserted A = 0 and Ao is 
arbitrary. 

Equations (21) and (22) show that the weak waves 

with frequencies w1 and w2 have identical intensities 
when I Im(Ioz) I= I I; I z > 1. The combined intensity 
exhibits beats as a result of interference effects. After 
averaging over the beats the combined intensity I( z) 
of the weak fields (21) and (22) becomes 

l(z) = 1(0) ch (2/o"z)e!!I,"z, (23) 

where I( 0) is the intensity of the weak wave entering 
the medium. 

The physical picture is further simplified for a 
homogeneously broadened line with ku « r: 

/ 1 = -2nx / '1i. -lo. 

Here K is the dielectric susceptibility (15) with the 
replacement w - w 1 in the denominator. In this case 
the vector potential a 1(z, t) at the frequency w 1 be­
comes 

ai(z, t)= : ai(O) [ 1 + exp(i · 2/0z)] exp { i [ ( k1 + 2~x) z- 6l1t )}.(24) 

The term unity in the square brackets corresponds to a 
weak wave at w 1 = k 1 c traveling through a medium 
with the given dielectric susceptibility (15). The gain 
of this wave depends mainly on the level populations. 
The term exp ( i · 210 z) corresponds to a wave with a 
different gain that depends on both the level populations 
and the polarization of the medium (a nonlinear inter­
ference effect). This second wave bears information 
about the nonlinear interaction of the waves and causes 
fine structure on the weak-signal gain line; sharp 
changes of the gain near the resonance w 1 = w are 
very sensitive to relaxation processes in the medium. 
During generation with y 2 << y 1 a narrow dip of width 
y 2 appears in the vicinity of w 1 = w on the gain line. 
At the center of the dip we have I;> 0, which means 
that in the vicinity of the narrow dip the second wave 
is always weaker than the first. The situation is simi­
lar for the combination frequency w2. In accordance 
with (24) the narrow dip has maximal depth when 
I'~z » 1. Then the intensity (23) of the weak waves at 
the center of this dip is about one-half less than at its 
edges. 

When 21 I0 I z « 1 the exponential in the curly 
brackets of (24) can be expanded in a series. Then in 
a linear approximation with respect to I0z the expres­
sion for (24) coincides with the corresponding expan­
sion of a single wave: 

a1(z, t) = a1 (0) exp {i[ (k1 + lo + 2nx / 'li.)z- 6lJt]}. (25) 

The gain of the wave represented by (25) is exactly 
equal to that given in[ 61 if in (25) we insert o = 0 and 
neglect the contribution from the term YPaa in (4). 

We now give the final result for the important case 
of a homogeneously broadened line (ku « r) subject 
to the inequalities 

ll~'\'2~ 'Yh gy2/ '\'1 ~ 1, . 

where g = 3y~A~/ny 1y 2 is the saturation parameter. 
In the vicinity of a narrow dip with I 0 I « y1 the in­
tensity and shape of the weak signal are given by (23) 
and (24), in which I'~= q- I;, 

q 3nNo'li.2y , Io' = _ lo"Q 
Yl (1 + 2g) '\'2(1 +g) (26) 

lo" qg(1 + g)y22 
Q2 + Y22(1 + g)2 ' 
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where the single-primed term is the real part, and the 
double-primed term is the imaginary part, of the given 
quantity. 

For typical values of the experimental parameters: 

z ~ 102 em. qz ~ 1, g ~ 1 

the expansion in terms of I0 z is not permissible. In 
this case the intensity (23) of the weak signal has a 
convenient form since the characteristic fine structure 
of the gain line is caused by the argument of the ex­
ponential: 

l(z) = /(O)e2q'(1 + e-41o''') /2. 

When determining the width y 2 of the upper level 
from the experimental gain line it must be remembered 
that the strong field broadens the narrow dip in accord­
ance with (26). With further enhancement of the strong 
field ( gy 2 /y 1 >> 1) the width of the dip reaches the 
order r and the resonance levels split into two 
doublets . [ 61 

In the approximation (19) the intensity lw 2(z) of the 
combination frequency w 2 = 2w - w1 is appreciably 
smaller than the value already represented in (20): 

Kzl3n 'J fNo"!..2zyF+ 12 (27) 
I.,,(z)=/.,,(O)e 2 R dv ~-kv+if/2 • 

The intensity of the combination frequency w2 dif­
fers from zero only in the vicinity of the w2 = w reso­
nance; the width of this spectral interval is determined 
by the smaller of the widths y 1 and y2. Despite the 
smallness of (27) as compared with (20), beats of the 
intensity of the combined field of frequencies w1 and 
w 2 will always be observed for those values of the ex­
perimental parameters that permit the observation of 
a narrow dip. This result is associated with the fact 
that the combined field includes an interference term 
containing the product of the amplitudes a 1 and a~ and 
equaling the third term in (20) in order of magnitude. 

4. THE CASE OF ORTHOGONAL POLARIZATIONS 

From the foregoing discussion it is clear that a 
specific interaction of monochromatic waves takes 
place when their frequencies lie within the limits of 
the natural width of the resonance levels. Far from 
resonance ( I 0 I » r) no combination frequency ap­
pears and the weak-wave gain is of the usual form. We 
shall therefore begin by solving (5 )- (10) in the vicinity 
of the narrow dip, assuming w1 =wand w2 =win (7) 
and (8). This means that we are neglecting 0 as com­
pared with r. We shall then consider the case of (19) 
when level broadening by the strong field can be 
neglected. The resulting equations are simplified by 
expanding all expressions in terms of the strong field. 
With the foregoing assumptions, from (9) and (10) we 
have 

(ra~-r6ap)lp=- aNyfF+[( 2iR_R,} (la,)la 
2Ao 3y 

2iR 
+(3Y-R2} (Ia2*)la+R,a,a+R2a2a•], (28) 

1 1 
R, + ---:::-,......-:--:-::--::-:-

Y2-i!2+6(Q+G) V2-iQ+6(Q-G)' 

where 1 is the polarization vector of the strong wave 
and R2 is the difference between the fractions in (28). 

Equations (5)-(8) now reduce to two equations for 
the amplitudes of weak waves with polarizations that 
are perpendicular to 1: 

(icp+ ro,- WA +Ru)a, + R12a2• = ica,(O), (29) 

where we have introduced the notation 

9n J /No"!..2cy2F+ 
Ru=2rrroox.L-4R' dv ~-kv+tf/2' 

9n J fNo"!.. 2cy2F+ 
R~2=2nroox.L•-2Q-4R' dv ~-kv-if/2" 

(30) 

(31) 

(32) 

R 12 and R21 equal the last terms of (31) and (32), re­
spectively, when we substitute R1 - R2, and K1 is 
given by (15) with the substitution 

N-+Nd(1- A.1.F), 

3y( ") "( Y2 ) A.L=y. 1-y; +y; 1- V2+6(Q+G) . 

Equations (29) and (30) are solved easily. Inverting 
from the Laplace transform to coordinate dependence, 
we obtain 

[ tz ( Ru +R22)] (i(Ru-R22)z) a1(z)=a1(0) 1+-; ro,-roA+ 2 exp 2c • 

The exponential here must also be expanded and will 
retain the term with A~. Finally, the intensity 11 ( z) 
of a weak wave having the frequency w1 and orthogonal 
polarization in the vicinity of a narrow dip can be 
written as 

I.1.(z) K { 3n Ja fNo'J. 2zyr 
h(O) =e z 1-2 v(~-kv)2+f2/4 

X [A F 3F+ y[y2+6(Q+G)] (t 2Q(A-kv) ) 
.L + 2 Q2+[Y2+6(Q+G))2 -r[Y2+6(Q+G)] 

3F+ y[y2+6(Q-G)] ( 1 - 2Q(A-kv) )]} 
+ 2 Q2+[Y2+6(Q-G))2 f[Y2+6(Q-G)] C33) 

Equation (33) is the part of the Doppler contour 
where a dip exists at the center of a Bennett hole at 
the point where the strong and weak field frequencies 
coincide. This dip characteristically contains the 
width y 2 of the degenerate level. This result is asso­
ciated with the fact that atoms having zero projection 
of the total angular momentum can only absorb a weak 
wave with orthogonal polarization. Only atoms with 
± 1 projection of the angular momentum participate in 
amplifying the wave with orthogonal polarization. 
Therefore the narrow dip (33) contains the width y 2 of 
the upper level. 

When broadening of the degenerate level is caused 
predominantly by elastic collisions, then in the case of 
orthogonal polarizations the observed dip has the 
width o (ku » o) like the Bennett holes. For parallel 
polarization under the same conditions the width of the 
dip is determined by the smaller of the widths y 1 and 
Y2· In the opposite limiting case, o « y 2 and o « y h 

the width of the narrow dip for parallel polarizations 
does not change, but for orthogonal polarizations it 
assumes the value Y2· 

The elastic-collision dependence of Bennett holes in 
the weak-wave gain line for orthogonal polarization is 
accounted for as follows. Pumping excites atoms with 
a Maxwellian velocity distribution identically on all 
three sublevels. We orient the quantization axis along 
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the polarization vector of the strong field. Then the 
strong field will induce transitions only between atomic 
states with zero projections of the total angular mo­
mentum. The excited atoms with projections ± 1 will 
have their velocities distributed according to a Max­
wellian function that is not perturbed by the strong 
field. A weak field with orthogonal polarization inter­
acts only with these atoms. Therefore, far from the 
narrow dip the gain line of this weak field is Dopplerian 
with small Bennett holes that are caused by correspond­
ing prominences on the velocity distribution of atoms on 
the lower level ( y 2 << y 1). Intense elastic collisions 
mix the atoms on the sublevels and make the Bennett 
holes identical for atoms on all three sublevels. Con­
sequently the gain line of a weak wave with orthogonal 
polarization becomes similar to the gain line for 
parallel polarizations if we neglect the aforementioned 
narrow dip. 

The gain K1 of a weak wave with orthogonal polari­
zation far from a narrow dip is 

KJ.=3nfdv /No'f.. 2yl' 1+(A11 -A.~.)F. (34 ) 
2 (rol-roo-kv) 2 +f2/4 i+AuF 

However, the gain K 11 of a weak wave with parallel 
polarization under identical conditions is given by (34) 
without the second term in the numerator. Thus the 
downward shifting of the entire gain-line contour as 
Ao increases will depend on the character of the wave 
polarization; this is manifested in the relative depth of 
the narrow dip. For strong elastic collisions K 11 and 
K1 become identical outside the narrow dip. 

The authors are indebted to V. M. Galitski'i for use­
ful discussions. 
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