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Multiphonon Raman scattering of light by longitudinal optical phonons is considered for the case when 
the photon frequency is close to the width of the forbidden band. Either exciton levels or impurity 
electron levels (donor impurity) are considered as intermediate states. The scattering cross section 
is calculated. It is shown that if the exciton levels are regarded as the intermediate states the Raman 
scattering cross section depends on the parity of the scattering order. If the impurity levels are re
garded as the intermediate states the Raman cross section does not depend on parity of the scattering 
order. 

As is well known, the cross section of multiphonon 
Raman scattering of light is, generally speaking, much 
smaller than the cross section of first-order scatter
ing. Therefore Raman scattering of light of order 
higher than the second was not investigated until niost 
recently either experimentally or theoretically. How
ever, if the frequency of the incident or scattered light 
is closer to the natural frequency of a transition of the 
medium, for example to the exciton-absorption line[1•2l, 

then the cross section of Raman scattering of light of 
any order increases, and it becomes possible to ob
serve Raman scattering of higher orders. It is pre
cisely under these conditions that the experiment 
in[1-3) was performed. However, there is apparently no 
more or less detailed theoretical analysis of such ef
fects. 

The present paper is devoted to a theoretical analy
sis of multiphonon Raman scattering of light in the 
case when the frequencies of the photons are close to 
the exciton or impurity absorption lines. The scatter
ing cross section is determined. It is shown that the cross 
section for scattering with participation of the exciton 
levels as intermediate states can be essentially differ
ent for different approximations, values, depending on 
the parity of the number of excited phonons. This fea
ture is simply the consequence of the momentum con
servation law, i.e., the requirement that the total 
quasimomentum of the phonons produced in scattering 
(the Stokes process) be of the order of the photon mo
mentum, accurate to the reciprocal lattice vector. In 
the case of Raman scattering with participation of im
purity levels as the intermediate levels, the total 
quasimomentum is not conserved, and the scattering 
cross section is independent of the parity of the num
ber of resultant phonons. 

It is well known that the Raman scattering cross 
section is given by 

where w 1 and w2 are the frequencies of the incident 
and scattered light with polarizations e1 and e2, P is 

the summary momentum of the electrons, v0 is the 
volume, Wkm is the difference of the terms, k is the 
initial state of the system (which we shall henceforth 
assume to be the ground state, i.e., we consider the 
case of zero temperature), l is the final state of the 
system, and the summation in (1) is over all the final 
states with equal energy. Since Wkm < 0, it follows 
that if w1 is close to any frequency wm'k, one term in 
(2) becomes the largest, and the remaining terms can 
be neglected. This is precisely the case considered in 
this paper. 

The interaction of the electrons with longitudinal 
optical phonons will be described by a Froelich Hamil
tonian. The matrix element of the operator of the 
electron-phonon interaction contains as a factor the 
matrix element exp ( iq · r ). To obtain an estimate of 
the magnitude of the interaction, we expand the expo
nential in powers ( q · r) up to the first nonvanishing 
term, and find that for interband transitions the elec
tron-phonon interaction operator is proportional to the 
lattice constant a 0 , whereas for transitions between 
exciton levels or levels of the weakly-bound impurity 
electron, the electron-phonon interaction operator is 
proportional either to the exciton radius a 1, or to the 
radius of the first Bohr orbit of the impurity electron 
a 2 • For a Wannier-Mott exciton, or for shallow impuri
ties, we have a1 >> ao and a2 >> a0 • We shall hence
forth consider therefore only the interaction of the 
phonons either with excitons or with impurity electrons 
(a donor impurity is assumed throughout). 

By calculating the wave functions of the system in 
the (n - v)-th and 11-th approximations of perturba
tion theory, we obtain for Mzk the following expression: 

n -1 

Mlk = .E L [lp•+l (wl + Wm01,)0.,.~m,· •• Ww 0mn] · 
'\'=UmQ .. mi" {3) 

where V is the operator of the electron-phonon inter
action and the matrix elements are taken over the un
perturbed wave functions of the non-interacting elec
trons and phonons; in addition it is assumed that 
I W1 + Wk, mo I « W1· 

Let us consider first Raman scattering of light with 
participation of exciton states as the intermediate 
states. We shall assume the excitons to be of the 
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Wannier-Mott type and use the effective-mass approxi
mation. Introducing the coordinate of the center of 
gravity of the exciton R and the relative distance 
p = r 1 - r 2, where r 1 and r 2 are the radius vectors of 
the electron and of the hole with effective masses m1 
and m2, we represent the exciton-phonon interaction 
Hamiltonian in the form[ 4l 

V = '\1 2C. sin(~) [a.+exp(- iqR- iaqp)+a,exp(iqR+ iaqp)), 
~ ? (4) 

C2 • 
(5) 

where wq is the frequency of the phonon with wave 
vector q, and E00 and E: 0 are the dielectric constants 
for high and low frequencies. An obvious consequence 
of (4) is the fact that the longitudinal optical phonons, 
in contradiction to the results of[ 5l, contribute to the 
cross section of the Raman scattering even in the 
simple semiconductor two-band model. 

In a number of semiconductors, the frequency of the 
optical phonon is larger than the frequencies of the 
transitions between the exciton levels, so that we put 
approximately in (3) I Wmm1 I ~ wq, and also neglect 
the dispersion of the optical phonons, obtaining as a 
result1> 

.M1k= '\' { 1 (Pe~')om (IT" 2C •. sin( 'h; )) (l'et)to 
. ~ /p1 t 1wo"(<"2-· Wu10) .· t t.. mt 

'"·' l=l 

( -1)" n ( q;p ) } -h (l'e2')o1 (II 2C •. sin - 2-) (l'eJ) mo , 
h'1+1wo 11 (WI-Wmo) . 1 tm 

·~t (6) 

where w0 ~ w g and the indices 0, m, and t number the 
electron wave functions; in particular, ~0 is the wave 
function of the system of electrons in the ground state, 
In (6) we took into account the momentum conservation 
law, i.e., in the dipole approximation 

(7) 
i=l 

The summation over all the final states in (1) re
duces to summation over all the directions of the 
emitted phonons when the condition (7) is satisfied. We 
replace the summation by integration up to qM, where 
qM is the maximum wave vector for which it is still 
possible to neglect the dispersion of the optical phonons, 
and we take (7) into account, approximately, by inte
grating only with respect to q2 ... qn. We get 

oa e4wz [ 2e2 ( 1 1 ) ] 11 

iJo = m•c•w-;- fuv 0 ~ - -~; li 2v02 

X J2 { (Pe2)o,(PcJ)wo(Pe/)ot(Pci)t•o 
mm·tr 

1lWe have retained in (6) only terms with v = 0 and v= n, which 
give the largest contribution to the scattering cross section. As a result 
of the momentum conservation law, the phonon momentum should be 
equal to the exciton momentum, and it is necessary to sum over all the 
wave vectors of the exciton. In this case there appears in the denomina
tors of the terms with v =I= 0, n a large frequency, equal, accurate to 
Planck's constant, to the kinetic energy of the exciton on the boundary 
of the Brillouin zone. In the terms with v = 0 and n, only transitions to 
the intermediate exciton states with zero wave vector are possible, and 
there is no need for summing over the Brillouin zone. 

[ 1 1 
xWmt'm't + ·-------- (8) 

(<vi- wm'o) (co,- Wt•o) (wz- Wmo) (<>12- <•>to) 

(-1)" (-1)" 1} 
+ (wt-wwo)(w2-C•>to) + (w2-Wmo)(w,-Wt•o) J ' 

ll'mt•m•t = (v,..(ri)v/(rz) I (---1-- 1 )n-l~ (q1ri) (q1r?) I 
/rt-l"z/ /r,+rz/ q12 

X Vm(r,)vt(r2)). (9) 

Here vm ( r) are hydrogenlike wave functions. 
At first glance expression (9) diverges, but when the 

integral in (9) is calculated it is necessary to replace 
the divergent terms I r1 + r2l-1 by 7T-qM, and then (9) 
becomes finite. The matrix elements of the operator 
P between the ground state and the exciton levels have 
different values for transitions to the s- and p-states 
of the exciton, and also decrease strongly with increas
ing principal quantum number (see, for exampleP1). In 
particular, the matrix elements for the transition to 
the s-state are larger by a01 a 1 times than for the 
transitions to p-states. Since two of the four states m, 
m', t, and t' in (8) and (9) should be p-states in the 
case of odd n, this leads to alternation of the scatter
ing cross section as a function of the order of the 
Raman process, namely 

(10) 

if it is assumed that the resonant denominator (8) does 
not change appreciably when the order of the scattering 
changes. The superior indices denote here the order of 
the scattering (the number of appearing phonons). 

Let us consider the case of even n. In this case one 
can take the 1s state of the exciton as the intermediate 
state m, m', t, or t'. Calculating the integral in (9) by 
expanding the integrand in spherical harmonics and 
using the explicit expressions for the matrix elements 
of the operator P, we obtain 

oa Ne 4w2 2 [ 2e2g" ( 1 1 ) ] n -:,-=----/ (lll'z),-v(JlCt)cc/ ____ .:__ ----·-· 
oo l-'orn4c4w1 ;rr/l(uo foo Eo 

X n fJo2N [ 1 _ -+---~---
2(n-3)qM3a13 a13v0 . (h<,> 1 -Ec+Et) 2 (ftwz-Ec+Et) 2 

+ (llw,-Eg-t-li1 ~(1lw2 -Eg+E 1 )] (ll) 

when n > 2. When n = 2 we have 

aa Nc 4w2 2 [ 2e2 ( 1 1 )] 2 -.-=---/ (pe2)cv(pe,)"·/ -,-- ----
iJu v0nz4c4w1 tt1lWoa1 , €oo Eo 

nQ02N [ 1 , 1 
X 2a13v0 -(ftw 1 -Eg+E1) 2 1 (fuu2-Eg+Ei) 2 

+ 2 ] (12) 
(liw1 - Ec + Et) (fzw 2 - Ec + E,) . 

Here Pcv is the matrix element of the momentum op
erator for transitions between valence and conduction 
bands at k = 0, N is the total number of electrons, 
~o is the volume of the unit cell, Eg is the width of the 
forbidden band, and E1 is the energy of the exciton in 
state 1s, reckoned from the bottom of the conduction 
band. When n is odd there is an additional small fac
tor of the order of a1 2 ag, and therefore we do not pre
sent the explicit expression for the Raman-scattering 
cross section for this case. However, relation (10) is 
valid only if wo >> wexc, where wexc is the frequency 
of the transition between the exciton levels; this condi
tion apparently is rarely satisfied. In the case when 
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wo > Wexc we can obtain for the scattering cross sec
tion a much larger value at odd n > 1, by expanding 
w~m in (3) in powers of wo1wexc and confining our
selve§ to terms proportional to wo1Wexc• 

11[ -M "+ i ~ { (Pe2')tm(Pe,)wk 
~~- lk --- i...J 

tzn+1wo"n! m,m' W2 + Wtm 

~ _!_ ( d(V, ... Vv) V V ) _ 
X L.J V dt V+l·. ' n mm• 

v=1 

(Pe2•)tm•(Pe,)rnkLn 1 ( d(V, ... Vv) V TT) } 
+ - d V+lo•• n •(13} ro, ffit.m v t m·m 

'\'=1 

where 

Vv= 2C,.sin ( q; ) exp(- iqvR- iaqvp), 

Mik is given by formula (6}. 
Calculation of (13} for arbitrary n is a complicated 

matter, and we therefore consider only the case n = 3. 
Using the explicit expression for the derivative of the 
operator with respect to the time, and also summing 
over the final states in (1), we obtain the following 
expression for the scattering cross section: 

ocr Ne'wz [ 2e2qu ( 1 1 ) ] 3 
-= !(Pc2)ev(Pel)cvl 2 -- ---
oo !10m4c4(•l 1 nhwo e~ eo 

X fJ.o2qMN fz 2a 2 [ 1 + 1 
a13v0 4!12a 14w02 (liro2-Ec+E,) 2 (liw,-Ec+E,)2 

- (h6Ji- Eg + Ei)~hro2 - Erl- El) ] ' (14) 

where JJ. -l = mi1 + m21. We see that compared with (11 ), 
there have appeared additional factors of the order of 
:li2/ 4JJ. 2a1 w~ Rj w~xc / w~; in addition, there is an addi
tional factor proportional to the mass difference of the 
electron and hole. 

Let us consider now scattering with participation of 
impurity electron states as intermediate states. In the 
interaction between the phonons and weakly bound im
purity electrons, the momentum conservation law is 
not satisfied, since the impurity atom is rigidly bound 
to the main matrix. This makes Eq. (7) no longer 
valid, and the number of final states in the summation 
of (1) increases. It turns out as a result that the scat
tering cross section has an appreciable magnitude even 
at not very large impurity concentrations. The scatter
ing cross section is likewise independent of the parity 
of the order of the Raman process. 

Under the same assumptions as made in the deriva
tion of (6}21 , we get 

, Cq, ... Cqn " { (n) ( [ 
Mtk = n',.'roo" L, (-1)• v 1: (Pe;)01 exp i (R,- r)(1 

v=O t,m.p 

- ~.o) t qi]) (exp [i (R;- r) (1 - ~ ... ) .t q;]) (Pe1)po 
J=l hn 1="~~-l-1 mp 

x -1 1 exp [- iR1 f, q;]}, (15} 
(1):1 - '\'OOo - OOmo {=t 

where Ri is the coordinate of the impurity atom and 
Oji is the Kronecker symbol. Substituting (15) in (1) 
and summing over all the impurity atoms, and also 
over all the final states, we obtain 

2lHowever, all the terms in (3) with vi= 0 or n are taken into ac
count. 

8a N de4ro2 [ e2 ( 1 1 ) ] n n' 
-a;;= Vom4c4ro, nliwo ~-~ 24a24qu4 

X L E (l'•·2')ot{Pe,),o(l'e/)o~·(l'c 1 )po' 
111, p, t, tn', 1J', t' v ;,._, v' = 0 

tm'mJ•' 
X- R.., I' p m•(\', v') (-l)v+v'. 

( n) ( 1~) 1 1 
V \' 1 W2 + VWo- (tlmo W2 + v'<o~- Wm•O' 

(16} 

where Nd is the total number of impurity atoms, and 

R~7;;;;.: (\', v')= a24 (;___!___) ,_,(v1 (r1) Vm•(rc) P,,,(rs) '-'P'(r4) 
2 q.u 

I 1 1 1 I > X -,r r ,, .. 1 - 1•-v I lv-v' 11m(r,)v,.(r2)v1,(t'3)Vm•(l'4) . 
1- 2 ,ra-r4 r,-r2 

(17) 
The matrix element of the transition of the momen

tum operator between the Bloch wave function of the 
valence band with quasimomentum k and the wave func
tion of the localized state is equal to 

_.,,S 
Pct•Vo v (r) dr (18) 

when ka2 << 1. In the opposite case when ka2 >> 1 the 
matrix elements become small, since the wave function 
of the localized state is constructed of wave functions 
of the conduction band with k < a21. We shall therefore 
consider only transition to the 1s state of the impurity 
atom in accordance with (18), and the summation over 
the Brillouin zone will be carried out only up to kM 
= a21. Mter performing other calculations, we obtain 

84n2 ~ , ( n ) ( n ) Is, m•, m, Is , 
X---z4 i...J (-1)v+v ,, v' (2-~vv·)Rm,ls,Js,m'(v,") 

v~v'=O 

X F(liw2 +li\'w0 -Eg +Em')F(Iiro2 +1iv'ro0 -E1 +E,..'), (19) 
where 

1
2m2a22x I''• I li2 ,.,, 

F(x)=1- --- arctg ---
h2 2m:zalx ' 

(20} 

E~ is the energy of the impurity level, reckoned from 
the bottom of the conduction band. The large numerical 
coefficient 841T2 is a consequence of the fact that 

I 

The expression R~·~ ~~~~(v, 11 1
) is normalized in 

, ' ' such a way that if m and m 1 are 1s states, then 
I 

R1s,m ,m, 1~ (v, v) Rj % when v > 0. We note in this 
m,lS,IS,m 

case that the divergent expression I r 1 = r2l-1 must be 
replaced in the calculation of (17} by 21T-1qM. 

It follows from the uncertainty principle that 
:li2a22mi1 Rj E~. Putting in (11) :liw2- Eg + E1Rj E~ and 
comparing with (19), we find that the ratio of the Raman
scattering cross section with allowance for the exciton 
states as intermediate states to the cross section of 
Raman scattering with allowance of the impurities has 
at n = 4 the following order of magnitude 

y=-1_!!_~. (21) 
8n Nd a13 ' 

It is assumed that qMa1 Rj 1 and a 1 Rj a 2 • 

In[l, 2J there was observed multiphonon Raman scat-
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tering of light up to ninth order in CdS, and further
more under conditions when the frequency w2 fell in 
the region of exciton absorption. For CdS the calcula
tions performed in[7 J show that one can choose for 
qii.f a value on the order of a R~ 30 A. In this case we 
get 

(22) 

so that the dependence of the scattering cross section 
on the frequency should be determined by the Lorentz 
curve (liw 2 - Eg + E1r2 for even n. For odd n there 
is an additional small factor of the order of 10-1. This 
peculiarity is apparently not observed in the experi
ment. We note that in the case of scattering with im
purities taking part we have 

e2 ( 1 1 ) i 
nhwoa2- --;:-- - ;; ~ 2 

when a1 R~ a 2 , and the scattering cross section de
creases with increasing n more rapidly than in the 
case of scattering with excitons taking part. However, 
for impurities the scattering cross section does not 
depend on the parity of the number of resultant phonons. 

For CdS we have y = 3 x 10-5 N~{N at n = 4, so that 

in order for the scattering cross section with partici
pation of impurities to be comparable with the scatter
ing cross section with participation of excitons, the 
impurity concentration must be of the order of 
3 x 10 17 cm-3 • 
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