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The nonlinear dynamics of a medium containing high-intensity plane beams of electromagnetic waves 
is investigated within the framework of geometric optics. A broad class of exact analytic solutions of 
the equations of nonlinear geometric optics is indicated. It is shown that, as the solution develops, 
singularities appear in the intensity and angular distributions of rays in the beam, and the situation is 
similar to the development of a simple wave in the hydrodynamics of an ideal compressible fluid. A 
classification of the singularities is given and three basic types are indicated. 

1. INTRODUCTION 

THE field of a high-intensity electromagnetic wave may 
give rise to very considerable disturbances in a med
ium. In particular, it may change the permittivity. This, 
in turn, leads to a change in the propagation conditions 
for the waves producing the disturbance, so that the 
wave propagation process becomes nonlinear. The 
corresponding nonlinear phenomena are described by 
the Maxwell equation and the constitutive equations for 
the medium. In general, these constitute a very compli
cated system and have been investigated by a number of 
authors. u-sl 

We shall restrict our attention to effects arising dur
ing the propagation of a weakly inhomogeneous wave 
beam, for which the characteristic distance R over 
which there is a substantial change in the amplitude of 
the field E is much greater than the wavelength, i.e., 

kH}? 1 

where k is the wave vector. This ensures that we can 
use the geometric optics approximation. The wave field 
can then be represented by a beam of rays having a 
definite direction of k and definite intensity I at each 
point. The most interesting case is that of narrow beams 
for which it is possible to isolate a mean direction of 
beam propagation (z axis). The deviation of the different 
rays from this mean direction is small and is charac
terized only by the vectors k 1 lying in the plane ortho
gonal to the z axis. If, moreover, we confine ourselves 
to plane beams, i.e., beams whose intensity in they 
direction is constant, then tne equation of nonlinear 
geometric optics can be written in the form 

iJw Ow 8a 
--!-u--j-w-=0 at iJx iiJ: 

iJu iJz' 8w 
-+u-----=0; at ax ii.r 

t = =B'". ~ = t·/o1:!P.,, (1) 

In these equations w(x, t) = 1/10 is the dimensionless 
intensity, u(x, t) = {3 -1 /<lk,c/k is a function which is a 
measure of the extent to which the direction of a given 
ray deviates from the mean direction of propagation of 
the beam. The variables x and twill also be considered 
as dimensionless, i.e., x- x/a, t- t/a, where a is a 

characteristic transverse size of the beam, which is de
termined by the boundary conditions. 

The derivation of Eq. (1) was based on the assumption 
that the permittivity was 

where Eo is the permittivity of the undisturbed medium 
and E21 is the perturbation proportional to the wave in
tensity. The second term takes into account the effect of 
the wave field on the medium. The above expression for 
E is valid for isotropic nonabsorbing media, provided 
the wave intensity is not too high, so that IE2ll « Eo, i.e., 
{3 « 1. 11 The form of the medium and the nature of the 
interaction with the waves affect only the coefficients t. 0 

and E2. These two coefficients, in fact, disappear from 
the equations after transformation to the dimensionless 
functions u and w (only the signs of Eo and E2 are impor
tant; we shall consider transparent (Eo > 0) and focusing 
(E2 > 0) media). We note also that if we omit the last 
term aw/ax from Eq. (1), which represents the effect of 
the waves on the medium, we obtain the usual equations 
of linear geometric optics (for a narrow plane beam 
propagating in a homogeneous medium). A detailed 
derivation of Eq. (1) is given in reviewsl3-sl. 

The boundary conditions for Eq. (1) are specified on 
the t = 0 plane: 

w(x, 0) = w0 (x), u(x, 0) = uo(x). (2) 

In other words, the problem is formulated as follows: 
suppose that the intensity and angular distributions of 
the rays, wo(x) and uo(x), are specified for the beam 
propagating along the axis on the given plane t = 0 
(z = 0). It is required to find w(x) and u(x) for any z. 

The equations given by Eq. (1) are analogous to the 
hydrodynamic equations for an ideal compressible fluid 
with y = 2. There is, however, the essential difference 
between them which is connected with the change in the 
sign of the "pressure". In hydrodynamics pressure 
always expands the flow, whereas in the case of the 
focusing medium considered here, nonlinear pressure 
tends to contract the beam. The change in the sign of 
the pressure makes Eq. (1) into an elliptic system in 
contrast to the hydrodynamic equations which are, of 

OWe have confined our attention to time-independent or, more 
precisely, frequency-averaged perturbations of the permittivity. 
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course, hyperbolic. In spite of this fact, the overall 
similarity between the equations enables us to use 
hydrodynamic methods for some aspects of the solution 
of problems in geometric opti.cs. 

The analytic solution of Eq. (1), corresponding to a 
number of special conditions, was found by Talanov[7J, 

whereas another special solution has been given by 
Lighthill (!OJ and Akhmanov, Sukhorukov, and 
Khokhlov. (31 In the present paper we shall investigate 
a broad class of analytic solutions which will enable us 
to investigate some general properties of nonlinear 
beam dynamics. 

2. SELF-SIMILAR SOLUTIONS 

The set of equations given by Eq. (1) can be reduced 
to a linear form by a suitable transformation of the 
variables. We shall regard w and u as the variables and 
x and t as the unknown functions. To transform Eq. (1) 
to the new variables we shall follow Landau and Lifshitz 
(see(aJ, Sec. 98) and write the partial derivatives in Eq. 
(1) in the Jacobian form 

il(w,.T) . 8(t,w) <7(t,u) 
-7i(t.-;;) t u a(t, --;;) + w 8-(t~- = u, 

(3) 
8(n, "') , .a(t, u) D(t, w) _ 0 --------11----·-- ·------- . 
8(t, .r) 1 D(t, .r) rJ(t, x) 

If we now multiply Eq. (3) by a(t, x)/&(w, u) and evaluate 
the Jacobians we obtain 

ax at ,Jt --u--+ w-;:-·=0, 
i)u au UIF 

at at Dx 
---j-u---=0. au aw i)w 

(4) 

(5) 

These equations for the function x(u, w) and t(u, w) are 
now linear, and their use simplifies the derivation of 
the class of solutions in which we are interested. 

In fact, it is readily verified that Eqs. (4) and (5) 
are homogeneous in w and u2 • Their special solutions 
can therefore be sought in the form of polynomials 
which are homogeneous in powers of u2 and w. We shall 
assume, to begin with, that x is an even function of u: 

n 1 n 

.1:;1 (a, w) = l.: a 111~ll- 211 W 11 ·-,:'t, t 11 (u, w) =--;;-.E bn,,u21lwn-1t. (6) 
~~o h=l 

Substituting these expressions in Eqs. !4) and (5), and 
equating terms with equal powers of u2Kwn-k, we obtain 
recurrence relations between the coefficients ank and 
bnk. Substituting ana= 1 and bno = 0, we successively 
find the functions Xn and tn, which are special solutions 
of Eqs. (4) and (5): 

zt2 

r 1 = w + -~, t1 = u; (7) 

The boundary conditions of Eq. (2) are specified on the 
the t = 0 plane. The condition t = 0 determines the rela
tion between w and u for each solution. In particular, it 
is clear from Eqs. (6)-(9) that the condition t = 0 is 
identically satisfied for any pair of xn and tn in the case 
of a plane parallel beam (u = 0). In this case, each of 

FIG. I 

the solutions describes the change in the beam intensity 
near its boundary. In fact, consider the edge of a plane
parallel beam, i.e., assume that when t = 0 

f x, :r > 0 
w,,(x)=" l 0, a:< 0' no(x)=O. (10) 

It is readily seen that the solution x1, t1 satisfies the 
boundary conditions given by Eq. (10). Consequently, it 
is also valid for any t. From Eq. (7) we have 

_10 - t'/2, .1· > t'/2 { t, a:> t'/2 
we~{ () :r<t'/'2; ll= t-11{2=-i~, .T<I2/2, x>O(ll) 

0, .r<O 

We have taken account here of the fact that the trivial 
solution w = 0, u = u0(x- ut) will also satisfy Eq. (1), 
and that Eq. (1) admits of weak discontinuities. The 
change in the boundary of the beam is shown in Fig. 1 
for different times tin accordance with Eq. (11). The 
solution given by Eq. (11) is self-similar and can be 
written in the form 

l1Jo~t 2j,(r), u~cff,(T); Tc=.1'/t2. 

It is readily verified that, for an arbitrary n, the solu
tion Xn, tn given by Eq. (6) is also self-similar and can 
be written in the form 

11, = f2(2n-PJ,,(T), n = [l/(2n-l)j,,. (<); 

.T 

l' = ~~~-~-,.(2n-l) • 

(12) 

We shall consider the case where x is an even func
tion of u. The situation where x is an odd function of w 
can be considered in a similar way by writing 

(13) 

and substituting these expressions into Eqs. (4) and (5) 
to find the coefficients ank and bnk for each n. The final 
result is 

These solutions also represent self-similar functions 
w(x, t) and u(x, y): 

3. APPEARANCE OF SINGULAR POINTS 

We have derived a set of special self-similar solu
tions of Eq. (1). It is important to note that Eqs. (4) and 
(5) for the functions x(u, w) and t(u, w) are linear. This 
means that not only the functions xn, tn but also their 
arbitrary combinations 

00 

:r ,c_~ )1 C,:r, (u, u•), t c=-~. C,J, (n, w) 
-·.J (15) 
1~--d 11==1 
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will satisfy Eqs. (4) and (5). The resulting class of 
solutions is characterized by an infinite set of constants 
Ct, C2, ... , Cn or an arbitrary function which can be 
expanded into a series. 

In fact, consider a plane-parallel beam, i.e., assume 
that when t = 0 

u(:r, 0) = 0, w (.r, O) = zi•o(:r). (16) 

According to Eqs. (6)- (9), we have xn = wn for u = 0. 
Therefore, if we expand the function x 0 (w), which is the 
inverse of wo(x), into the Taylor series 

Xo(w)~•c.ro+ f C,w", C,.o=-i__(_a"~) (17) =1 nl Jw' 1 u:=o' 

we can determine the constants Cn. In other words, the 
formulas of Eq. (15) with the coefficients Cn determined 
in accordance with Eq. (17), give the solution of Eq. (1) 
in an implicit form which satisfies the boundary condi
tions of Eq. (16). The above class of solutions of the 
equations of geometric optics is equivalent to simple 
waves in the hydrodynamics of an ideal compressible 
fluid. 2> A combination of self-similar solutions, Eq. 
(15), is no longer a self-similar function. In this sense, 
we again have an analogy with simple waves in hydro
dynamics. We shall show that, as in the case of a sim
ple wave, the development of the solution given by Eq. 
(15) leads to a gradual sharpening of the front and the 
appearance of singular points. 

As an example, consider the simplest case when 

w(x 0)-{l'a'/4+;·-<£/:~ forx>O 
• - 0 f 0 , u(x,O)=O. 

or x< 
(18) 

In these expressions, 0' is an arbitrary constant (a > 0). 
The function w(x; 0) is shown in Fig. 2. The inverse 
function Xo(w) = aw + w2 and, consequently, the solution 
of Eqs. (4) and (5) satisfying the boundary conditions of 
Eq. (18), is in this case a combination of only two self
similar solutions x1, t 1 and x2, t2: 

:c=a(w+ ~2 )+w2 -~f. t=u[ a+2(w-~~)], u·~O. (19) 

The dependence of w on x for different t, which is de
fined by Eq. (19), is shown in Fig. 2. It is clear that the 
beam boundary shifts in the direction of increasing in
tensity and w(x) becomes increasingly steeper. At some 
value t = tc the slope of the gradient awjax becomes 
infinite and we have a singularity. The condition for the 
appearance of the singularity on the beam boundary is 

.r, 

FIG. 2 

2lThe class of simple waves is, strictly speaking, broader because it 
includes functions which cannot be expanded into series. However, it 
will be shown in Sec. 4 that the family of self-similar solutions discus
sed here can be extended so that it will be characterized not by a dis
crete series but by a continuously varying parameter A. Accordingly, a 
lmear combination of these solutions will be characterized by an arbi
trary function C( A). 

(!!__) =0, w=O. (20) 
aw t 

Differentiating Eq. (19) with respect tow, we obtain 

( ax ) ( an ) ( au ) -· =-a+wt --- +2w-2n3 --- , 
rJw t ow 1 ow t 

( fJu. )' ( {)u ) ( {)u ) a ·c·- + 2n + 2w --,---- -- 2rt' -. - cc ..• c 0. 
rJw t uw t \ iJw t 

Using Eq. (20), we find that at the singular point w = 0, 
u2 = 0' /2. Consequently, the boundary singularity ap
pears if 01 > 0. From Eq. (19) we obtain the explicit 
coordinates of the singular points: xc = a 2 /8, 
tc = "'2a372/3. It is readily verified that the derivative 
(Bu/ax)t becomes infinite at the same point. 

The above singularity is analogous to that found in 
the hydrodynamics of an ideal compressible fluid on the 
boundary of a simple wave and a stationary gas (see[sJ, 
p. 454). We note also that the above analysis of the 
boundary singularity ("quadratic" singularity, w ~ x 112 , 
~ 112) . 't 1 . u x 1s qm e genera , smce near the beam boundary, 

i.e., for w- 0, we can confine our attention to the first 
terms in the expansion of Xo(w) into a series of powers 
of w: Xo(w) = aw + bw2. Consequently, 01 = a/b112 , 
xc = a2/8b, tc = 21/2a3/2/3b3/4. 

The reason for the appearance of the singularity can 
be readily understood. Thus, in the case we are con
sidering, 01 > 0, and the slope awjax is a maximum on 
the beam boundary, w- 0 (see Fig. 2). At this point, 
the "pressure" of the nonlinear medium is therefore 
also a maximum. It shifts the rays and gradually 
"presses" the beam against its boundary. 

There is, of course, another possible case when the 
initial slope awjax is a maximum not on the boundary 
but at some internal point of the beam. Here, the 
"pressure" ensures that the slopes awjax and aujax 
will also increase and will become infinite at some time. 
Here the singularity is "cubic" (w ~ x113 , u ~ x 113) and 
appears inside the beam and not on its boundary. This 
is analogous to the usual spillover of a simple wave in 
hydrodynamics (see[sJ, Sec. 94). Let us illustrate this 
by an example. 

Suppose that the intensity distribution in a plane
parallel beam on the initial plane t = 0 is defined by the 
cubic curve (for w > 0): 

x0 (w) = aw- ~w2 + w3• (21) 

The condition for the absence of spillover on the initial 
curve (Bxo/Bw > 0) is satisfied if 01 > f3 2 /3. The inflec
tion point is wp = {3/3 and at this point the slope aw0jax 
of the initial function is a maximum. 

The solution of Eqs. (4) and (5) which satisfies the 
boundary conditions given by Eq. (21) is given by 
Eqs. (7)-(9) and (15) 

x=a(w+~)-~(w2 -~)+(w'- 3 w'u'--~wn4-l-.!!.6 ) 2 2 2 2 4 ' 

t =au- 2~u ( w -- ~2 ) + 3u ( w2 - wu2 + ;~) . . (22) 

The variation of the intensity w(x) defined by these 
equations is shown in Fig. 3. The conditions for the ap
pearance of the singularity in the function w(x, t) are 

( ox ' 82x 
Dw), =cO, ( {)w'·) t =O. 

If we now use Eq. (22) to find (axjaw) and (a2xjaw2)t we 
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FIG. 3 

obtain the following algebraic equations which determine 
the values of u and w at the singular point 

(a- 2pu• + 3u.•2 - :Jzl'lz 0 -~ 'hu') 2 + u"(:lu2 - Gw + 2B) [2a 
+ 2Buo -- 2flw - 9wu2] oo~ 0, 

-A'(?B -- Gw + :Ia')-- tFu"[t~(zl' + u") (2f\ -liw + :lu') 
·l- G(u -1- 2[\~1"- ;)w'- liwu2 + :lu' / 2)) + .ln'(2f\- (iw + :iu") 

· [ (2f\ ... Gw + -~h') (u + G~u'- 3w" --· t8wzt2 + '"/2u.'•) 

+ 2 (21\ --- Gw + \ln2) (a + 2flu2 - 3w2 - Gwu2 + 3u' / 2)] 
·- 2u' (2D- Gw + 3u2) 2 (2~ -- !lw + :-:u2) (a+ 2~n2 .. _ 3w~ 

- Gwt~2 + 3u' I 2) = 0, 
A = a- 2~w -1- 2~u2 + 3w2 - flwu' + 3f2u4• 

The analytic solution of this equation is readily found 
for ~ = a - j3 2/3 « a when the slope of the initial front 
is large. In this case, w c = j3/3 + ~/2 j3, u~ = ~I j3 and 
the coordinates of the singular point are Xc = j3 3/27, 
tc = 2~312/3/3 112 . The functions w(x, t) and u(x, t) are 
single-valued up to the singular point t = tc. Therefore, 
they are triple-valued in the region x ~ Xc-

The third essential type of singularity involves singu
larities appearing at maximum beam intensity. In con
trast to the other two discussed earlier, these singulari
ties have no analogs in the hydrodynamics of simple 
waves in an ideal fluid. They are described by self
similar solutions of the second class given by Eq. (13). 
Figure 4 shows the functions w(x, t) and u(x, t) near the 
beam maximum described by the solution x = x2 - ax1, 
t = t2- at1 [see Eq. (14)). When t < a 2/2 the intensity w 
is a smooth function of x: 

(3wo-2a) -~~-
w=wo- · x2; Wo(t)=a-'J'a2 -2t. 

2wo2 (a -- wo) 3 

When t = C1 2 /2 we have a singularity on the axis (x = 0): 
near this singularity w t = 012;2 = a - a·114 lx 1112 . The 
function u(x) has a singulanty at the same point: when 
t < a 2/2, u f':! x/w0(w0 - a); when t = a 2/2, u(x) 
= -a-314 lxl 112sign x. The physical significance of this 
singularity is that the rays begin to cut the beam axis at 
the point t = a 2/2. The conditions for the appearance of 
the singularity on the beam axis are 

X= 0, ( ~;] t "'~ 0, ( -:1: L = 0. (23) 

Thus, as the smooth initial distribution develops, we 
find singularities connected with the possible intersec
tion of rays propagating through the nonlinear medium. 
The main types of singularity are: quadratic (w ~ x 112 , 
u ~ x 112) on the boundary of the beam, cubic (w ~ x 113 , 
u ~ x 113) inside the beam, and axial singularity at maxi
mum intensity on the beam axis (w - lx 1112 , 
u ~ lxl 112 sign x). The multiray regions and strong dis
continuities in the intensity and angular distributions of 
rays in the beam appear after the singular points. Equa
tion (1) is, of course, invalid in these regions. 

4. ARBITRARY PLANE BEAMS 

Let us now consider the general problem of propaga
tion of an arbitrary plane beam of electromagnetic waves 

through a slightly nonlinear medium. Equations (4) and 
(5) which describe the propagation of the beam, can be 
reduced to a single linear second-order equation as in 
the case of hydrodynamics. l1oJ Consider the function 
(cf. laJ, Sec. 98) 

'\f':=S-u.x +t(n'/2- w), S=J udx, 

where Sis the eik.onal. We shall look upon lj! as a func
tion of the two variables u and w. It follows from the 
definition of lj! that 

1 d~• •= -xdu -1- td (a" I 'J- w) = --tdw + (ut- :t)dn. 

If we compare this with 
ihp 8¢ 

d~·=-dw-j--du. ow on · 
we find that 

(24) 

If 1/J(u, w) is known, then Eq. (24) defines in an implicit 
form the dependence of u and w on x and t. The equation 
for lj! is obtained by direct substitution of Eq. (24) into 
the continuity equation given by Eq. (4) [Eq. (5) then be
comes an identity] 

-~~~+~·_!_(P~) =0, p=l'w, v- n i)v2 p ap i)p -·2-. (25) 

The boundary conditions of Eq. (2) are specified on the 
t = 0 plane in the form of the initial intensity distribution 
wo(x) and the angular distribution of rays in the beam, 
uo(x). In our case, the conditions 

p2 = wo(l·), v = no(:r) I 2 (26) 

define in an implicit form an axially symmetric surface 
S in the p, v space. On this surface 

(~) =0, 
Dp s 

ii~ 
( _ _:_) = ~- 2xo (p2), 

Dv s (27) 

where x 0(w) is the inverse of w0 (x). 
The function lj! is described by the Laplace equation 

(25). There is, therefore, a direct analogy between 
problems on the propagation of arbitrary plane beams 
in a nonlinear medium, on the one hand, and the 
boundary-value problems of electrostatics, on the other. 
The conditions given by Eq. (27) signify that the radial 
component of the "field" Ep =-a lj! jap is zero on the 
axially symmetric surface S, whereas the component 
along the v axis, namely, Ev =- 8lj; jav is a given func
tion of p and v. 

FIG. 4 
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Let us take a plane-parallel beam uo(x) = 0 as an ex
ample. Here, the surface S is a disk of unit radius lying 
on the v = 0 plane. To find 1/J from the Laplace equation 
it is convenient to transform to oblate spheroidal coor
dinates E and TJ defined by 

Z' = et], p2 = (e2 + 1) (1-lf). (28) 

The Laplace equation assumes the form 

iJ [ ihp ] {) [ .. il¢ ] - (e2+1)- +--:-- (1-t]?)-.- =0. o, De ih] iJ~ 
(29) 

The coordinate 71 ranges from 0 to 1 and E from 0 to oo. 

The E = 0 surface is a disk of unit radius in E, TJ space 
on which the boundary conditions of Eq. (27) are satis
fied. In terms of ~::, TJ they take the form 

(~) -0 
Dt] t=O- ' 

In these expressions x0(w) is the inverse of wo(x). 
The solution of Eq. (29) is naturally sought in the 

form of a series in terms of the oblate spheroidal 
harmonics of the first and second kind, Pn and ~: 

(30) 

ljJ = }2 {Qn(t]) [A.Q,.(ie)+ B,.P,.(ic)] +Pn(t]) [C,.Q.(ie)+ DnPn (ie)]}. 

" (31) 

The coefficients An, Bn, Cn, and Dn are determined 
from the boundary conditions, Eq. (30). 

Let us take the initial profile w0(x) = cosh-2(x) as an 
example. In this case, 

A.=Dn=O, B 1 =Co=2i, B1,=0 (k7'=1), Ch=O (k'i:O). 

The function 1/J is of the form 
1+tJ 1 

ljJ = - Et] In--+ 2e + 2 arctg-. 
1-1] 8 

From Eq. (24) we now find the explicit formulas 

-- 1 + tJ . 2t]e2 t 8 (32) 
X-- In 1,-T] + (1+e2)(1-TJ2)' (1+e2)(1-TJ2); 

where E and TJ are related to w and u by Eqs. (28) and 
(25). It is readily verified that this solution is the same 
as that given in[sJ. The smooth initial beam profile is 
rapidly deformed and an axial singularity appears for 
t = 1/2. In fact, the appearance of the axial singularity 
is determined by Eq. (23). From Eq. (32) we find that 
these conditions are satisfied for E = 1, TJ = 0 (i.e., for 
X= 0, t = 1/2); W = 2, U = 0. 

Consider now the parabolic beam profile 

{ 1-x2 for lxl< 1 
wo(x)== 0 for I xi> 1 · 

(33) 

Here, the inverse function is x0 (w) = .../1- w = TJ, and the 
coefficients are Co= 2i/3, D2 = 1T/3, C2 = -2i/3; 
An= Bn = Ci = ~ = 0; i ;o! 0.2; k ;o! 2. Consequently, 

2 { 1 3t]2 ·- 1 [ :n ( 382 + 1 ) 3e2 + 1 . 1 3e ] } 
~l=-;- :crctg-----2- --;-----2-arctg-+? . 

i:l & ., e ~ 

If we evaluate the derivatives in Eq. (24) we find that 

X'=-TJ-, t= ~[~--- arctg~-+--r--]. (34) 
1 + e2 2 :l e 1 + £ 2 

It is important to note here that E is a function oft only. 
If we use the last equation to find TJ = x(1 + ~:: 2 ) and sub
stitute in Eq. (28), we find that 

1 1 { x2) din/ w=- 1-~ u=-..,-xe(1+e2)=-x--, /(t) 
IW f ' & 

It is clear that the initial parabolic beam persists for 
all t. Bearing this in mind, we can readily find the solu
tion given by Eq. (35) directly from Eq. (1), which was, 
in fact, done by Talanov.t'l An important property of 
the parabolic beam is that it is focused down to a point. 
It is clear from Eq. (34) that as t- 1T/4 we have E- oo 

and f(t)- 0. When t- 1T/4 the intensity on the beam 
axis increases without limit. 

The behavior of beams with near-parabolic initial 
profiles is therefore of considerable interest: 

w0 (x) = 1- x2 -t-ax', I ai ~ 1. (36) 

For the inverse function x0(w) we obtain, retaining the 
only linear term in a, 

.r0 (w) = l'l- w + a(1- u;)'"/2. 

From the boundary conditions of Eq. (30) we find the ex
pansion coefficients in Eq. (31): 

2i 2i n 3ia 3n co=-g-· c2=-3 , D2= 3 . c4=35, D4=- 70 a. (37) 

The remaining coefficients are all zero. If we now 
evaluate the derivatives of 1/J, we find the required solu
tion in an implicit form. We shall reproduce it only for 
the region of high intensities (E » 1) 

[ 1 9rta83 t 5 ) ] 
X=1} ·-----11+-tJ2 , 

1-!- &2 32 \ 3 

1 [ n 1 e 9nae2 ] 
t= 2 2 -arctge+ 1-j-&2 --gz-(1-5TJ2) . 

(38) 

The departures of the beam profile from the parabolic 
form for small t are unimportant. On the contrary, for 
t- 1T/4, i.e., near the focal point, they play the dominant 
role. As a result, we have singularities on the axis 
(a > 0) or on the beam boundary (for a< 0). In par
ticular, when a > 0 we find from Eqs. (23) and (38) that 
the maximum beam intensity at the axial singularity is 

w,.. = (32/ 9nu) '''· 

The distribution of w and u with x near this point is 

The shift of the ray intersection point is tc- 1T/4 
= %w;.:{2. The behavior of w and u near the ray inter
section ~oint constitutes an axial singularity (w ~ lx 1112 , 
u ~ jxj1 sign x), in accordance with the classification 
given in Sec. 3. If we expand the solution given by Eq. 
(38) near the singularity into a series in powers of 
Wm- wand u, we can express them in terms of the self
similll;r solutions of Eq. (14): x = A2(x2- wmx1), 
t = 4- 11T + A2(t2 - wmt1). In precisely the same way, by 
expanding the solution given by Eq. (32) around the 
singularity we obtain x = %(x2- 2x1), t = %(t2- 2tl). 
Therefore, the behavior of the solution given by Eqs. 
(14), (32), and (38) near the axial singularity is des
cribed (to within a factor) by the same functions. 

Equation (25) will, in general, admit of the self-sim
ilar solutions 

(40) 
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where FA is described by 
d2J.' dF, 

{1 +-r2) -':..-(2'.--- ·1)-r--d-.:-+ 1!F,.~~o. 
d-r2 T 

(41) 

By substituting FA = (1 + T 2)A 12f and changing the varia
ble so that z = %(1 - T jv'f+T2), we can transform Eq. 
(41) to the hypergeometric form: 

d.2j 2z-1 df J..(1..+ 1) --+----- /=0. 
dz' z(z-1) dz z(z-1) 

(42) 

For integral values A = n the solutions of the last equa
tion are Legendre polynomials, so that 

F,.(-r) = {1-!--r'-)" 1~Pn(T/yf+-.2). 

These solutions were discussed above in Sec. 2. When 
A = n - % the function f can be expressed in terms of 
the complete elliptic integrals of the first and second 
kinds. For arbitrary A the solution of Eq. (42) is given 
by the hypergeometric series f = w(a, {3, y; z), where 
a= (1 + ../1 + 4A(1 + A))j2, {3 = (1- ../1 + 4A(1 + A))/2, 
y = 1. The series converges for all T since lz I 
= %11- T /.f.T2+11 < 1. 
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