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The problem is considered of the two-quantum photo-dissociation of diatomic heteronuclear molecules. 
A method is proposed for taking into account the complete vibration-rotational spectrum of such mole­
cules for arbitrary two-photon transitions. The method is based on the application of the explicit ex­
pression of the Green's function for the internuclear potential. The nuclear potential curve is approxi­
mated by the Kratzer potential V(r) = A/r+2 - B/r. An analytic expression is derived for the two­
photon dissociation cross section, which occurs without change in the ground electron term; the ex­
pression is valid for arbitrary values of the vibrational and rotational quantum numbers of the initial 
state. 

1. A large number of theoretical and experimental 
papers have appeared to date which are devoted to the 
interaction of laser radiation with atoms. It is evident 
that the description of the interaction of intense electro­
magnetic radiation with molecules would also be of in­
terest from other points of view. Theoretically, many­
photon transitions of atoms in a strong field have been 
considered on the basis of the simplest atom-the hydro­
gen atom, which permits the most complete solution of 
the problem. At the same time, even very simple mole­
cules, such as the hydrogen-molecule ion H~, represent 
complicated quantum-mechanical systems with elec­
tronic, vibrational, and rotational degrees of freedom. 
Moreover, the solution of the many-photon problem for 
molecules is connected with the necessity of especially 
careful summation over the complete set of intermediate 
states, including the continuous spectrum. Approximate 
calculation of the matrix elements (summation over 
several "near resonance" intermediate levels) cannot 
be regarded as satisfactory even for atoms, let alone a 
system of molecular levels that are significantly more 
dense. 

In 1959, Schwartz and Tiemannlll first initiated the 
accurate calculation of the components of the matrix 
elements of second order for the hydrogen atom. These 
concerned not only the method of numerical integration 
of the inhomogeneous differential equations of second 
order, rz J but also the equivalent analytic expressions l3 J 
based on the use of the integral representation of the 
Coulomb Green's function. l•J We shall show that similar 
methods can also be used for calculation of some two­
photon processes in molecules. 

In the present work, the two-quantum photodissocia­
tion of heteronuclear two-atomic molecules is consid­
ered using as an example a model that describes satis­
factorily the vibrational-rotational states of the ground 
electron term 1:6 + and results in an accurate analytic 
solution for arbitrary vibrational (v) and rotational (K) 
quantum numbers of the initial state. It is assumed that 
the two-quantum transition of the molecule to the con­
tinuous spectrum takes place without change in the elec­
tron state; the complete vibrational-rotational spectrum 
of the ground electron term is taken as the intermediate 
level. The contribution of the excited electron levels if 

' 

necessary, can be considered similarly. We note that 
the possibility of many-photon dissociation of the mole­
cules from transition to the continuous spectrum of the 
ground electron term was considered previously in the 
example of the one-dimensional Morse oscillator. l 5 ' 6 J 
The electron state of the molecule in the vibration proc­
ess is regarded only as changing adiabatically with 
changing distance r between the nuclei. As the effective 
field of the electrons and nuclei we use in the present 
work the potential V(r) = A/r2 - B/r. The values of the 
parameters A and B are determined by the dissociation 
energies of the molecule D and the half-width of the po­
tential well A (or by the equilibrium distance between 
the nuclei r 0 = A/2\"'2) A= DA2 /8, B = DA/\"'2. 

The potential V(r) = A/r2 - B/r (the so-called Kratzer 
potential) plays a decisive role in the theory of band 
spectra in the old quantum mechanics and, along with 
the Morse potential V(r) = D[e-2Cl'(r-ro)- 2e-Cl'(r-ro)] 
is useful for the modern quantum-mechanical considera­
tion of molecules. l?,aJ The method proposed here for 
calculating the probabilities of two-photon transitions in 
molecules, based on the use of the explicit expression 
for the Green's function of the internuclear potential, is 
also applicable for the Morse potential [g,wJ and can be 
employed for specific calculations. The potential V(r) 
= Ar-2 - Br-1 allows us to take accurate account of the 
simultaneous presence of vibrations and rotations in the 
set of eigenfunctions and in the energy spectrum, and 
also to clarify the effect of the rotational spectrum of 
the molecule on the probability of one or another multi­
quantum transition. The Morse potential leads to an ex­
actly-solved eigenvalue problem only in the case K = 0. 
Therefore, the practical use of the extra parameter ro 
in the Morse potential, which permits us to change the 
distance between neighboring rotational levels fl2/mr~ 
for fixed values of D and Ql and, consequently, of the 
vibrational quantum fl w /2, is shown to be impossible. 

We note also that for molecules dissociating into 
ions, the potential V(r) = Ar-2 - Br-1 gives the necessary 
asymptotic behavior for large distances between the 
nuclei, and our analysis refers, strictly speaking, to 
this case. In the general case, the parameters A and B 
are determined by the values of the dissociation energy 
and the half-width A of the potential well. Bound-bound 
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processes and processes for which the final state be­
longs to the electron repulsion term are considered 
analogously. 

·2. In the non-relativistic dipole approximation, the 
interaction of the molecule with a plane electromagnetic 
wave has the form ~o(E ·d) cos wt, where fSo is the am­
plitude, w the frequency, E is the unit polarization vec­
tor of the radiation, and d = ~eiri is the dipole moment 
operator of the molecules. We represent the wave func­
tion of the molecule in the Born-Oppenheimer approxi­
mation in the form of the product of the wave function lJI 
of the electrons for a given distance r between the 
nuclei and the nuclear wave function E (r). The differen­
tial cross section of two-photon dissociation is deter­
mined in second-order perturbation theory and, after 
integration over the coordinates of the electrons, has 
the form 

_!_~'!_= mpro I). (de)t;{de)w 12 , ( 1) 
I dQ c2fi3 -""' E0 -E;+hro 

; 

where mpd0/(21Tfl)3 is the density of final states of the 
continuous spectrum, corresponding to the flight of the 
dissociation products with momenta equal to p relative 
to the center of gravity in an element of solid angle dO, 
p2 /2m = Eo + 2fl.w > 0 is the kinetic energy of the dis­
sociation products in the center-of-mass system, Eo is 
the initial energy, m = m 1m2(m 1 + m2r1 is the reduced 
mass of the molecule, I= cfS~/811' is the intensity of the 
incident radiation, and d(r) = jl/J*dl/!dTe is the mean 
dipole moment along the axis of the molecule. The ma­
trix elements in (1) are computed only over the nuclear 
wave functions; summation over the intermediate states 
is carried out over the complete vibrational-rotational 
spectrum of the ground electron term, including integra­
tion over the states of the continuous spectrum. 

We limit ourselves to the case of a linear dependence 
of the dipole moment d of the molecule on the distance 
between the nuclei or on the vibrational coordinates 
(r- ro): d =do+ eeffr, where eeff is the effective charge 
of the polar bond. 1 > For transitions connected with the 
change in the vibrational (and with it, the rotational) 
state of the molecules, the zero term of the expansion 
drops out of the matrix element in view of the orthogon­
ality of the wave functions of the vibrational motion. 
For convenience, we express the calculation of the ma­
trix elements (E • r)mn in (1) in terms of the matrix ele­
ments of the momentum operator p = -ihVr: 

1 dcr fipe!cc I Jf .• , • G 'I li _,. aar'l 2 (2) ---=----.. - V~t (1• )~so(l') (r,r Eo+ zro)u-r , 
I dQ c2m3 ro 3 ,, 

where 

G(r,r'IE)= .E (E; -E)-I£;"(r)S;(r') 
I 

(3) 

is the Green's function of the internuclear potential V(r). 
3. Let us first consider the dependence of the cross 

section on the angular variables (the direction of flight 
of the dissociation products) and also the selection 
rules for rotational (K) and magnetic (M) quantum num­
bers of the molecule. The wave function describing the 

!)The possibility of the expansion of din powers of the vibrational 
coordinates (r- r0 ) is connected with the assumption of the smallness 
of the vibrations. For molecules which dissociate into ions, a linear de­
pendence ofd on r evidently occurs even for large distances. The gen­
eral case of a nonlinear dependence of don r is considered in [ 9 • 10 ]. 

motion of the nuclei in the initial state has the form 
Eo(r) = RvK(r)YKM(O, cp), where YKM are normalized 
spherical harmonics, and the radial part RvK(r) of the 
nuclear wave function satisfies the equation 

d"R +~ dR +2m [Eo_!!__ K(K+i) -~+~]R=O (4) 
dr• r dr f!2 2m r2 r2 r 

and the normalization condition 

J ll,.K2(r)r2dr=1, Eo=Evx. 
0 

The wave function E f(r) of the final state is determined 
by expansion over the partial waves and has the asymp­
totic form of a plane wave of unit amplitude plus a 
diverging spherical waveluJ 

£j(l")="' (Zil]"' I: ji<' exp{-il']K·)RqK•(r') Y x•M·(8',cp') Y~·.w(9, Ill). (5) 
"fq H'.U' 

Here RqKl is the regular solution of Eq. (4) for 
E =112q2/2m > 0, normalized in the energy scale, 11K' 
is the phase, ® and <I> are the polar and azimuthal angles 
defining the direction of flight of the particles in a coor­
dinate frame whose polar axis is directed along the 
polarization vector of the incident radiation. We now 
use the expansion of the Green's function (3) in partial 
waves 

G(r,r'IE)= L Y:C1M 1 ( 7) Yx,lr1 ( ~) Cz•, (r,r'\E}, (6) 
K,M, 

where gK.(r, r' IE) is a solution of the inhomogeneous 
t . 1 equa 10n 

{~[~+~~-~Jr!.l_ K;(K;+i) 1 
2m dr2 r dr 112r2 r2 (7) 

B } ll(r-r') 
+-,:-+E cx1 (r,r'IE) rr' 

Then, after averaging over the magnetic quantum num­
ber M of the initial state (v, K), we can represent (2) in 
the form 

1 dcr 
I dQ 

where 

(2rr)ah•e!rr J L [ Mx+l xe1~Ka2 (K)Yx,M(9,!1>) 
c2ro3m3(2J( + 1)2 M. • 

- ./lfK+I. K+2ei~K+•a(K)b(K + 2) Y K+2, AI(9, <lJ) 
+MK-I,Ke1~K b2 (K)Yx.u(0,!J))-

-MK-I,K-2e1~K-'a(K-2)b(K)YK-2,.r(0,<1J) Jr. (8) 

, [(K-111+1)(K+M+1)]''• a(li)-
-- (2K+1)(2K+3) ' 

K•- ~~· '" b(K)=[4K2 _: 1 ] .(9) 

.. 
Mx1x•(ro)= SJ drdr'(rr') 2Cx 1(r,r'IEv1, +tiro)· 

0 

X [ dRvx(r) + /,(K;) Rvx(r) ] [ dRqx•(r') + t..'(K') Rqx•(r') ] (10) 
dr r dr' r' ' 

and the parameters are i\.(K + 1) = -K, i\.(K- 1) = K + 1, 
'( ' 1) K' 1 '( ' 1) K' E t' i\ K = Kj, + = + , i\ K = ~ - = - . qua 10n 

(8) expresses the selection rule ~M = 0, ~K = ± 1 and 
the distribution of the dissociation products over the 
angles of flight. If the kinetic energy of the flight of the 
dissociation products is much greater than the initial 
rotational energy of the molecule2> (qr >> K +%),the 

2) In this case, flight takes place principally in the direction of the 
molecular axis. Such an approximation, which is valid far from the 
threshold of the bound-bound transition, is called the axial recoil ap­
proximation. 
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factor il(exp (-i7JK') with accuracy to terms 
(K' + Yd/(qr)2 can be regarded as independent of 
K'. L12 J Since the radial wave functions depend only 
very weakly on K, then, for example, forK= 0, by as­
suming M10 = M12, we obtain the following angular de­
pendence: 

dcr ~ cos' E!dQ. 

4. The radial part of the nuclear wave function of the 
initial bound state of the molecule has the form u 1,aJ 

2-yr(2s+2~( 2r )' ( 2r) Rvx(r)=· _ ~- e-,;an<J) -v,,2s-!--2,- ,(11} 
!!'''n~f(2s-f-2}"yu! an an 

where s is the positive root of the equation 

s(s-!--1)=2mA/n2 +K(K-!--1), (12) 

<I> is the confluent hypergeometric function, n = s + 1 
+ v, v = 0, 1, 2, ... is the vibrational quantum number, 
a = 112 /Bm is the Coulomb unit of length. The energy 
levels of the discrete spectrum are determined by the 
formula 

B2mjfi2 ( 1 ) 
E,x=-~=-D+Ilwo v+2 (13) 

-2-nwo (v+~-) 2 +~ (K+_!_) 2 +··· 2e • 2 2J 2 

The latter equation is obtained by an expansion of EvK 
in a series in the small parameter E-1 = fl/v'2mA. The 
parameter E is equal to twice the ratio of the vibra­
tional quantum for v = O(flw 0/2) to the rotational part 
forK= 1(-fl2/J), where w0 = (4/ ~}(D/m} 112 , J = mr~ is 
the moment of inertia of the molecule. For most mole­
cules, E ~ 102. From states with a given rotational 
quantum number K and consequently with givens, the 
ground state is the state with v = 0. The radial part of 
the partial wave of the final state is equal to 

c'(2ar·l,.. (. 2r) 
R K'(r)=-·-O-'-e-•·fan'<D -n'+s'+1,2s'+2,-- (14} 

q f(2s'+2) an' 

and normalized in the energy scale 

c' =l'2q/n e"'2"q 1 r ( s' + 1- :q) 1. (15) 

n' = -i[(B2m/fl2}/2E')Y12 is the principal quantum num­
ber of the final state of the continuous spectrum with 
energy E' = EvK + 2-llw, q = v'2mE' /11 = -i/an' is the 
relative wave number of the dissociation products, s' 
the positive root of Eq. (12), in which K is replaced 
by K'. 

We use the following integral representation for the 
radial Green's function gK(r, r'IE) of the potential V(r} 
= Ar -z- Br-1: 3) 

Cx (r,r'IEvx+n{J))=- Zm (1-e-2:riv)-1 
; h2 )'rr 

(1}-H r+r' 1-!--t 4)'rr't 
x J t-•-''•(1- t)- 1 oxp (-----) lz,+1 ( ) dt. (16) 

1 av i-t av(1-t) 

3)We note that the equation for the radial Green's function g(r, r'IE) 
of the Morse potential in the new variables y = 2(3 exp [ -a(r- r0 ) 1 and 
g= arr'g/yW is identical with Eq. (7) for the potential V(y) = Ay"2-
By"1 with B = (jh2/2m, KiCKi +I)+ 2mA/h2 = ~2 -t, E = h2/8m, where 
~ = [-2m(E0 + hw)] 1/ah Consequently, g(y, y') is determined by Eq. 
(16), in which we set r = y, v = {3, s + 1 = ~, av = 2. [ 9 • 10 1 

The contour of integration runs from unity on the real 
axis, around the point t = 0 and returns to unity on the t 
axis. Here 11 = [(B2m/fl2}/{-2(EvK + flw)} ]112 is the 
"principal quantum number" in the virtual state; s the 
real root of Eq. (12}, in which K is replaced by Ki. 
Equation (16) is easily obtained by using the analog of 
Eq. (7} with the equation for the radial Green's function 
of the Klein-Gordon equation. l 4J Since radial functions 
which describe the nuclear vibrations depend weakly on 
K, then one can assume liqK' = liqK• gK ± 1 = gK. (We 
note that the functions R and g depend on K through the 
parameter s(K}. For s ~ 102 , we have s(K} = s(K ± 1) 
with accuracy to within K · 0.01%. In this connection, we 
shall omit the prime on s in the following. 

Using the standard relations for the confluent hyper­
geometric functions and the properties of the Laplace 
transform, we represent the matrix elements of (10) in 
the form 

1 ( a)[s+1+n' X---=P,+, --- ---Qo 
a'h·,2yu! Dx 2 

s + 1- n' ]I +(/.'-1)Q1+ , Q2 ' 
2 x=il(s+i+t:) 

(17) 

where P v + 1 is a differential polynomial of (v + 1) order): 

Pv+! = (s + v +"-+-~_a) <D(- v,2s + 2,-.2_~) 
n dx n ax 

- vrJ) (- v + 1, 2s + 2, - ! !J , ( 18) 

~ 

Qz(x)= JS drch~ (rr')•+1 gx(r, r'!EvK + nw) 
0 

( rx r' ) ( 2r' ) xexp -------- <D -n'-t-s-!--l,2s-f-2,- , 
a an' an' 

l=O, 1. 2, 

(19) 

and the function g is defined in (16). Integrating over 
dr and dr', [9 ' 13 J and considering the integral dt as the 
integral representation for Appel functions of first order 
F1(a, b, b', c, X, X*}, we get 

Q (")- mavl'(2s-t-2) ( 2avn' ) 2•+2 exp[(2urectgavq-n)/aql 
z .c --------~- .---- 61F(l,x), n2(v-s-1) 1+,·x (n'2-v2)•(n'+v)2 

(20) 
F(l,x) =F,(s-v+1, --n'+s+l, n'-+-s+2-l, s-t-2-v, 

-of>(x), ·-6·~(x)), (21) 
where 

f>(x) '= (y:r-1)/(v:r-f-1), 6=-cxp (-2iarcctga\'q). 

For IX I < 1, the Appel function (21) can be computed by 
expansion in the rapidly converging double hyper­
geometric series: l 14 J 

Actually, I 6 I = 1, 0 < f3 < 1. We note immediately that 
the poles of the function (21), which appear at s- v + 2 
= 0, -1, -2, describe resonances at the intermediate 
levels: 

l,--]ji;~j{z'2- ' (23) 
v= -------=s'l-1-t-v+p. p=1,2, ... , 

- 2(h',K + hw) 

i.e., for fl.w = -EvK- (B2m/fl2}/2(s + 1 + v + p}2 , I%EvKI 
< 1'1.w < IEvKI· It follows from (21) and (22) that F(O, x) 
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= F*(1, x). Substituting (20) in (17), we get 

. ( {)){ [(1-"A')F(i,x) MK. K'(w)= i\P,-+1 --- (1 + vx)-2s-2 _____ _ 
• h ~-~ 

n' + s+ 1 ]}/ + Re----F(O .x) 
(n' + v) 2 ' ' x~(s+!+,)-1 ' 

(24) 

am 1;-;q v(-1v) 2'+2 rf(z~ + 2 + v) jr(s + 1- ifaq) 1 
N = -7.2 Y 2--n n2 (anq)s+2 (v2 - n'2)•(v- s -1)iv! f(2s +-2). 

(25) 

where the functions F(O, x) and F(1, x) are defined in 
(21), and the differential polynomial Pv+ 1 in (18). The 
final expression for the cross section for an arbitrary 
vibrational and rotational quantum numbers of the initial 
state of the molecule is determined by Eqs. (8), (24), 
and (25). 

As an example of the use of the formulas obtained 
above in a specific calculation, we have considered the 
two-photon dissociation of the ground state (v = 0, K = 0) 
of a molecule with the following parameters: dissocia­
tion energy D = 31 eV, half-width of the potential well 
t:. = 6.6 A, reduced mass of the dissociation products 
m = mH. In this case, the total dissociation cross sec­
tion in a field with quantum energy 2 eV amounts to 
a = 10-16 I cm4/W. We note that the parameters are so 
chosen that the frequency of the incident radiation ap­
proaches the mean between the neighboring resonance 
frequencies, for which the cross section of the process 
goes to infinity upon neglect of damping of the levels. 

In conclusion, the authors express their gratitude to 
A. M. Prokhorov for constant interest in the research. 
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