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A theory is developed for the shape of the cyclotron resonance line due to the interaction between 
electrons and longitudinal optically polarized phonons. For temperatures below the Debye tempera­
ture and magnetic fields such that the cyclotron frequency n,., w0 (phonon frequency), the theory 
predicts a strong broadening of the absorption line (if n > w0 ). The line becomes much narrower 
at frequencies located to the left of the region of total internal reflection. The cases of Fermi and 
Boltzmann statistics are considered. It is shown that for n > w0 the mass operator used for de­
scribing the line shape can be calculated by perturbation theory involving the electron-phonon 
coupling constant; for n < w0 , other line-broadening mechanisms must be taken into account. 
The theory is compared with available experimental data. 

INTERESTING experiments have been carried out at 
the present time in which the form of the cyclotron 
resonance lines in InSb has been studied in quantized 
magnetic fields such that the cyclotron frequency ( n) 
is close to the frequency of the longitudinal optical pho­
nons ( w 0 )Y• 21 It has been established that the width of 
the absorption line depends on the value of the magnetic 
field. As n - Wo from the side of high magnetic fields, 
the width of the line increases sharply (several fold) in 
comparison with the width far away from w0 • This ef­
fect, predicted by Harper,£ 31 is connected with the in­
crease in the probability of decay of the electron level 
with quantum number N = 1 to an optical phonon and 
the level with N = 0. Such a decay can come about only 
if n 2:: w0 , and it is especially intense for the case 
Q = Wo, Since the electron transition takeS place be­
tween regions with higher density of states in both 
Landau levels. If n < Wo, then decay with emission of 
an optical phonon is forbidden by the law of conserva­
tion of energy. Therefore, for temperatures below the 
Debye temperature, when the optical phonons are not 
excited, this mechanism of broadening does not occur 
and the line is narrowed (see also[41 ). 

As is knownP• 61 the interaction of electrons with 
optical phonons leads to the splitting of the interband 
magneto-optical oscillations, while the more interest­
ing region of magnetic fields is n = w 0 , since then 
two split-off peaks are very clearly visible. In cyclo­
tron resonance, it has not been possible to observe two 
peaks simultaneously, since, in the case Q = w0 , a 
band of total internal reflection extending from the 
light frequencies w ~ wt (frequency of the transverse 
optical phonon) to w ~ wo is superposed on the spec­
trum. In the present communication, results are given 
of a theory of the shape of the cyclotron resonance line 
with systematic account of the interaction of the elec­
tron with the longitudinal optical vibrations of the 
lattice. 

1. CHOICE OF A MODEL AND FUNDAMENTAL 
EQUATIONS 

We consider a semiconductor of cubic symmetry, 
with a small fraction of ionic bonding (A3B5 type), 
placed in a magnetic field directed along one of the axes 
of the crystal and satisfying the conditions l'iil » T and 
n ~ w0 • If these conditions are satisfied, then the elec­
trons populate only the lowest Landau level ( N = 0), 
the optical phonons are practically not excited, and the 
entire effect is connected with the spontaneous emis­
sion of phonons. All the calculations are carried out in 
an approximation that is linear in the electron con­
centration. For the determination of the complex 
electrical conductivity tensor aiJ- 11 , it is convenient to 
use the matrix densities f 11 ', connected with a IJ.II by 
the relation YY 

fl,V=x,y,z, 
(1) 

where ffy' is the matrix element of the current 
density operator, and y is the quantum number of the 
electron in the magnetic field (Ny, k~, k~). The func­
tion f~y' in both cases is a solution of the kinetic 
equation. However, in the model chosen, the lowest 
electron level is stationary (there are no optical pho­
nons) and the shape of the line is determined by the 
nonstationarity of the upper level only. In this case, 
the kinetic equation reduces to an algebraic one. Then, 

(2) 

ny is the mean occupation number of the electrons, 
w is the light frequency, wy'y = wy' - wy, and liwy is 
the energy of the electron m a magnetic field. The 
function W determines the absorption-line shift and 
shape. The interaction Hamiltonian of the electrons 
with phonons is written in the form 
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~= .L,L, [C•l""'(q)b.+h.c.]a"+a"'• (3) . -· 
Jaa'(q) is the matrix element of the operator 
exp ( iq · r ), computed with the wave functions of the 
electron in the magnetic field, a~ and aa are the 
creation and annihilation operators of the electron in 
the state a, and bq and bq are the corresponding op­
erators for phonons with wave vector q. The coupling 
constant of electrons with phonons is conveniently 
represented in the form 

!C.!'= (1iwo)2(8nuolo3) (loq)-2, 

102 = li/2mwo, ao = e2 (41iwolo)-1 (e..,-1 - eo-1), 

(4) 

m is the effective mass of the electron in the conduc­
tion band, e its charge, ~o and ~"" the static and high­
frequency dielectric constants, ao the dimensionless 
coupling parameter; the normalized volume is every­
where set equal to unity. The dispersion law of the 
electron is assumed to be quadratic: w i' = 0 ( N +% ) 
+ fi(k~W2m, which always holds for small kz, which 
are the only ones considered in the problem. In order 
to avoid absorption at the plasma frequency, which can, 
in certain cases, be close to 0, the measurements 
were usually carried out in the Faraday configuration, 
when the electromagnetic wave is directed along the 
magnetic field, and has right-hand polarizationY1 In 
the case in which the interaction of the electrons with 
the phonons is small, which occurs in compounds of 
the A3B5 type, the absorption coefficient is 

K(w) = [2:r/cno]Re a, 

where no is the index of refraction, c the speed of 
light in vacuum, am a = axx + iayx· 

2. ANALYSIS OF THE PERTURBATION-THEORY 
SERIES FOR THE FUNCTION W 

(5) 

For the calculation of the function W, it is conven­
ient to use the method developed in[ 7 J. The function W 
is represented by an infinite series of diagrams. For 
their analysis, one should take it into account that of 
all the modified diagrams, those should be kept in 
which all the electron lines are directed along the 
ordering contour. By the same token, the concentra­
tion corrections to Ware not taken into account, it 
being assumed that they are small. Moreover, the in­
teraction of the electrons with phonons should be taken 
into account only in the electron line with N = 1, i.e., 
on the upper horizontal portion of the ordering contour. 
The diagrams with phonon lines on the lower horizontal 
portion of the contour are small in the absence of pho­
nons, since they do not contain resonance denominators. 
The simplest diagram corresponds to 

For what follows, it suffices to take into account 
only two Landau levels with quantum numbers N = 1 
and N = 0, since a resonant transition of an electron 
with emission of a phonon is only possible between 
them. The remaining, non-resonant terms appearing in 
(6) can be removed by renormalization of the cyclotron 
frequency and the frequency of the optical phonon, as is 

~ 1 -----a 

~Y'+~t 
_____ Y b -r 

FD=r 
- r 

c 

FIG. I. Diagrams determining the function W: a-diagram which is 
important in the range of frequencies 'Y;? a~; b-diagram separated by 
renormalization of n and w 0 ; c-diagram which becomes important in 
the region 'Y < a~. 

done in(sJ. (The diagrams which must be summed here 
are shown in Fig. lb.)11 

The resonance term in (6), with accuracy up to 
terms ~a~13 is equal to 

w. = -aoooo(ooo/Q)''•(y+ k2+ is)-'1•, 

where 
y = ((J)- wo)iQ, k2 = lc8P/2, R = (cl!/eH)'I•. 

As is seen from (7), W1 becomes large if k - 0 and 
y - 0. The next diagram, which cannot be removed 
by renormalization (Fig. lc) gives 

(7) 

w2 - iao2(y + k2 + is)-l, (8) 

For y ~a~ (and small k2), W2 ~ W1 • Thus, in the 
region of frequencies y >a~, the function W can be 
replaced by W 1 and perturbation theory is inapplicable 
for the region y <a~. It will be shown below that the 
second frequency range is unimportant. 

3. CASE OF FERMI STATISTICS 

Let us compute a in the very simple and lucid case 
in which the distribution of electrons in the lower 
Landau level can be replaced by a step. To this end, 
one must retain no in the resonance term of the series 
(6), so that it "eliminates" the more dangerous portion 
of the integration, where the integrand is singular. As 
a result, we get 

TV.=-Q(~)''• ao · [1-e(xo-iv+k2 ) 

Q l'v+ k 2 +is 

- _i In xo + l'Y + k2 ] (9) 
---'-:':=· k2 +y>O, 

n I xo - l'v + k 2 1 ' 

IVt=iQ (~)''• ao [1-~arctg Zo ] 
Q l' y k2 - is n i- y - k2 - is ' 

k2+y<O, 

1lMaking use of the occasion, we note that in [8] the last term of 

Eq. (10) should have the form i !l7j/(n-l)y'ii, so that this sum is 
finite. Therefore, the constant 'th.it renormalizes the energy is finite and 
does not depend on the upper bound of the allowed energy band. The 
details of calculation of the diagram under study are given in [9 ]. 
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x0 = 2-3/ 2( 21T)~ 3n, n being the electron concentration, 
e ( y) = 1 for y > 0 and e ( y) = 0 for y < 0, and by the 
root in the second formula we mean the branch with a 
positive real part. Substituting (2) in Eq. (1) and taking 
it into account that, first, the matrix elements of the 
current density are proportional to the delta functions 
O(kl- kt)O(ki- k:i'), and, second, the function ny 
in (2) is a step function, we put a in the form 

t·2i'ie1 ¥• dz 
a= (2n)2mR3Qlj'i. I r+ V(Yo,M,.x)' (10> 

where 
co- Q .xa y k ( roo )''• 

r= Qll''• , Yo=-;j'h• M= fJ''•, .x= fJ''•, fJ = ao g , 

while the function V(y0, M, x) is obtained from (9), if 
we transform there to the variables y0, M, and x: 

V(y0, lll, z) = -iQ-1Wt(Yo, M, .x). 

The experiments mentioned above were carried out 
for small concentrations of conduction electrons in 
strong magnetic fields, such that v~ changed within the 
range 10-2 - 10-5 • Therefore, if we limit ourselves to 
the frequency range I M I > y~, then we can neglect the 
dependence V(y0, M, x) on Yo and x. Then 

:U _ { i(JJ +is)-'\ 
V(. )- (11Jfl-is)-'1•, 

Jli>O, 
111<0, 

s->--t-0. (11) 

This approximation is equivalent to the neglect of the 
quantity no in Eq. (6). It is known to be valid when the 
dimensionless Fermi level, calculated from the bottom 
of the Landau level with N = 0, y~ $ a~13, since the 
replacement of W by W1 is not valid for small M. 
Furthermore, it must be kep in mind that small M are 
generally not achieved, because of the band of total 
internal reflection of the crystal. It follows from (11) 
that, if M < 0, then V(M) is real and in this range of 
frequencies the absorption line has a delta-like shape. 
Substituting (11) in (10), and separating Rea, we 
finally obtain 

e'n { f~ 
Roa =--,-1 x(x + T)2 + 1 ' 

TIIIDoao' nb (Y. + T + 1/VTiZll, X <O. 
x>O, 

(12) 

Here, K = (w- Wo )/wo(X{)213 and 1 = (wo- 0)/woa't/3 

characterizes the departure of the magnetic field from 
resonance. 

In the region w < w 0, the absorption of the infinitely 
narrow line is determined by solution of the equation 

lxi''•-Tixl'"-1 = 0, (13) 

the only real positive root of which is equal to 

lxol=[n;· +R;'] 2
, R1 2=!__±1/ ~-~ . 2 y427' 

(14) 

If r = 0, then Ko = -1, which corresponds to 
w = w0 ( 1 - a~13 ). For T < 0, Ko - 0 from the side of 
the negative values, and for T > 0, I Ko I> 1 and the 
narrow peak appears from the opaque band, when it can 
be observed. 

The location of the singular peak (in the K scale) 
for r = 2, 4 and 6 is -2.62, 4.47 and -6.39, respec­
tively, which, in application to lnSb (a 0 = 0.01, fi w 0 

= 2.3 x 10-2 eV) corresponds to fiO = 2.1 x 10-2 , 1.9 
X 10-2 and 1.7 X 10-2 eV, respectively; fiw = 2.0 X 10-2, 

:~ 
' 2 J Q 5 6 7 '"' 

FIG. 2. Frequency dependence of the cyclotron absorption in the 
case of Fenni statistics for different values of the magnetic field. Curve 
1 corresponds toT -6, 2-T = 4, 3-T = -2, 4-T = 0. For InSb, the cy­
clotron energy hil is equal to 2.9 X 10·2, 2.7 X 10-2 , 2.5 X 10'2 and 
2.3 X 10'2 eV, respectively. The shaded portion is the beginning of the 
band of total internal reflection. The arrows indicate the positions of 
the cyclotron lines (except for the case T = 0) in the absence of inter­
action. For transition to the scale w-0, one should transpose the 
curves so that the arrows coincide. 

1.8 x 10-2 and 1.6 x 10-2 eV. Thus, in the region 
0 < w0 , interaction with phonons leads to a shift in the 
cyclotron line. 

In the region K > 0, there is a broad peak, the shape 
of which depends on the value and the sign of r. For 
r = 0, its maximum is situated at the point K = 0.59 and 
shifts in the direction of lower x with increase in r, 
being flattened out and masked in the final analysis by 
the opaque region. If T < 0, it even increases in mag­
nitude, which corresponds to the case 0 > w0 , then the 
peak shifts in the direction of larger K, its maximum 
value increases and the halfwidth decreases (see Fig. 
2). 

Let us find the dependence of the width of the peak 
on the value of the magnetic field in the region IT I 
> 1, i.e., on the side of the band of lattice absorption. 
The value of K corresponding to the maximum Re a is 
determined from the equation 

x(x-ITI)(C-'--ITI) -1=0, (15) 

the root of which that is of interest to us being 

Xm= ITJ [ 1 + 41!f3 +, ... ]. (16) 

Substituting (16) in (12), we obtain the value of Rea at 
the maximum: 

Re 11m 2nc2n}'~ [ 1 + __ 1_ + .. .]. 
mrooao' 16JTI3 

(17) 

The width of the absorption peak is determined from 
the equation 

l'x.. + y l 1Xm 

Y.=Y.m+ y, 

which, with accuracy up to terms ~ I T l-3 can be re­
duced to a quadratic equation. As a result, the obtained 
width of the peak t::J. is equal to 

~= l'l:-d 1- 1:T2 + .. .]. (19) 

It is seen from Eqs. (16), (17) and (19) that upon 
decrease of I r I the width of the peak increases; with 
increase in I r I, it narrows, becomes higher and shifts 
in the direction of higher light frequency. 

The electron concentration n entering in Re a is a 
function of the magnetic field and the temperature, and 
also depends on the energy of ionization of the donors. 
However, this circumstance does not affect the fre-
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quency dependence of the absorption coefficient and 
consequently, that of the half-width. 

4. CASE OF BOLTZMANN STATISTICS 

It is of interest to consider small electron concen­
trations, when T » l; (l; is the chemical potential) and 
Boltzmann statistics apply. In this case, the quantity 
na =exp{(/; -liwo)/T} entering in Eq. (6} is small and 
can be neglected in comparison with unity. k Then W 1 

will be determined by the expression (11) and the 
combination axx + iayx of interest to us reduces to the 
form 

<r= ie2n 2l'B~Q a~'l• F(x,'t), ~= T-t, 
mwo yn 

~s cxp (- £y2) dy ~ = ~fiulo~~· 0 

F(x,'t)= ?G+-r+i(x+y2)--'i•+is; 
0 

The quantity Rea corresponds to -Im F( K, r) 
= P( K, r), which is equal to 

J"" yx + y 2 cxp (- ~Y2 ) dy 
P(x,'t)= , x>O; 

0 (x-!-'t) 2 (x+y')+1 

'IAI 1 
P(x,T)=n J ~>[r-lxl + ]e-'iY'dy 

o l'lxl- Y" 

We first consider the frequencies located to the left 

(20) 

(21} 

(22) 

of the opaque region ( K < 0). The first integral in (22} 
(we denote it by P1) differs from zero if the zero of 
the delta function lies in the interval of the integration, 
i.e., if 0 ::: y~ ::: I K I, where Yo is the value of y which 
causes the expression to vanish that is under the sign 
of the delta function. Since we mean by the square root 
in the delta function the positive branch, then the solu­
tion exists only if T - I K I < 0. As a result, we get 

(lxl- Yo2)'h • , JY.I (•--lxi) 2 -1 
pl e· i.!l•··; Yo2 =- . 

!/o (•-lxl)2 
The maximum of the peak is located at the point y0 = 0 
(where P1 is singular), i.e., for I Ko I satisfying Eq. 
(13}. If I K I < I Ko I, then P1 = 0, since here the zero 
for the delta function does not lie in the integration 
interval. For I K I > I Ko I, the peak falls off exponen­
tially. In contrast with the Fermi case, the line ob­
tained here, although singular, is not infinitesimally 
narrow. This is connected with the fact that for arbi­
trary il < w0 there are always electrons located at 
sufficiently large kz in the level N = 0. The light ex­
cites them into the level N = 1 with the same kz, and 
their energy turns out to be sufficient for transition to 
the level N =0 with emission of an optical phonon. 
Thus, for il < wo, the upper electron level is nonsta­
tionary for kz <::: klim, which increases with decrease 
in il. The states with kz < kum are stationary for 
il < wo and transitions to these states lead to singu­
larities in Rea. The location of the maximum peak 
depends on T in the same way as in the case of Fermi 
statistics. 

We consider further the shape of the peak when 
K > 0, which is determined by the integral (21}. It is 
convenient to study two limiting cases, in which it is 
possible to get analytic expressions for P( K, r). If 

K « ~-\ then .J K + y2 in the integrand is replaced by 
y and 

P(x, T) = -2-1(x + r)-2ePEi(-p), p = 6[x + (x + T)-2] (23} 

( Ei(x) is the integral exponential function). If 
K » ~-\ then 

p (x, -r) = n)'v.£eP Cl'fc (!!) . (24} 
2(x+T) 2 Jp 

If now ~ >> 1, then the frequency dependence is de­
scribed by Eqs. (24} and (23} refers to the narrow and 
unimportant range of frequencies close to K = 0. The 
parameter p in this case is large and_, by using the 
asymptotic value erfc ( ..fP), we get[ 10J 

(25} 

i.e., the frequency dependence in almost the entire 
region is identical with the Fermi case. The half-width 
of the peak is determined by Eq. (19), and Ream differs 
from what is given in Eq. (17} by the factor 2-1 ( 7T/ ~ )1/ 2 • 

If IT I> 1, and consequently Km > 1, then Eq. (25) is 
valid in the region ~ Rj 1. 

In the case ~ << 1, the frequency dependence is de­
termined by Eq. (23}, and (24} describes the "tail" of 
the peak for large K. At the point T = 0, we have 
P ( K, 0} = ~- 1 ( K3 + 1), which means complete masking of 
the peak by the opaque band. If T < 0 and increases in 
absolute value, then for IT I~ 1, we have P(O, r) 
Rj - r-2 ln ( ~/ r 2 ) < ~ . On the other hand, at the point 
K = -r, we have P(-r, r) = ~- 1 > P(O, r), i.e., the 
peak becomes different, beginning with some IT I ~ 1. 
The second. integral entering into P( K, r) (Eq. (22}} 
describes in all cases the part of the studied peak in 
the unimportant region K < 0. Thus, it should be ex­
pected that, in the case ~ « 1, a broad peak will be 
seen at larger I T I than in the case ~ >> 1. If, again, 
I T I > 1, then the maximum of the peak is located in 
the region K = IT I, i.e., at large p. Using the asymp­
totic value of Ei(x), we get for P( K, ri 101 

P(x, T) = (2£)-'[x(x-1•1)'+!] ', 

whence the width of the peak is 

A~ 2/ITI. (26) 

A temperature dependence oCt::. appears when account 
is taken of the next terms of the asymptotic expansion 
of Ei(x) in (26). The shape of the band of cyclotron 
resonance is shown in Fig. 3 for those same values of 
the magnetic field which were studied in the case of 
Fermi statistics. The calculations have been carried 
out for T = 15°K and 88°K according to Eq. (21}. It is 
seen that the line narrows with increasing temperature 
(for otherwise identical conditions). In the framework 
of the model considered, this is explained by the fact 
that, with increase in T, the fraction of electrons 
located at higher kz increases. For higher kz, the 
resonance condition il = wo is less satisfactorily satis­
fied than for smaller kz, which leads, in the final 
analysis, to a narrowing of the line. Actually, however, 
there are mechanisms which broaden the line with in­
crease in T (interaction with acoustical phonons and 
account of absorption of optical phonons), and their in­
clusion can compensate for this narrowing. 
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1-t. 

FIG. 3. Frequency dependence of the cyclotron resonance in the 
case of Boltzmann statistics. a-~= 0.88 (T = l5°K); b-~ = 0.15 (T = 
88°K). The remaining designations were identified in the legend of 
Fig. 2. 

5. DISCUSSION OF RESULTS 

The theory discussed above, in all cases considered, 
leads to a broadening of the cyclotron resonance line 
upon approach Of S1 to Wo from the Side Of large Sl. 
This is explained by the fact that for n RS Wo (but 
S1 > w0 ), the electron thrown into the level N = 1 by the 
light goes over to the level N = 0, emitting an optical 
phonon, the transition taking place in the region of 
small kz, where the density of states is large. As the 
temperature increases, the fraction of electrons with 
kz "" 0 increases, which leads to a decrease in the 
transitions between levels with small kz (with emis­
sion of a phonon). Therefore, the line is narrowed with 
decrease in ~ ~ T-1 • This is seen from comparison of 
the width of the peak for the Fermi and Boltzmann 
cases (for ~ » 1) on the one hand, and for the Boltz­
mann cases for ~ << 1 on the other. Here, of course, 
one must take into account the fact that I T I > 1, where 
these expressions are valid. The shape of the peak 
under consideration is completely described by the 
theory, since its maximum (if it is not masked by a 
region of nontransparency of the crystal) is in all 
cases located at frequencies K ;::; a~13 , where the con­
tribution of the vertex parts can be neglected, as was 
shown above. The neglected terms have a smallness 
~ a~13 • In InSb, tiwo = 2.3 X 10-2 eV, tiwt = 2.2 X 10-2 eV, 
ao =10-2 • The nontransparency region ti(w 0 - wt) 
RS 10-3 eV is identical with the energy of splitting of the 
levels, which is equal to tiw 0 a~13 RS 10-3 eV. It is there­
fore evident that it is impossible to observe two peaks 
simultaneously for any w. 

The formulas above describe the basic feature of 
the observed phenomenon accurately-the increase in 
the width of the peak upon approach of the magnetic 
field to resonance. The measurements described in[ 21 

were made for T = l5°K and 81fK and the concentra­
tion of carriers was changed from 5.7 x 1013 cm-3 to 
1.0 x 1015 cm-3 • This concentration corresponds in 

Fermi level from 10-7 to 10-4 eV. Thus, in the range 
of temperatures and concentrations studied, the distri­
bution of the electrons was close to a Boltzmann one 
(the Fermi distribution would apply for concentrations 
5 X 10 15 cm-3 and T ::::; l0°K). For T = l5°K, the 
parameter ~ RS 1, and Kmax > 1, so that a comparison 
with experiment should be made in accord with Eq. (19). 
Upon change of the magnetic field from 5 X 104 to 3.5 
x 104 Oe, the computed width changes by a factor of 
2.1, and the measured one by 2.5. The computed limit­
ing value of the half-width (for a magnetic field equal 
to 6 x 104 Oe) is equal to 1.7 x 103 Oe, while the 
measured one (after subtraction of the background) is 
RS 0.8 x 103 Oe. This discrepancy is explained by the 
fact that the field of 6 x 104 Oe is very far from reso­
nance, where the diagram taken into account in the 
function W (Fig. la) becomes ~ a 0 • But then one 
should also take into account the other diagrams of 
order ao for W. 

In the region n < Wo, the peak of the absorption is 
singular. This is connected with the fact that the con­
sidered mechanism of scattering (the spontaneous 
emission of phonons) does not lead to nonstationarity of 
both the upper and the lower electron levels in this 
region. To achieve this end, one should also take into 
account the two mechanisms of line broadening: the 
appearance of nonstationarity because of the absorption 
of optical phonons and their spatial dispersion. How­
ever, the consideration of these rather complicated 
questions goes beyond the framework of the present 
paper. 
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