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Linear and nonlinear theories are developed for microwave emission from crystals traversed by a 
current in the absence or presence of an external magnetic field parallel or perpendicular to the cur
rent. The situation encountered in experiments on microwave emission from indium antimonide is 
considered. In a current-carrying conducting medium there exists a special branch of electromag
netic transverse oscillations whose excitation leads to emission. In the absence of an external field 
the frequency is linear relative to the wave vector; in a strong magnetic field an additional term ap
pears which is quadratic with respect to the wave vector. The frequency and critical value of the 
current density are determined and found to agree with the experimental values. The dependence of 
the oscillation amplitude on the current density is deduced. The radiation intensity is calculated and 
it is shown that in a strong external magnetic field it increases in agreement with the experiments. 

1. The emission of electromagnetic waves from indium 
antimonide traversed by a strong current has been ob
served in a number of experiments. u-3 J The emission 
occurred in the absence and in the presence of a mag
netic field H0 , parallel or perpendicular to the current, 
the magnetic field lowering inappreciably the current 
density required for emission and having a weak effect 
on the frequency. However, in sufficiently strong mag
netic fields (Ho > clj.J.-where c is the speed of light 
and IJ.- the electron and hole mobility) the intensity of 
the emission increased considerably. We shall present 
below a linear and nonlinear theory of this phenomenon 
for samples of cylindrical shape with a radius R much 
smaller than the length L in the cases H0 = 0 and H0 II j 0 

(jo is the density of the stationary current), or for a 
platelet one of whose dimensions d is much smaller 
than the other two dimensions Lin the case H0 1 j 0 (the 
magnetic field and current are directed along the large 
sides of the platelet). 

We shall show that in a medium traversed by a cur
rent there exists a branch of transverse electromagnetic 
oscillations and the emission is connected with the exci
tation of this branch. Qualitatively this can be under
stood as follows. Let an alternating magnetic azimuthal 
field appear in the crystal in a plane transverse to the 
current (the current is along the z axis). The presence 
of the current will lead for finite transverse dimensions 
of the sample to a Hall oscillatory electric field in the 
radial direction. This electric field together with the 
intrinsic magnetic field He of the stationary current 
will produce an alternating Hall current along the z axis 
which will give rise to new alternating magnetic 
azimuthal fields, but in other locations, etc. Only the 
nondissipative Hall conductivity participates in this 
process, i.e. we have not taken into account the attenua
tion of the wave. The wave appearing in this way can be 
called galvanomagnetic in analogy with the thermomag
netic wave£4 l existing in the presence of a temperature 
gradient. 

A galvanomagnetic wave is only possible in a con
ducting medium in the presence of a direct current. The 
velocity of such a wave is much smaller than the speed 

of light and the oscillatory magnetic field in the wave is 
therefore much larger than the electric oscillatory 
field, just as in thermomagnetic and helicoidal waves. l 5 l 

In a medium in which a strong magnetic field is also 
present there is in addition to a galvanomagnetic wave 
also a helicoidal wave. We shall see below that the fre
quencies of these two waves in experimental situations 
are close and the resulting oscillation constitutes a 
coupled wave. 

Let us now consider dissipative processes. A finite 
conductivity a leads to the usual attenuation R: c2K2 I 41117 
(K is the wave vector). However, the presence of an 
intrinsic magnetic field (or of an external magnetic 
field, if there is such) leads to the appearance of a 
focusing current. The sign of the focusing resistance 
can be negative and therefore for a sufficiently strong 
direct current the "antidissipation" connected with the 
focusing current may exceed the attenuation. We note 
that in an external strong constant magnetic field it is 
possibl~ to explain qualitatively the excitation of the 
wave as Cerenkov radiation: the instability condition 
can be represented in the form of the equality of the 
carrier drift velocity and wave velocity. Such a graphic 
explanation is unsuitable in the general case. 

Before we proceed to a calculation, we shall indicate 
the main results of the theory. The instability of gal
vanomagnetic waves appears at a current density (accur
ate to within a factor of order unity) jo > j cr R: c2 I 1J. _L. 

The frequency of the resulting oscillations is then of 
the order of w R: 2JTc2la0 L2 (a 0 is the conductivity in the 
absence of a magnetic field). These values, as well as 
the increase of the critical current with decreasing 
length and the frequency increase agree with the experi
mental values of the order of jcr R: 3 x 103-104 Alcm2 ; 

w R: 21T(3 x 109-1010) sec-1 • 

We note that for such a current the intrinsic magnetic 
field is weak: He < cl 1J. _. For a sample located in an 
ideal waveguide with inner radius Rw the expressions 
for the critical current and frequency must be multiplied 
by max[1, LIRw). For Rw R: R the obtained results are 
correct in order of magnitude. 

The component of the oscillatory field in the wave 
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directed along the direct current is smaller by a factor 
of r /L (r is the instantaneous radius) than the compon
ents perpendicular to the current. For a small excess 
of current over the critical current the amplitude of the 
oscillatory magnetic field transverse to the current is 
H1 in a weak magnetic field and H2 in a strong magnetic 
field 

C ., I io -· ic•· 1/ io- ic.· 
111 =-V ---,--, Il,=lfov-.-·· 

fl- Jcr ]cr 

Thus the presence of a strong magnetic field increa
ses the wave amplitude by a factor of JJ._H0/c. The wave 
is emitted in the direction of the current, i.e., from a 
surface perpendicular to the current; with this, for the 
same amplitude of the wave inside the crystal in an ex
ternal magnetic field the portion of the energy emitted 
outside is larger by a factor of (JJ._H0/c)2 than for H0 

< c/JJ._. 
For H0 < c/ JJ. _ the efficiency is 

and for Ho > c/JJ.- it is by a factor of (JJ._H0/c) 4 larger 
and can under experimental conditions be ~ 10-2. 

2. For H0 = 0 there is no helicoidal wave and the 
galvanomagnetic wave appears most clearly. The equa
tion for the oscillatory field H' is of the form (H = He 
+ H') 

iJ1l ('~ 
.... :_ =-~ - _:_ r·ot{ll rut U + 111 [ rotll·ll] + 1]2Il (II rot II)}. (1)* 

t)[ 1:-t 

Here He is the intrinsic magnetic field of the direct 
current and the coefficients TJ, TJ 1 and T/2 are given for 
the general case inl41 • We shall see below that the in
trinsic magnetic field of the current is such that He 
< c/ J1. _ • In this case (a 0 is the conductivity for H = 0, 
<11 and a2 are the Hall and focusing conductivities) 

1] 0~' Oo- 1, 1]1 =o= -Uil'o-2, 1]2 ==• (Ci2 - O'o0'2)0o-3• 

As has been shown inlsl, for the currents required 
by us the carrier concentration and the mobilities de
pend only weakly on the current (a fact explained by the 
energy scattering of the electrons by optical phonons). 
We shall, therefore, not take into account the dependence 
of the kinetic coefficients on the direct current. We 
have also neglected the displacement current, since the 
frequency w of the resulting oscillations is much less 
than that of the conductivity. 

we linearize (1) over the oscillatory quantities H' 
= H - He, j' = j - jo. In the case of a sample of cylin
drical shape (the length L is much larger than the 
radius R) it is convenient to introduce a cylindrical 
system of coordinates r, qJ, and z, and to set all oscilla
tory quantities ~ exp [ikz + imqJ- iwt]f(r). 

It can be shown that for the azimuthal number m = 0 
and lm I » 1 there is no excitation. We shall restrict 
ourselves to the case lm I = 1 when the excitation condi
tions are least rigorous. Neglecting quantities of the 
order of RJJ._Hc/L1c and aU4aa2 < 1 (in indium anti
monide the latter quantity does not exceed 0.2 and for 
<To+~ a 0 - it does not exceed 0.1; the subscripts+ denote 
quantities referring to electrons and holes), we find 

l i ( <'l + Ct]1 (l;j,,)) + ~; il] H' - 2l1!] 2j0 (j0ll')- ic!~tj_~ rotH'=~= 0. (2) 

*[rotH X H] =curl H X H, (H rot H)= H·curl H. 

[Here H' = H'(r, qJ, z) and the operators li and curl have 
the usual meaning.] 

Applying to (2) the operation curlz and substituting 
in the obtained expression the value of curlz H' found 
from (2), we obtain 

(a+ r-1 2) (A+ ):z2)/lz' = 0, (3) 

2 lmi . ~1]2 ( 2n/0 )' 
Xt '=-.- (w -1-CIJt(kJo))--·- --

~1] 1] c 

2 li.ni 
r-2 = --- (w + C1]1 (kj0)). 

c211 

(4) 

Taking into account the finiteness of H' for r = 0, we 
find from (3) 

11 ,' '~' C1J 1 {11Xt2 ·- Fi·) + C,h(f:-:z' =.-t.:'r) (5) 

(J and ;;c; are Bessel and Hankel functions). Employing 
(2), (5), and div H' = 0, one can find H~ and H' . 

Outside the sample a2H' jat2 = c2aH'. We stan see 
below that w « ck. Therefore, taking into account that 
for r - oo, H' - 0, we find for r ~ R 

(6) 

We note that the field outside the cylinder decreases 
like e-kr. The condition of continuity of H' for r = R 
leads to a system of equations for c1,2,3 whose deter
minant is zero. This is in fact the dispersion equation. 
In general form its solution is only possible numerically. 
We take into account the fact that at the boundaries of 
the crystal z = 0, Lone can assume that H'- 0, since 
in the conductor closing the circuit the field decreases 
exponentially at the depth of the skin layer c/..fWa « L. 
One can therefore set k ~ 71P/L, p = 1, 2, ... This equa
tion is only approximate since even for finite L the 
quantities describing the stationary state depend weakly 
on z (for example, because of injection). For kR « 1 
there is then the solution KR << 1. In fact, making use 
of the values of the Bessel and Hankel functions for 
small values of the arguments and lm I = 1, we find 

so that indeed K R « 1. 

(7) 

Substituting (4) in (7), we obtain the condition that the 
frequency is real 

ck 1/-111 I c2p io=ic> (Jlo~=O)=~----= - ~ --=--
2ill12 1]2 2112 ft.L 

(here use has been made of the fact that ITJ/TJ2I has a 
minimum for a 0- Rj a 0.). At the same time 

p" c2 
Re w = 2:rr-_--

2l'2 0'~2 

(8) 

(9) 

For j c > j cr the magnitude of Im w > 0 and the oscilla
tions grow. We note that with decreasing L the values 
of j cr and w grow, a fact which coincides with the ex
perimental result. For L RJ 1 em and a 0 = 1011 sec-\ 
JJ.- ~ 108 absolute units, and jcr ~ 3 x 103 A/cm2 , w ~ 21T 
x 3 x 109 cps which is also close to the experimental 
results. 
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Using Kr « 1 we find that IH~/H~ fP.I Rj kr and that 
with an accuracy to (kr)2 the values of H~ cp do not de
pend on r. We note that for jo = jcr we have IJ.-Hc/c 
Rj R/L « 1 and the previous simplifications of the co
efficients 7J are legitimate. The neglect of the displace
ment current is also legitimate, since w/a Rj (c/a0L2) 
« 1. Finally, w/ck = c/a0L « 1 and it is therefore 
seen from aH' jat = - c curl E' that IE' I « IH' 1. 

If the sample is placed in a cylindrically shaped 
waveguide of radius Rw (the axis of the waveguide is 
parallel to the current), then one must use the usual 
conditions on the surface of the waveguide. l7 J This 
leads to excitation conditions on the surface of the 
waveguide. l7 J This leads to excitation conditions 
jcrw = jcrmax[1, L/Rw) and a frequency ww 
= max(1, L/Rw]. Therefore the results do not change 
for L » Rw and for R = Rw• w and jcr increase. For 
R ~ Rw the value of IJ.-Hcf c reaches unity, i.e. the 
intrinsic magnetic field of the current ceases to be 
weak. In this case our results are correct in order of 
magnitude. 

3. In the presence of an external magnetic field 
parallel to the current the coefficients 7J, 7J 1, and 77 2 in 
our calculation change. However, under the condition 
IJ._Hc/c < 1 we again obtain an equation of the form (3) 
but with other values of K: 

,l_:ti . ik2ilv1lt 4112 ( 2rrio ) 2 ( 2rrjok) 
x 12 == -- (<•' + C1)t (k.t0))- ---·····-- --- --- + 2 ·--- · (10) 

c211 q 11 c cilo 

We have no need for the explicit form of K2 (IK2I 
» IK1I). The dispersion equation has the same form (7), 
whence it follows that 

(11) 

This is the dispersion equation of a helicon when the 
second term in (11) is larger than the first, and the 
equation of a galvanomagnetic wave when the first term 
dominates. It is readily seen that the condition that 
1m w is positive, i.e. the instability condition, coincides 
in this case with the condition for the Cerenkov emission 
of a wave with the frequency of (11). Here jc Rj ckHo/41T 
and w Rj 21TCHo/nEL2 (e is the charge of the electron). In 
a weak field such a coincidence of the instability condi
tion and the condition for Cerenkov emission does not 
take place. The former turns out to be more rigorous 
than the latter. 

The excitation of waves with dispersion equation (11) 
was considered in[a-10J. First, the one-dimensional 
problem was considered in these papers when all the 
quantities only depended on the coordinate in the direc
tion of the current. No boundary conditions were set in 
these papers in directions transverse to the current and 
therefore values of the wave vector were not obtained 
in these directions, i.e. the excitation conditions of the 
oscillations were in fact not determined. Secondly, no 
allowance was made inl8 - 10J for the intrinsic magnetic 
field of the current whereas for the transverse dimen
sions of the sample satisfying the requirements of these 
papers the intrinsic magnetic field becomes strong. 
Finally, the problem of the amplitude of the oscillations 
and their emission from the sample was not investiga
ted inlB-10J. 

In the case of a magnetic field perpendicular to the 

current we shall consider a slab in which the length L 
of two sides (the Y and Z axes) is much larger than the 
length d of the third side (the X axis). Let the current 
and the magnetic field be directed along the Z and Y 
axes. In this case it is convenient to seek a solution of 
the form exp (ikyY + ikzz)f(x). For the same conditions 
as before we obtain for f(x) a fourth-order equation with 
constant coefficients. Its solution is of the form 

4 

f(x)= }2c;expil:;x, k,=±{ -1: 11"--- kl 

i=t ( kjo } )-']2}''• ±[4moJ(c2(kUo)1Jt-C k 111 · 

The boundary conditions are satisfied with an accur
acy within (d/L)2 if 

wG:; { (k/ + kl) c:;: f [c(kTio)- jo Jl''' 
i.e., if lkx I Rj lky, z 1. Making use of this condition, we 
find that the expressions for the critical current and the 
frequency are the same as in the case of a magnetic 
field parallel to the current. 

4. Let us now proceed to consider the nonlinear 
theory. The limitation on the growth of the amplitude is 
connected with the fact that the coefficient 7J which de
termines the attenuation of the wave increases with in
creasing field. Let us first consider a sample, infinite 
in the direction of the current, in which a traveling wave 
is propagated. Taking into account that H~ « H~, cp and 
that accurate to within (kr)2 the magnitudes of H' do 
not depend on the radius, we find that (IJ._H' / c )2 r' cp 
= IJ.~H7/c2 ; H~2 = H~2 + H~ depends neither on the coor
dinates nor on the time. Let us now setH= He+ H' 
+ H" + ... , where H' is the solution of the linearized 
equation (3) with K1,2 determined by (4); H" and H'" are 
the solutions of the equations, the left-hand part of which 
coincides with (3) when H' is replaced by H" or H'" 
and whose right-hand side is obtained from (3) and (4) 
by expansion in H' up to terms H'2 and H' 3 • Solution 
shows that 

IL { c )2 
--·II" ·-·-. -- ·""' 1 

r: \ JL}J' -. ' (12) 

and analogously for H"'. We shall therefore neglect H" 
and H'" compared with H'2 and H' 3 • We obtain then Eq. 
(3) with 7J replaced by 7J(1 + (1J.-Hj_/c)2 ]. In analogy with 
Subsection 2 we find that 1m w = 0 for jo 
= jcr [1 + (!J.-HJ..I c2)2 ], or 

The amplitude of the wave increases as the square 
root of the excess over the critical current. The calcu
lation is valid so long as (jo- jcr)/jcr < 1. The linear 
theory is not valid for large current densities. 

In the case of a sample of finite length it must be 
taken into account that a new wave appears when the 
wave is reflected from the boundary. When a wave with 
a field ~ cos (kz + cp - wt) is reflected there appears a 
wave with a field ~ cos(-kz + cp- wt). In this case too, 
as can be shown, (12) is fulfilled and the equation of the 
type of Eq. (3) will include terms proportional to 
cos (±kz + cp- wt), cos (±kz + cp- wt) cos 2(cp- wt) ... 
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Since the equation must be satisfied for all z and cp, 
the equation splits into several independent equations. 
The terms proportional to cos (±kz + cp- wt) satisfy the 
same equations as those in the case of a traveling wave. 
Waves with fields ""cos 2(cp- wt) cos (±kz + cp- wt), 
and cos 2kz cos (±kz + cp- wt) ... have amplitudes 
smaller by a factor of [(j 0 - jcr)hcr] 112 than waves with 
fields- cos (±kz + cp- wt). 

If, on the other hand, the external magnetic field is 
strong (Ho > c/JJ._), then the value of (JJ._H~/c) 2 in the 
coefficients TJ must be compared with (JJ._H0/c)2 and not 
with unity and the expansion is in H' /Ho. A calculation 
shows that in this case 

JJ_L'' ,_~ IIo"Uo- ia) I ic.-, 

i.e., for the same super criticality the amplitude of the 
wave is larger by a factor of JJ._Ho/c. 

5. Let us consider the emission of oscillations from 
the crystal. Two emission mechanisms are possible: 
a magnetic-dipole mechanism connected with oscilla
tions of the resultant magnetic moment, and the emis
sion of waves from the crystal in the direction of their 
propagation, i.e. in the direction of the current. It can 
be shown that in our case the first mechanism leads to 
a radiation intensity smaller by a factor of (wR/c) 4 than 
the first. Making use of the boundary conditions for 
z = 0, L, we find that the wave vector outside the crystal 
along the z axis is much smaller than k. A larger por
tion of the wave energy will be reflected by the boundary 
of the crystal and only a fraction (ck/ao)2 for Ho < c/JJ.
or a fraction (TJdo)2 for H0 > c/JJ._ of the Poynting vector 
of the wave is emitted outside, i.e., in the case of a 
strong magnetic field the fraction of the emitted energy 
increases by a factor of (JJ._H0/c)2 for the same ampli
tude inside the crystal. (The reflected portion of the 
wave propagates in the crystal in the opposite direction, 
becoming reinforced, since the expression for 1m w is 
even in k. Reinforcement of the wave by multiple re
flection from the boundaries for z = O, Lis therefore 
possible. We shall not investigate this problem.) 

In the absence of an external magnetic field the value 
of the Poynting vector outside is 

So=- c._ ( :~'-· ) ~~ _]_12 , 
s.~( 2.rrrl'o 

and in strong magnetic field 

, c ( . ) "II ,., 8 = -S; 11110 _L -. 

The ratio of the emitted energy to 

S jo' 
--;;-,. dr rl:. dr1, 

i.e., the efficiency, is in the absence of a magnetic field 

;:__ ( _ 0_ __ ) 2( -~-)" _o;_j_o~:;_-_i'!_, 
8.'1 2:wo !'-- /,Jo 1...-

and in a strong external magnetic field 

As is seen, the latter expression is larger by a fac
tor of (JJ._H0/c)4 than the preceding expression. In a 
strong magnetic field the efficiency may reach a magni
tude -10-2 • 
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